You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1416 lines
53 KiB

// Copyright 2014 Google Inc. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package blueprint
import (
"fmt"
"path/filepath"
"strings"
"sync"
"text/scanner"
"github.com/google/blueprint/parser"
"github.com/google/blueprint/pathtools"
"github.com/google/blueprint/proptools"
)
// A Module handles generating all of the Ninja build actions needed to build a
// single module based on properties defined in a Blueprints file. Module
// objects are initially created during the parse phase of a Context using one
// of the registered module types (and the associated ModuleFactory function).
// The Module's properties struct is automatically filled in with the property
// values specified in the Blueprints file (see Context.RegisterModuleType for more
// information on this).
//
// A Module can be split into multiple Modules by a Mutator. All existing
// properties set on the module will be duplicated to the new Module, and then
// modified as necessary by the Mutator.
//
// The Module implementation can access the build configuration as well as any
// modules on which on which it depends (as defined by the "deps" property
// specified in the Blueprints file, dynamically added by implementing the
// (deprecated) DynamicDependerModule interface, or dynamically added by a
// BottomUpMutator) using the ModuleContext passed to GenerateBuildActions.
// This ModuleContext is also used to create Ninja build actions and to report
// errors to the user.
//
// In addition to implementing the GenerateBuildActions method, a Module should
// implement methods that provide dependant modules and singletons information
// they need to generate their build actions. These methods will only be called
// after GenerateBuildActions is called because the Context calls
// GenerateBuildActions in dependency-order (and singletons are invoked after
// all the Modules). The set of methods a Module supports will determine how
// dependant Modules interact with it.
//
// For example, consider a Module that is responsible for generating a library
// that other modules can link against. The library Module might implement the
// following interface:
//
// type LibraryProducer interface {
// LibraryFileName() string
// }
//
// func IsLibraryProducer(module blueprint.Module) {
// _, ok := module.(LibraryProducer)
// return ok
// }
//
// A binary-producing Module that depends on the library Module could then do:
//
// func (m *myBinaryModule) GenerateBuildActions(ctx blueprint.ModuleContext) {
// ...
// var libraryFiles []string
// ctx.VisitDepsDepthFirstIf(IsLibraryProducer,
// func(module blueprint.Module) {
// libProducer := module.(LibraryProducer)
// libraryFiles = append(libraryFiles, libProducer.LibraryFileName())
// })
// ...
// }
//
// to build the list of library file names that should be included in its link
// command.
//
// GenerateBuildActions may be called from multiple threads. It is guaranteed to
// be called after it has finished being called on all dependencies and on all
// variants of that appear earlier in the ModuleContext.VisitAllModuleVariants list.
// Any accesses to global variables or to Module objects that are not dependencies
// or variants of the current Module must be synchronized by the implementation of
// GenerateBuildActions.
type Module interface {
// Name returns a string used to uniquely identify each module. The return
// value must be unique across all modules. It is only called once, during
// initial blueprint parsing. To change the name later a mutator must call
// MutatorContext.Rename
//
// In most cases, Name should return the contents of a "name:" property from
// the blueprint file. An embeddable SimpleName object can be used for this
// case.
Name() string
// GenerateBuildActions is called by the Context that created the Module
// during its generate phase. This call should generate all Ninja build
// actions (rules, pools, and build statements) needed to build the module.
GenerateBuildActions(ModuleContext)
}
// A DynamicDependerModule is a Module that may add dependencies that do not
// appear in its "deps" property. Any Module that implements this interface
// will have its DynamicDependencies method called by the Context that created
// it during generate phase.
//
// Deprecated, use a BottomUpMutator instead
type DynamicDependerModule interface {
Module
// DynamicDependencies is called by the Context that created the
// DynamicDependerModule during its generate phase. This call should return
// the list of module names that the DynamicDependerModule depends on
// dynamically. Module names that already appear in the "deps" property may
// but do not need to be included in the returned list.
DynamicDependencies(DynamicDependerModuleContext) []string
}
type EarlyModuleContext interface {
// Module returns the current module as a Module. It should rarely be necessary, as the module already has a
// reference to itself.
Module() Module
// ModuleName returns the name of the module. This is generally the value that was returned by Module.Name() when
// the module was created, but may have been modified by calls to BaseMutatorContext.Rename.
ModuleName() string
// ModuleDir returns the path to the directory that contains the defintion of the module.
ModuleDir() string
// ModuleType returns the name of the module type that was used to create the module, as specified in
// RegisterModuleType.
ModuleType() string
// BlueprintFile returns the name of the blueprint file that contains the definition of this
// module.
BlueprintsFile() string
// Config returns the config object that was passed to Context.PrepareBuildActions.
Config() interface{}
// ContainsProperty returns true if the specified property name was set in the module definition.
ContainsProperty(name string) bool
// Errorf reports an error at the specified position of the module definition file.
Errorf(pos scanner.Position, fmt string, args ...interface{})
// ModuleErrorf reports an error at the line number of the module type in the module definition.
ModuleErrorf(fmt string, args ...interface{})
// PropertyErrorf reports an error at the line number of a property in the module definition.
PropertyErrorf(property, fmt string, args ...interface{})
// Failed returns true if any errors have been reported. In most cases the module can continue with generating
// build rules after an error, allowing it to report additional errors in a single run, but in cases where the error
// has prevented the module from creating necessary data it can return early when Failed returns true.
Failed() bool
// GlobWithDeps returns a list of files and directories that match the
// specified pattern but do not match any of the patterns in excludes.
// Any directories will have a '/' suffix. It also adds efficient
// dependencies to rerun the primary builder whenever a file matching
// the pattern as added or removed, without rerunning if a file that
// does not match the pattern is added to a searched directory.
GlobWithDeps(pattern string, excludes []string) ([]string, error)
// Fs returns a pathtools.Filesystem that can be used to interact with files. Using the Filesystem interface allows
// the module to be used in build system tests that run against a mock filesystem.
Fs() pathtools.FileSystem
// AddNinjaFileDeps adds dependencies on the specified files to the rule that creates the ninja manifest. The
// primary builder will be rerun whenever the specified files are modified.
