You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

335 lines
12 KiB

/*
* Copyright 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "NativeAudioAnalyzer.h"
static void convertPcm16ToFloat(const int16_t *source,
float *destination,
int32_t numSamples) {
constexpr float scaler = 1.0f / 32768.0f;
for (int i = 0; i < numSamples; i++) {
destination[i] = source[i] * scaler;
}
}
// Fill the audio output buffer.
int32_t NativeAudioAnalyzer::readFormattedData(int32_t numFrames) {
int32_t framesRead = AAUDIO_ERROR_INVALID_FORMAT;
if (mActualInputFormat == AAUDIO_FORMAT_PCM_I16) {
framesRead = AAudioStream_read(mInputStream, mInputShortData,
numFrames,
0 /* timeoutNanoseconds */);
} else if (mActualInputFormat == AAUDIO_FORMAT_PCM_FLOAT) {
framesRead = AAudioStream_read(mInputStream, mInputFloatData,
numFrames,
0 /* timeoutNanoseconds */);
} else {
ALOGE("ERROR actualInputFormat = %d\n", mActualInputFormat);
assert(false);
}
if (framesRead < 0) {
// Expect INVALID_STATE if STATE_STARTING
if (mFramesReadTotal > 0) {
mInputError = framesRead;
ALOGE("ERROR in read = %d = %s\n", framesRead,
AAudio_convertResultToText(framesRead));
} else {
framesRead = 0;
}
} else {
mFramesReadTotal += framesRead;
}
return framesRead;
}
aaudio_data_callback_result_t NativeAudioAnalyzer::dataCallbackProc(
void *audioData,
int32_t numFrames
) {
aaudio_data_callback_result_t callbackResult = AAUDIO_CALLBACK_RESULT_CONTINUE;
float *outputData = (float *) audioData;
// Read audio data from the input stream.
int32_t actualFramesRead;
if (numFrames > mInputFramesMaximum) {
ALOGE("%s() numFrames:%d > mInputFramesMaximum:%d", __func__, numFrames, mInputFramesMaximum);
mInputError = AAUDIO_ERROR_OUT_OF_RANGE;
return AAUDIO_CALLBACK_RESULT_STOP;
}
if (numFrames > mMaxNumFrames) {
mMaxNumFrames = numFrames;
}
if (numFrames < mMinNumFrames) {
mMinNumFrames = numFrames;
}
// Silence the output.
int32_t numBytes = numFrames * mActualOutputChannelCount * sizeof(float);
memset(audioData, 0 /* value */, numBytes);
if (mNumCallbacksToDrain > 0) {
// Drain the input FIFOs.
int32_t totalFramesRead = 0;
do {
actualFramesRead = readFormattedData(numFrames);
if (actualFramesRead > 0) {
totalFramesRead += actualFramesRead;
} else if (actualFramesRead < 0) {
callbackResult = AAUDIO_CALLBACK_RESULT_STOP;
}
// Ignore errors because input stream may not be started yet.
} while (actualFramesRead > 0);
// Only counts if we actually got some data.
if (totalFramesRead > 0) {
mNumCallbacksToDrain--;
}
} else if (mNumCallbacksToNotRead > 0) {
// Let the input fill up a bit so we are not so close to the write pointer.
mNumCallbacksToNotRead--;
} else if (mNumCallbacksToDiscard > 0) {
// Ignore. Allow the input to fill back up to equilibrium with the output.
actualFramesRead = readFormattedData(numFrames);
if (actualFramesRead < 0) {
callbackResult = AAUDIO_CALLBACK_RESULT_STOP;
}
mNumCallbacksToDiscard--;
} else {
// The full duplex stream is now stable so process the audio.
int32_t numInputBytes = numFrames * mActualInputChannelCount * sizeof(float);
memset(mInputFloatData, 0 /* value */, numInputBytes);
int64_t inputFramesWritten = AAudioStream_getFramesWritten(mInputStream);
int64_t inputFramesRead = AAudioStream_getFramesRead(mInputStream);
int64_t framesAvailable = inputFramesWritten - inputFramesRead;
// Read the INPUT data.
actualFramesRead = readFormattedData(numFrames); // READ
if (actualFramesRead < 0) {
callbackResult = AAUDIO_CALLBACK_RESULT_STOP;
} else {
if (actualFramesRead < numFrames) {
if(actualFramesRead < (int32_t) framesAvailable) {
ALOGE("insufficient for no reason, numFrames = %d"
", actualFramesRead = %d"
", inputFramesWritten = %d"
", inputFramesRead = %d"
", available = %d\n",
numFrames,
actualFramesRead,
(int) inputFramesWritten,
(int) inputFramesRead,
(int) framesAvailable);
}
mInsufficientReadCount++;
mInsufficientReadFrames += numFrames - actualFramesRead; // deficit
// ALOGE("Error insufficientReadCount = %d\n",(int)mInsufficientReadCount);
}
int32_t numSamples = actualFramesRead * mActualInputChannelCount;
if (mActualInputFormat == AAUDIO_FORMAT_PCM_I16) {
convertPcm16ToFloat(mInputShortData, mInputFloatData, numSamples);
}
// Process the INPUT and generate the OUTPUT.