AddNinjaFileDeps(deps ...string)
moduleInfo() *moduleInfo
error(err error)
// Namespace returns the Namespace object provided by the NameInterface set by Context.SetNameInterface, or the
// default SimpleNameInterface if Context.SetNameInterface was not called.
Namespace() Namespace
// ModuleFactories returns a map of all of the global ModuleFactories by name.
ModuleFactories() map[string]ModuleFactory
}
type BaseModuleContext interface {
EarlyModuleContext
// GetDirectDepWithTag returns the Module the direct dependency with the specified name, or nil if
// none exists. It panics if the dependency does not have the specified tag.
GetDirectDepWithTag(name string, tag DependencyTag) Module
// GetDirectDep returns the Module and DependencyTag for the direct dependency with the specified
// name, or nil if none exists. If there are multiple dependencies on the same module it returns
// the first DependencyTag.
GetDirectDep(name string) (Module, DependencyTag)
// VisitDirectDeps calls visit for each direct dependency. If there are multiple direct dependencies on the same
// module visit will be called multiple times on that module and OtherModuleDependencyTag will return a different
// tag for each.
//
// The Module passed to the visit function should not be retained outside of the visit function, it may be
// invalidated by future mutators.
VisitDirectDeps(visit func(Module))
// VisitDirectDepsIf calls pred for each direct dependency, and if pred returns true calls visit. If there are
// multiple direct dependencies on the same module pred and visit will be called multiple times on that module and
// OtherModuleDependencyTag will return a different tag for each.
//
// The Module passed to the visit function should not be retained outside of the visit function, it may be
// invalidated by future mutators.
VisitDirectDepsIf(pred func(Module) bool, visit func(Module))
// VisitDepsDepthFirst calls visit for each transitive dependency, traversing the dependency tree in depth first
// order. visit will only be called once for any given module, even if there are multiple paths through the
// dependency tree to the module or multiple direct dependencies with different tags. OtherModuleDependencyTag will
// return the tag for the first path found to the module.
//
// The Module passed to the visit function should not be retained outside of the visit function, it may be
// invalidated by future mutators.
VisitDepsDepthFirst(visit func(Module))
// VisitDepsDepthFirst calls pred for each transitive dependency, and if pred returns true calls visit, traversing
// the dependency tree in depth first order. visit will only be called once for any given module, even if there are
// multiple paths through the dependency tree to the module or multiple direct dependencies with different tags.
// OtherModuleDependencyTag will return the tag for the first path found to the module. The return value of pred
// does not affect which branches of the tree are traversed.
//
// The Module passed to the visit function should not be retained outside of the visit function, it may be
// invalidated by future mutators.
VisitDepsDepthFirstIf(pred func(Module) bool, visit func(Module))
// WalkDeps calls visit for each transitive dependency, traversing the dependency tree in top down order. visit may
// be called multiple times for the same (child, parent) pair if there are multiple direct dependencies between the
// child and parent with different tags. OtherModuleDependencyTag will return the tag for the currently visited
// (child, parent) pair. If visit returns false WalkDeps will not continue recursing down to child.
//
// The Modules passed to the visit function should not be retained outside of the visit function, they may be
// invalidated by future mutators.
WalkDeps(visit func(Module, Module) bool)
// PrimaryModule returns the first variant of the current module. Variants of a module are always visited in
// order by mutators and GenerateBuildActions, so the data created by the current mutator can be read from the
// Module returned by PrimaryModule without data races. This can be used to perform singleton actions that are
// only done once for all variants of a module.
PrimaryModule() Module
// FinalModule returns the last variant of the current module. Variants of a module are always visited in
// order by mutators and GenerateBuildActions, so the data created by the current mutator can be read from all
// variants using VisitAllModuleVariants if the current module == FinalModule(). This can be used to perform
// singleton actions that are only done once for all variants of a module.
FinalModule() Module
// VisitAllModuleVariants calls visit for each variant of the current module. Variants of a module are always
// visited in order by mutators and GenerateBuildActions, so the data created by the current mutator can be read
// from all variants if the current module == FinalModule(). Otherwise, care must be taken to not access any
// data modified by the current mutator.
VisitAllModuleVariants(visit func(Module))
// OtherModuleName returns the name of another Module. See BaseModuleContext.ModuleName for more information.
// It is intended for use inside the visit functions of Visit* and WalkDeps.
OtherModuleName(m Module) string
// OtherModuleDir returns the directory of another Module. See BaseModuleContext.ModuleDir for more information.
// It is intended for use inside the visit functions of Visit* and WalkDeps.
OtherModuleDir(m Module) string
// OtherModuleSubDir returns the unique subdirectory name of another Module. See ModuleContext.ModuleSubDir for
// more information.
// It is intended for use inside the visit functions of Visit* and WalkDeps.
OtherModuleSubDir(m Module) string
// OtherModuleType returns the type of another Module. See BaseModuleContext.ModuleType for more information.
// It is intended for use inside the visit functions of Visit* and WalkDeps.
OtherModuleType(m Module) string
// OtherModuleErrorf reports an error on another Module. See BaseModuleContext.ModuleErrorf for more information.
// It is intended for use inside the visit functions of Visit* and WalkDeps.
OtherModuleErrorf(m Module, fmt string, args ...interface{})
// OtherModuleDependencyTag returns the dependency tag used to depend on a module, or nil if there is no dependency
// on the module. When called inside a Visit* method with current module being visited, and there are multiple
// dependencies on the module being visited, it returns the dependency tag used for the current dependency.
OtherModuleDependencyTag(m Module) DependencyTag
// OtherModuleExists returns true if a module with the specified name exists, as determined by the NameInterface
// passed to Context.SetNameInterface, or SimpleNameInterface if it was not called.
OtherModuleExists(name string) bool
// OtherModuleDependencyVariantExists returns true if a module with the
// specified name and variant exists. The variant must match the given
// variations. It must also match all the non-local variations of the current
// module. In other words, it checks for the module that AddVariationDependencies
// would add a dependency on with the same arguments.
OtherModuleDependencyVariantExists(variations []Variation, name string) bool
// OtherModuleFarDependencyVariantExists returns true if a module with the
// specified name and variant exists. The variant must match the given
// variations, but not the non-local variations of the current module. In
// other words, it checks for the module that AddFarVariationDependencies
// would add a dependency on with the same arguments.
OtherModuleFarDependencyVariantExists(variations []Variation, name string) bool
// OtherModuleReverseDependencyVariantExists returns true if a module with the
// specified name exists with the same variations as the current module. In
// other words, it checks for the module that AddReverseDependency would add a
// dependency on with the same argument.
OtherModuleReverseDependencyVariantExists(name string) bool
// OtherModuleProvider returns the value for a provider for the given module. If the value is
// not set it returns the zero value of the type of the provider, so the return value can always
// be type asserted to the type of the provider. The value returned may be a deep copy of the
// value originally passed to SetProvider.
OtherModuleProvider(m Module, provider ProviderKey) interface{}
// OtherModuleHasProvider returns true if the provider for the given module has been set.
OtherModuleHasProvider(m Module, provider ProviderKey) bool
// Provider returns the value for a provider for the current module. If the value is
// not set it returns the zero value of the type of the provider, so the return value can always
// be type asserted to the type of the provider. It panics if called before the appropriate
// mutator or GenerateBuildActions pass for the provider. The value returned may be a deep
// copy of the value originally passed to SetProvider.
Provider(provider ProviderKey) interface{}
// HasProvider returns true if the provider for the current module has been set.
HasProvider(provider ProviderKey) bool
// SetProvider sets the value for a provider for the current module. It panics if not called
// during the appropriate mutator or GenerateBuildActions pass for the provider, if the value
// is not of the appropriate type, or if the value has already been set. The value should not
// be modified after being passed to SetProvider.
SetProvider(provider ProviderKey, value interface{})
}
type DynamicDependerModuleContext BottomUpMutatorContext
type ModuleContext interface {
BaseModuleContext
// ModuleSubDir returns a unique name for the current variant of a module that can be used as part of the path
// to ensure that each variant of a module gets its own intermediates directory to write to.
ModuleSubDir() string
// Variable creates a new ninja variable scoped to the module. It can be referenced by calls to Rule and Build
// in the same module.
Variable(pctx PackageContext, name, value string)
// Rule creates a new ninja rule scoped to the module. It can be referenced by calls to Build in the same module.
Rule(pctx PackageContext, name string, params RuleParams, argNames ...string) Rule
// Build creates a new ninja build statement.
Build(pctx PackageContext, params BuildParams)
// GetMissingDependencies returns the list of dependencies that were passed to AddDependencies or related methods,
// but do not exist. It can be used with Context.SetAllowMissingDependencies to allow the primary builder to
// handle missing dependencies on its own instead of having Blueprint treat them as an error.
GetMissingDependencies() []string
}
var _ BaseModuleContext = (*baseModuleContext)(nil)
type baseModuleContext struct {
context *Context
config interface{}
module *moduleInfo
errs []error
visitingParent *moduleInfo
visitingDep depInfo
ninjaFileDeps []string
}
func (d *baseModuleContext) moduleInfo() *moduleInfo {
return d.module
}
func (d *baseModuleContext) Module() Module {
return d.module.logicModule
}
func (d *baseModuleContext) ModuleName() string {
return d.module.Name()
}
func (d *baseModuleContext) ModuleType() string {
return d.module.typeName
}
func (d *baseModuleContext) ContainsProperty(name string) bool {
_, ok := d.module.propertyPos[name]
return ok
}
func (d *baseModuleContext) ModuleDir() string {
return filepath.Dir(d.module.relBlueprintsFile)
}
func (d *baseModuleContext) BlueprintsFile() string {
return d.module.relBlueprintsFile
}
func (d *baseModuleContext) Config() interface{} {
return d.config
}
func (d *baseModuleContext) error(err error) {
if err != nil {
d.errs = append(d.errs, err)
}
}
func (d *baseModuleContext) Errorf(pos scanner.Position,
format string, args ...interface{}) {
d.error(&BlueprintError{
Err: fmt.Errorf(format, args...),
Pos: pos,
})
}
func (d *baseModuleContext) ModuleErrorf(format string,
args ...interface{}) {
d.error(&ModuleError{
BlueprintError: BlueprintError{
Err: fmt.Errorf(format, args...),
Pos: d.module.pos,
},
module: d.module,
})
}
func (d *baseModuleContext) PropertyErrorf(property, format string,
args ...interface{}) {
pos := d.module.propertyPos[property]
if !pos.IsValid() {
pos = d.module.pos
}
d.error(&PropertyError{
ModuleError: ModuleError{
BlueprintError: BlueprintError{
Err: fmt.Errorf(format, args...),
Pos: pos,
},
module: d.module,
},
property: property,
})
}
func (d *baseModuleContext) Failed() bool {
return len(d.errs) > 0
}
func (d *baseModuleContext) GlobWithDeps(pattern string,
excludes []string) ([]string, error) {
return d.context.glob(pattern, excludes)
}
func (d *baseModuleContext) Fs() pathtools.FileSystem {
return d.context.fs
}
func (d *baseModuleContext) Namespace() Namespace {
return d.context.nameInterface.GetNamespace(newNamespaceContext(d.module))
}
var _ ModuleContext = (*moduleContext)(nil)
type moduleContext struct {
baseModuleContext
scope *localScope
actionDefs localBuildActions
handledMissingDeps bool
}
func (m *baseModuleContext) OtherModuleName(logicModule Module) string {
module := m.context.moduleInfo[logicModule]
return module.Name()
}
func (m *baseModuleContext) OtherModuleDir(logicModule Module) string {
module := m.context.moduleInfo[logicModule]
return filepath.Dir(module.relBlueprintsFile)
}
func (m *baseModuleContext) OtherModuleSubDir(logicModule Module) string {
module := m.context.moduleInfo[logicModule]
return module.variant.name
}
func (m *baseModuleContext) OtherModuleType(logicModule Module) string {
module := m.context.moduleInfo[logicModule]
return module.typeName
}
func (m *baseModuleContext) OtherModuleErrorf(logicModule Module, format string,
args ...interface{}) {
module := m.context.moduleInfo[logicModule]
m.errs = append(m.errs, &ModuleError{
BlueprintError: BlueprintError{
Err: fmt.Errorf(format, args...),
Pos: module.pos,
},
module: module,
})
}
func (m *baseModuleContext) OtherModuleDependencyTag(logicModule Module) DependencyTag {
// fast path for calling OtherModuleDependencyTag from inside VisitDirectDeps
if logicModule == m.visitingDep.module.logicModule {
return m.visitingDep.tag
}
for _, dep := range m.visitingParent.directDeps {
if dep.module.logicModule == logicModule {
return dep.tag
}
}
return nil
}
func (m *baseModuleContext) OtherModuleExists(name string) bool {
_, exists := m.context.nameInterface.ModuleFromName(name, m.module.namespace())
return exists
}
func (m *baseModuleContext) OtherModuleDependencyVariantExists(variations []Variation, name string) bool {
possibleDeps := m.context.moduleGroupFromName(name, m.module.namespace())
if possibleDeps == nil {
return false
}
found, _ := findVariant(m.module, possibleDeps, variations, false, false)
return found != nil
}
func (m *baseModuleContext) OtherModuleFarDependencyVariantExists(variations []Variation, name string) bool {
possibleDeps := m.context.moduleGroupFromName(name, m.module.namespace())
if possibleDeps == nil {
return false
}
found, _ := findVariant(m.module, possibleDeps, variations, true, false)
return found != nil
}
func (m *baseModuleContext) OtherModuleReverseDependencyVariantExists(name string) bool {
possibleDeps := m.context.moduleGroupFromName(name, m.module.namespace())
if possibleDeps == nil {
return false
}
found, _ := findVariant(m.module, possibleDeps, nil, false, true)
return found != nil
}
func (m *baseModuleContext) OtherModuleProvider(logicModule Module, provider ProviderKey) interface{} {
module := m.context.moduleInfo[logicModule]
value, _ := m.context.provider(module, provider)
return value
}
func (m *baseModuleContext) OtherModuleHasProvider(logicModule Module, provider ProviderKey) bool {
module := m.context.moduleInfo[logicModule]
_, ok := m.context.provider(module, provider)
return ok
}
func (m *baseModuleContext) Provider(provider ProviderKey) interface{} {
value, _ := m.context.provider(m.module, provider)
return value
}
func (m *baseModuleContext) HasProvider(provider ProviderKey) bool {
_, ok := m.context.provider(m.module, provider)
return ok
}
func (m *baseModuleContext) SetProvider(provider ProviderKey, value interface{}) {
m.context.setProvider(m.module, provider, value)
}
func (m *baseModuleContext) GetDirectDep(name string) (Module, DependencyTag) {
for _, dep := range m.module.directDeps {
if dep.module.Name() == name {
return dep.module.logicModule, dep.tag
}
}
return nil, nil
}
func (m *baseModuleContext) GetDirectDepWithTag(name string, tag DependencyTag) Module {
var deps []depInfo
for _, dep := range m.module.directDeps {
if dep.module.Name() == name {
if dep.tag == tag {
return dep.module.logicModule
}
deps = append(deps, dep)
}
}
if len(deps) != 0 {
panic(fmt.Errorf("Unable to find dependency %q with requested tag %#v. Found: %#v", deps[0].module, tag, deps))
}
return nil
}
func (m *baseModuleContext) VisitDirectDeps(visit func(Module)) {
defer func() {
if r := recover(); r != nil {
panic(newPanicErrorf(r, "VisitDirectDeps(%s, %s) for dependency %s",
m.module, funcName(visit), m.visitingDep.module))
}
}()
m.visitingParent = m.module
for _, dep := range m.module.directDeps {
m.visitingDep = dep
visit(dep.module.logicModule)
}
m.visitingParent = nil
m.visitingDep = depInfo{}
}
func (m *baseModuleContext) VisitDirectDepsIf(pred func(Module) bool, visit func(Module)) {
defer func() {
if r := recover(); r != nil {
panic(newPanicErrorf(r, "VisitDirectDepsIf(%s, %s, %s) for dependency %s",
m.module, funcName(pred), funcName(visit), m.visitingDep.module))
}
}()
m.visitingParent = m.module
for _, dep := range m.module.directDeps {
m.visitingDep = dep
if pred(dep.module.logicModule) {
visit(dep.module.logicModule)
}
}
m.visitingParent = nil
m.visitingDep = depInfo{}
}
func (m *baseModuleContext) VisitDepsDepthFirst(visit func(Module)) {
defer func() {
if r := recover(); r != nil {
panic(newPanicErrorf(r, "VisitDepsDepthFirst(%s, %s) for dependency %s",
m.module, funcName(visit), m.visitingDep.module))
}
}()
m.context.walkDeps(m.module, false, nil, func(dep depInfo, parent *moduleInfo) {
m.visitingParent = parent
m.visitingDep = dep
visit(dep.module.logicModule)
})
m.visitingParent = nil
m.visitingDep = depInfo{}
}
func (m *baseModuleContext) VisitDepsDepthFirstIf(pred func(Module) bool,
visit func(Module)) {
defer func() {
if r := recover(); r != nil {
panic(newPanicErrorf(r, "VisitDepsDepthFirstIf(%s, %s, %s) for dependency %s",
m.module, funcName(pred), funcName(visit), m.visitingDep.module))
}
}()
m.context.walkDeps(m.module, false, nil, func(dep depInfo, parent *moduleInfo) {
if pred(dep.module.logicModule) {
m.visitingParent = parent
m.visitingDep = dep
visit(dep.module.logicModule)
}
})
m.visitingParent = nil
m.visitingDep = depInfo{}
}
func (m *baseModuleContext) WalkDeps(visit func(child, parent Module) bool) {
m.context.walkDeps(m.module, true, func(dep depInfo, parent *moduleInfo) bool {
m.visitingParent = parent
m.visitingDep = dep
return visit(dep.module.logicModule, parent.logicModule)
}, nil)
m.visitingParent = nil
m.visitingDep = depInfo{}
}
func (m *baseModuleContext) PrimaryModule() Module {
return m.module.group.modules.firstModule().logicModule
}
func (m *baseModuleContext) FinalModule() Module {
return m.module.group.modules.lastModule().logicModule
}
func (m *baseModuleContext) VisitAllModuleVariants(visit func(Module)) {
m.context.visitAllModuleVariants(m.module, visit)
}
func (m *baseModuleContext) AddNinjaFileDeps(deps ...string) {
m.ninjaFileDeps = append(m.ninjaFileDeps, deps...)
}
func (m *baseModuleContext) ModuleFactories() map[string]ModuleFactory {
ret := make(map[string]ModuleFactory)
for k, v := range m.context.moduleFactories {
ret[k] = v
}
return ret
}
func (m *moduleContext) ModuleSubDir() string {
return m.module.variant.name
}
func (m *moduleContext) Variable(pctx PackageContext, name, value string) {
m.scope.ReparentTo(pctx)
v, err := m.scope.AddLocalVariable(name, value)
if err != nil {
panic(err)
}
m.actionDefs.variables = append(m.actionDefs.variables, v)
}
func (m *moduleContext) Rule(pctx PackageContext, name string,
params RuleParams, argNames ...string) Rule {
m.scope.ReparentTo(pctx)
r, err := m.scope.AddLocalRule(name, &params, argNames...)
if err != nil {
panic(err)
}
m.actionDefs.rules = append(m.actionDefs.rules, r)
return r
}
func (m *moduleContext) Build(pctx PackageContext, params BuildParams) {
m.scope.ReparentTo(pctx)
def, err := parseBuildParams(m.scope, &params)
if err != nil {
panic(err)
}
m.actionDefs.buildDefs = append(m.actionDefs.buildDefs, def)
}
func (m *moduleContext) GetMissingDependencies() []string {
m.handledMissingDeps = true
return m.module.missingDeps
}
//
// MutatorContext
//
type mutatorContext struct {
baseModuleContext
name string
reverseDeps []reverseDep
rename []rename
replace []replace
newVariations modulesOrAliases // new variants of existing modules
newModules []*moduleInfo // brand new modules
defaultVariation *string
pauseCh chan<- pauseSpec
}
type BaseMutatorContext interface {
BaseModuleContext
// Rename all variants of a module. The new name is not visible to calls to ModuleName,
// AddDependency or OtherModuleName until after this mutator pass is complete.
Rename(name string)
// MutatorName returns the name that this mutator was registered with.
MutatorName() string
}
type EarlyMutatorContext interface {
BaseMutatorContext
// CreateVariations splits a module into mulitple variants, one for each name in the variationNames
// parameter. It returns a list of new modules in the same order as the variationNames
// list.
//
// If any of the dependencies of the module being operated on were already split
// by calling CreateVariations with the same name, the dependency will automatically
// be updated to point the matching variant.
//
// If a module is split, and then a module depending on the first module is not split
// when the Mutator is later called on it, the dependency of the depending module will
// automatically be updated to point to the first variant.
CreateVariations(...string) []Module
// CreateLocationVariations splits a module into mulitple variants, one for each name in the variantNames
// parameter. It returns a list of new modules in the same order as the variantNames
// list.
//
// Local variations do not affect automatic dependency resolution - dependencies added
// to the split module via deps or DynamicDependerModule must exactly match a variant
// that contains all the non-local variations.
CreateLocalVariations(...string) []Module
}
type TopDownMutatorContext interface {
BaseMutatorContext
// CreateModule creates a new module by calling the factory method for the specified moduleType, and applies
// the specified property structs to it as if the properties were set in a blueprint file.
CreateModule(ModuleFactory, ...interface{}) Module
}
type BottomUpMutatorContext interface {
BaseMutatorContext
// AddDependency adds a dependency to the given module. It returns a slice of modules for each
// dependency (some entries may be nil). Does not affect the ordering of the current mutator
// pass, but will be ordered correctly for all future mutator passes.
//
// If the mutator is parallel (see MutatorHandle.Parallel), this method will pause until the
// new dependencies have had the current mutator called on them. If the mutator is not
// parallel this method does not affect the ordering of the current mutator pass, but will
// be ordered correctly for all future mutator passes.
AddDependency(module Module, tag DependencyTag, name ...string) []Module
// AddReverseDependency adds a dependency from the destination to the given module.
// Does not affect the ordering of the current mutator pass, but will be ordered
// correctly for all future mutator passes. All reverse dependencies for a destination module are
// collected until the end of the mutator pass, sorted by name, and then appended to the destination
// module's dependency list.
AddReverseDependency(module Module, tag DependencyTag, name string)
// CreateVariations splits a module into mulitple variants, one for each name in the variationNames
// parameter. It returns a list of new modules in the same order as the variationNames
// list.
//
// If any of the dependencies of the module being operated on were already split
// by calling CreateVariations with the same name, the dependency will automatically
// be updated to point the matching variant.
//
// If a module is split, and then a module depending on the first module is not split
// when the Mutator is later called on it, the dependency of the depending module will
// automatically be updated to point to the first variant.
CreateVariations(...string) []Module
// CreateLocationVariations splits a module into mulitple variants, one for each name in the variantNames
// parameter. It returns a list of new modules in the same order as the variantNames
// list.
//
// Local variations do not affect automatic dependency resolution - dependencies added
// to the split module via deps or DynamicDependerModule must exactly match a variant
// that contains all the non-local variations.
CreateLocalVariations(...string) []Module
// SetDependencyVariation sets all dangling dependencies on the current module to point to the variation
// with given name. This function ignores the default variation set by SetDefaultDependencyVariation.
SetDependencyVariation(string)
// SetDefaultDependencyVariation sets the default variation when a dangling reference is detected
// during the subsequent calls on Create*Variations* functions. To reset, set it to nil.
SetDefaultDependencyVariation(*string)
// AddVariationDependencies adds deps as dependencies of the current module, but uses the variations
// argument to select which variant of the dependency to use. It returns a slice of modules for
// each dependency (some entries may be nil). A variant of the dependency must exist that matches
// the all of the non-local variations of the current module, plus the variations argument.
//
// If the mutator is parallel (see MutatorHandle.Parallel), this method will pause until the
// new dependencies have had the current mutator called on them. If the mutator is not
// parallel this method does not affect the ordering of the current mutator pass, but will
// be ordered correctly for all future mutator passes.
AddVariationDependencies([]Variation, DependencyTag, ...string) []Module
// AddFarVariationDependencies adds deps as dependencies of the current module, but uses the
// variations argument to select which variant of the dependency to use. It returns a slice of
// modules for each dependency (some entries may be nil). A variant of the dependency must
// exist that matches the variations argument, but may also have other variations.
// For any unspecified variation the first variant will be used.
//
// Unlike AddVariationDependencies, the variations of the current module are ignored - the
// dependency only needs to match the supplied variations.
//
// If the mutator is parallel (see MutatorHandle.Parallel), this method will pause until the
// new dependencies have had the current mutator called on them. If the mutator is not
// parallel this method does not affect the ordering of the current mutator pass, but will
// be ordered correctly for all future mutator passes.
AddFarVariationDependencies([]Variation, DependencyTag, ...string) []Module
// AddInterVariantDependency adds a dependency between two variants of the same module. Variants are always
// ordered in the same orderas they were listed in CreateVariations, and AddInterVariantDependency does not change
// that ordering, but it associates a DependencyTag with the dependency and makes it visible to VisitDirectDeps,
// WalkDeps, etc.
AddInterVariantDependency(tag DependencyTag, from, to Module)
// ReplaceDependencies replaces all dependencies on the identical variant of the module with the
// specified name with the current variant of this module. Replacements don't take effect until
// after the mutator pass is finished.
ReplaceDependencies(string)
// ReplaceDependencies replaces all dependencies on the identical variant of the module with the
// specified name with the current variant of this module as long as the supplied predicate returns
// true.
//
// Replacements don't take effect until after the mutator pass is finished.
ReplaceDependenciesIf(string, ReplaceDependencyPredicate)
// AliasVariation takes a variationName that was passed to CreateVariations for this module,
// and creates an alias from the current variant (before the mutator has run) to the new
// variant. The alias will be valid until the next time a mutator calls CreateVariations or
// CreateLocalVariations on this module without also calling AliasVariation. The alias can
// be used to add dependencies on the newly created variant using the variant map from
// before CreateVariations was run.
AliasVariation(variationName string)
// CreateAliasVariation takes a toVariationName that was passed to CreateVariations for this
// module, and creates an alias from a new fromVariationName variant the toVariationName
// variant. The alias will be valid until the next time a mutator calls CreateVariations or
// CreateLocalVariations on this module without also calling AliasVariation. The alias can
// be used to add dependencies on the toVariationName variant using the fromVariationName
// variant.
CreateAliasVariation(fromVariationName, toVariationName string)
// SetVariationProvider sets the value for a provider for the given newly created variant of
// the current module, i.e. one of the Modules returned by CreateVariations.. It panics if
// not called during the appropriate mutator or GenerateBuildActions pass for the provider,
// if the value is not of the appropriate type, or if the module is not a newly created
// variant of the current module. The value should not be modified after being passed to
// SetVariationProvider.
SetVariationProvider(module Module, provider ProviderKey, value interface{})
}
// A Mutator function is called for each Module, and can use
// MutatorContext.CreateVariations to split a Module into multiple Modules,
// modifying properties on the new modules to differentiate them. It is called
// after parsing all Blueprint files, but before generating any build rules,
// and is always called on dependencies before being called on the depending module.
//
// The Mutator function should only modify members of properties structs, and not
// members of the module struct itself, to ensure the modified values are copied
// if a second Mutator chooses to split the module a second time.
type TopDownMutator func(mctx TopDownMutatorContext)
type BottomUpMutator func(mctx BottomUpMutatorContext)
type EarlyMutator func(mctx EarlyMutatorContext)
// DependencyTag is an interface to an arbitrary object that embeds BaseDependencyTag. It can be
// used to transfer information on a dependency between the mutator that called AddDependency
// and the GenerateBuildActions method. Variants created by CreateVariations have a copy of the
// interface (pointing to the same concrete object) from their original module.
type DependencyTag interface {
dependencyTag(DependencyTag)
}
type BaseDependencyTag struct {
}
func (BaseDependencyTag) dependencyTag(DependencyTag) {
}
var _ DependencyTag = BaseDependencyTag{}
func (mctx *mutatorContext) MutatorName() string {
return mctx.name
}
func (mctx *mutatorContext) CreateVariations(variationNames ...string) []Module {
return mctx.createVariations(variationNames, false)
}
func (mctx *mutatorContext) CreateLocalVariations(variationNames ...string) []Module {
return mctx.createVariations(variationNames, true)
}
func (mctx *mutatorContext) SetVariationProvider(module Module, provider ProviderKey, value interface{}) {
for _, variant := range mctx.newVariations {
if m := variant.module(); m != nil && m.logicModule == module {
mctx.context.setProvider(m, provider, value)
return
}
}
panic(fmt.Errorf("module %q is not a newly created variant of %q", module, mctx.module))
}
type pendingAlias struct {
fromVariant variant
target *moduleInfo
}
func (mctx *mutatorContext) createVariations(variationNames []string, local bool) []Module {
ret := []Module{}
modules, errs := mctx.context.createVariations(mctx.module, mctx.name, mctx.defaultVariation, variationNames, local)
if len(errs) > 0 {
mctx.errs = append(mctx.errs, errs...)
}
for _, module := range modules {
ret = append(ret, module.module().logicModule)
}
if mctx.newVariations != nil {
panic("module already has variations from this mutator")
}
mctx.newVariations = modules
if len(ret) != len(variationNames) {
panic("oops!")
}
return ret
}
func (mctx *mutatorContext) AliasVariation(variationName string) {
for _, moduleOrAlias := range mctx.module.splitModules {
if alias := moduleOrAlias.alias(); alias != nil {
if alias.variant.variations.equal(mctx.module.variant.variations) {
panic(fmt.Errorf("AliasVariation already called"))
}
}
}
for _, variant := range mctx.newVariations {
if variant.moduleOrAliasVariant().variations[mctx.name] == variationName {
alias := &moduleAlias{
variant: mctx.module.variant,
target: variant.moduleOrAliasTarget(),
}
// Prepend the alias so that AddFarVariationDependencies subset match matches
// the alias before matching the first variation.
mctx.module.splitModules = append(modulesOrAliases{alias}, mctx.module.splitModules...)
return
}
}
var foundVariations []string
for _, variant := range mctx.newVariations {
foundVariations = append(foundVariations, variant.moduleOrAliasVariant().variations[mctx.name])
}
panic(fmt.Errorf("no %q variation in module variations %q", variationName, foundVariations))
}
func (mctx *mutatorContext) CreateAliasVariation(aliasVariationName, targetVariationName string) {
newVariant := newVariant(mctx.module, mctx.name, aliasVariationName, false)
for _, moduleOrAlias := range mctx.module.splitModules {
if moduleOrAlias.moduleOrAliasVariant().variations.equal(newVariant.variations) {
if alias := moduleOrAlias.alias(); alias != nil {
panic(fmt.Errorf("can't alias %q to %q, already aliased to %q", aliasVariationName, targetVariationName, alias.target.variant.name))
} else {
panic(fmt.Errorf("can't alias %q to %q, there is already a variant with that name", aliasVariationName, targetVariationName))
}
}
}
for _, variant := range mctx.newVariations {
if variant.moduleOrAliasVariant().variations[mctx.name] == targetVariationName {
// Append the alias here so that it comes after any aliases created by AliasVariation.
mctx.module.splitModules = append(mctx.module.splitModules, &moduleAlias{
variant: newVariant,
target: variant.moduleOrAliasTarget(),
})
return
}
}
var foundVariations []string
for _, variant := range mctx.newVariations {
foundVariations = append(foundVariations, variant.moduleOrAliasVariant().variations[mctx.name])
}
panic(fmt.Errorf("no %q variation in module variations %q", targetVariationName, foundVariations))
}
func (mctx *mutatorContext) SetDependencyVariation(variationName string) {
mctx.context.convertDepsToVariation(mctx.module, mctx.name, variationName, nil)
}
func (mctx *mutatorContext) SetDefaultDependencyVariation(variationName *string) {
mctx.defaultVariation = variationName
}
func (mctx *mutatorContext) Module() Module {
return mctx.module.logicModule
}
func (mctx *mutatorContext) AddDependency(module Module, tag DependencyTag, deps ...string) []Module {
depInfos := make([]Module, 0, len(deps))
for _, dep := range deps {
modInfo := mctx.context.moduleInfo[module]
depInfo, errs := mctx.context.addDependency(modInfo, tag, dep)
if len(errs) > 0 {
mctx.errs = append(mctx.errs, errs...)
}
if !mctx.pause(depInfo) {
// Pausing not supported by this mutator, new dependencies can't be returned.
depInfo = nil
}
depInfos = append(depInfos, maybeLogicModule(depInfo))
}
return depInfos
}
func (mctx *mutatorContext) AddReverseDependency(module Module, tag DependencyTag, destName string) {
if _, ok := tag.(BaseDependencyTag); ok {
panic("BaseDependencyTag is not allowed to be used directly!")
}
destModule, errs := mctx.context.findReverseDependency(mctx.context.moduleInfo[module], destName)
if len(errs) > 0 {
mctx.errs = append(mctx.errs, errs...)
return
}
mctx.reverseDeps = append(mctx.reverseDeps, reverseDep{
destModule,
depInfo{mctx.context.moduleInfo[module], tag},
})
}
func (mctx *mutatorContext) AddVariationDependencies(variations []Variation, tag DependencyTag,
deps ...string) []Module {
depInfos := make([]Module, 0, len(deps))
for _, dep := range deps {
depInfo, errs := mctx.context.addVariationDependency(mctx.module, variations, tag, dep, false)
if len(errs) > 0 {
mctx.errs = append(mctx.errs, errs...)
}
if !mctx.pause(depInfo) {
// Pausing not supported by this mutator, new dependencies can't be returned.
depInfo = nil
}
depInfos = append(depInfos, maybeLogicModule(depInfo))
}
return depInfos
}
func (mctx *mutatorContext) AddFarVariationDependencies(variations []Variation, tag DependencyTag,
deps ...string) []Module {
depInfos := make([]Module, 0, len(deps))
for _, dep := range deps {
depInfo, errs := mctx.context.addVariationDependency(mctx.module, variations, tag, dep, true)
if len(errs) > 0 {
mctx.errs = append(mctx.errs, errs...)
}
if !mctx.pause(depInfo) {
// Pausing not supported by this mutator, new dependencies can't be returned.
depInfo = nil
}
depInfos = append(depInfos, maybeLogicModule(depInfo))
}
return depInfos
}
func (mctx *mutatorContext) AddInterVariantDependency(tag DependencyTag, from, to Module) {
mctx.context.addInterVariantDependency(mctx.module, tag, from, to)
}
func (mctx *mutatorContext) ReplaceDependencies(name string) {
mctx.ReplaceDependenciesIf(name, nil)
}
type ReplaceDependencyPredicate func(from Module, tag DependencyTag, to Module) bool
func (mctx *mutatorContext) ReplaceDependenciesIf(name string, predicate ReplaceDependencyPredicate) {
target := mctx.context.moduleMatchingVariant(mctx.module, name)
if target == nil {
panic(fmt.Errorf("ReplaceDependencies could not find identical variant {%s} for module %s\n"+
"available variants:\n %s",
mctx.context.prettyPrintVariant(mctx.module.variant.variations),
name,
mctx.context.prettyPrintGroupVariants(mctx.context.moduleGroupFromName(name, mctx.module.namespace()))))
}
mctx.replace = append(mctx.replace, replace{target, mctx.module, predicate})
}
func (mctx *mutatorContext) Rename(name string) {
mctx.rename = append(mctx.rename, rename{mctx.module.group, name})
}
func (mctx *mutatorContext) CreateModule(factory ModuleFactory, props ...interface{}) Module {
module := newModule(factory)
module.relBlueprintsFile = mctx.module.relBlueprintsFile
module.pos = mctx.module.pos
module.propertyPos = mctx.module.propertyPos
module.createdBy = mctx.module
for _, p := range props {
err := proptools.AppendMatchingProperties(module.properties, p, nil)
if err != nil {
panic(err)
}
}
mctx.newModules = append(mctx.newModules, module)
return module.logicModule
}
// pause waits until the given dependency has been visited by the mutator's parallelVisit call.
// It returns true if the pause was supported, false if the pause was not supported and did not
// occur, which will happen when the mutator is not parallelizable. If the dependency is nil
// it returns true if pausing is supported or false if it is not.
func (mctx *mutatorContext) pause(dep *moduleInfo) bool {
if mctx.pauseCh != nil {
if dep != nil {
unpause := make(unpause)
mctx.pauseCh <- pauseSpec{
paused: mctx.module,
until: dep,
unpause: unpause,
}
<-unpause
}
return true
}
return false
}
// SimpleName is an embeddable object to implement the ModuleContext.Name method using a property
// called "name". Modules that embed it must also add SimpleName.Properties to their property
// structure list.
type SimpleName struct {
Properties struct {
Name string
}
}
func (s *SimpleName) Name() string {
return s.Properties.Name
}
// Load Hooks
type LoadHookContext interface {
EarlyModuleContext
// CreateModule creates a new module by calling the factory method for the specified moduleType, and applies
// the specified property structs to it as if the properties were set in a blueprint file.
CreateModule(ModuleFactory, ...interface{}) Module
// RegisterScopedModuleType creates a new module type that is scoped to the current Blueprints
// file.
RegisterScopedModuleType(name string, factory ModuleFactory)
}
func (l *loadHookContext) CreateModule(factory ModuleFactory, props ...interface{}) Module {
module := newModule(factory)
module.relBlueprintsFile = l.module.relBlueprintsFile
module.pos = l.module.pos
module.propertyPos = l.module.propertyPos
module.createdBy = l.module
for _, p := range props {
err := proptools.AppendMatchingProperties(module.properties, p, nil)
if err != nil {
panic(err)
}
}
l.newModules = append(l.newModules, module)
return module.logicModule
}
func (l *loadHookContext) RegisterScopedModuleType(name string, factory ModuleFactory) {
if _, exists := l.context.moduleFactories[name]; exists {
panic(fmt.Errorf("A global module type named %q already exists", name))
}
if _, exists := (*l.scopedModuleFactories)[name]; exists {
panic(fmt.Errorf("A module type named %q already exists in this scope", name))
}
if *l.scopedModuleFactories == nil {
(*l.scopedModuleFactories) = make(map[string]ModuleFactory)
}
(*l.scopedModuleFactories)[name] = factory
}
type loadHookContext struct {
baseModuleContext
newModules []*moduleInfo
scopedModuleFactories *map[string]ModuleFactory
}
type LoadHook func(ctx LoadHookContext)
// Load hooks need to be added by module factories, which don't have any parameter to get to the
// Context, and only produce a Module interface with no base implementation, so the load hooks
// must be stored in a global map. The key is a pointer allocated by the module factory, so there
// is no chance of collisions even if tests are running in parallel with multiple contexts. The
// contents should be short-lived, they are added during a module factory and removed immediately
// after the module factory returns.
var pendingHooks sync.Map
func AddLoadHook(module Module, hook LoadHook) {
// Only one goroutine can be processing a given module, so no additional locking is required
// for the slice stored in the sync.Map.
v, exists := pendingHooks.Load(module)
if !exists {
v, _ = pendingHooks.LoadOrStore(module, new([]LoadHook))
}
hooks := v.(*[]LoadHook)
*hooks = append(*hooks, hook)
}
func runAndRemoveLoadHooks(ctx *Context, config interface{}, module *moduleInfo,
scopedModuleFactories *map[string]ModuleFactory) (newModules []*moduleInfo, deps []string, errs []error) {
if v, exists := pendingHooks.Load(module.logicModule); exists {
hooks := v.(*[]LoadHook)
mctx := &loadHookContext{
baseModuleContext: baseModuleContext{
context: ctx,
config: config,
module: module,
},
scopedModuleFactories: scopedModuleFactories,
}
for _, hook := range *hooks {
hook(mctx)
newModules = append(newModules, mctx.newModules...)
deps = append(deps, mctx.ninjaFileDeps...)
errs = append(errs, mctx.errs...)
}
pendingHooks.Delete(module.logicModule)
return newModules, deps, errs
}
return nil, nil, nil
}
// Check the syntax of a generated blueprint file.
//
// This is intended to perform a quick syntactic check for generated blueprint
// code, where syntactically correct means:
// * No variable definitions.
// * Valid module types.
// * Valid property names.
// * Valid values for the property type.
//
// It does not perform any semantic checking of properties, existence of referenced
// files, or dependencies.
//
// At a low level it:
// * Parses the contents.
// * Invokes relevant factory to create Module instances.
// * Unpacks the properties into the Module.
// * Does not invoke load hooks or any mutators.
//
// The filename is only used for reporting errors.
func CheckBlueprintSyntax(moduleFactories map[string]ModuleFactory, filename string, contents string) []error {
scope := parser.NewScope(nil)
file, errs := parser.Parse(filename, strings.NewReader(contents), scope)
if len(errs) != 0 {
return errs
}
for _, def := range file.Defs {
switch def := def.(type) {
case *parser.Module:
_, moduleErrs := processModuleDef(def, filename, moduleFactories, nil, false)
errs = append(errs, moduleErrs...)
default:
panic(fmt.Errorf("unknown definition type: %T", def))
}
}
return errs
}
func maybeLogicModule(module *moduleInfo) Module {
if module != nil {
return module.logicModule
} else {
return nil
}
}