mLoopbackProcessor->process(mInputFloatData,
mActualInputChannelCount,
numFrames,
outputData,
mActualOutputChannelCount,
numFrames);
mIsDone = mLoopbackProcessor->isDone();
if (mIsDone) {
callbackResult = AAUDIO_CALLBACK_RESULT_STOP;
}
}
}
mFramesWrittenTotal += numFrames;
return callbackResult;
}
static aaudio_data_callback_result_t s_MyDataCallbackProc(
AAudioStream * /* outputStream */,
void *userData,
void *audioData,
int32_t numFrames) {
NativeAudioAnalyzer *myData = (NativeAudioAnalyzer *) userData;
return myData->dataCallbackProc(audioData, numFrames);
}
static void s_MyErrorCallbackProc(
AAudioStream * /* stream */,
void * userData,
aaudio_result_t error) {
ALOGE("Error Callback, error: %d\n",(int)error);
NativeAudioAnalyzer *myData = (NativeAudioAnalyzer *) userData;
myData->mOutputError = error;
}
bool NativeAudioAnalyzer::isRecordingComplete() {
return mPulseLatencyAnalyzer.isRecordingComplete();
}
int NativeAudioAnalyzer::analyze() {
mPulseLatencyAnalyzer.analyze();
return getError(); // TODO review
}
double NativeAudioAnalyzer::getLatencyMillis() {
return mPulseLatencyAnalyzer.getMeasuredLatency() * 1000.0 / 48000;
}
double NativeAudioAnalyzer::getConfidence() {
return mPulseLatencyAnalyzer.getMeasuredConfidence();
}
bool NativeAudioAnalyzer::isLowLatencyStream() {
return mIsLowLatencyStream;
}
int NativeAudioAnalyzer::getSampleRate() {
return mOutputSampleRate;
}
aaudio_result_t NativeAudioAnalyzer::openAudio() {
AAudioStreamBuilder *builder = nullptr;
mLoopbackProcessor = &mPulseLatencyAnalyzer; // for latency test
// Use an AAudioStreamBuilder to contain requested parameters.
aaudio_result_t result = AAudio_createStreamBuilder(&builder);
if (result != AAUDIO_OK) {
ALOGE("AAudio_createStreamBuilder() returned %s",
AAudio_convertResultToText(result));
return result;
}
// Create the OUTPUT stream -----------------------
AAudioStreamBuilder_setDirection(builder, AAUDIO_DIRECTION_OUTPUT);
AAudioStreamBuilder_setPerformanceMode(builder, AAUDIO_PERFORMANCE_MODE_LOW_LATENCY);
AAudioStreamBuilder_setSharingMode(builder, AAUDIO_SHARING_MODE_EXCLUSIVE);
AAudioStreamBuilder_setFormat(builder, AAUDIO_FORMAT_PCM_FLOAT);
AAudioStreamBuilder_setChannelCount(builder, 2); // stereo
AAudioStreamBuilder_setDataCallback(builder, s_MyDataCallbackProc, this);
AAudioStreamBuilder_setErrorCallback(builder, s_MyErrorCallbackProc, this);
result = AAudioStreamBuilder_openStream(builder, &mOutputStream);
if (result != AAUDIO_OK) {
ALOGE("NativeAudioAnalyzer::openAudio() OUTPUT error %s",
AAudio_convertResultToText(result));
return result;
}
// Did we get a low-latency stream?
mIsLowLatencyStream =
AAudioStream_getPerformanceMode(mOutputStream) == AAUDIO_PERFORMANCE_MODE_LOW_LATENCY;
int32_t outputFramesPerBurst = AAudioStream_getFramesPerBurst(mOutputStream);
(void) AAudioStream_setBufferSizeInFrames(mOutputStream, outputFramesPerBurst * kDefaultOutputSizeBursts);
mOutputSampleRate = AAudioStream_getSampleRate(mOutputStream);
mActualOutputChannelCount = AAudioStream_getChannelCount(mOutputStream);
// Create the INPUT stream -----------------------
AAudioStreamBuilder_setDirection(builder, AAUDIO_DIRECTION_INPUT);
AAudioStreamBuilder_setFormat(builder, AAUDIO_FORMAT_UNSPECIFIED);
AAudioStreamBuilder_setSampleRate(builder, mOutputSampleRate); // must match
AAudioStreamBuilder_setChannelCount(builder, 1); // mono
AAudioStreamBuilder_setDataCallback(builder, nullptr, nullptr);
AAudioStreamBuilder_setErrorCallback(builder, nullptr, nullptr);
result = AAudioStreamBuilder_openStream(builder, &mInputStream);
if (result != AAUDIO_OK) {
ALOGE("NativeAudioAnalyzer::openAudio() INPUT error %s",
AAudio_convertResultToText(result));
return result;
}
int32_t actualCapacity = AAudioStream_getBufferCapacityInFrames(mInputStream);
(void) AAudioStream_setBufferSizeInFrames(mInputStream, actualCapacity);
// ------- Setup loopbackData -----------------------------
mActualInputFormat = AAudioStream_getFormat(mInputStream);
mActualInputChannelCount = AAudioStream_getChannelCount(mInputStream);
// Allocate a buffer for the audio data.
mInputFramesMaximum = 32 * AAudioStream_getFramesPerBurst(mInputStream);
if (mActualInputFormat == AAUDIO_FORMAT_PCM_I16) {
mInputShortData = new int16_t[mInputFramesMaximum * mActualInputChannelCount]{};
}
mInputFloatData = new float[mInputFramesMaximum * mActualInputChannelCount]{};
return result;
}
aaudio_result_t NativeAudioAnalyzer::startAudio() {
mLoopbackProcessor->prepareToTest();
// Start OUTPUT first so INPUT does not overflow.
aaudio_result_t result = AAudioStream_requestStart(mOutputStream);
if (result != AAUDIO_OK) {
stopAudio();
return result;
}
result = AAudioStream_requestStart(mInputStream);
if (result != AAUDIO_OK) {
stopAudio();
return result;
}
return result;
}
aaudio_result_t NativeAudioAnalyzer::stopAudio() {
aaudio_result_t result1 = AAUDIO_OK;
aaudio_result_t result2 = AAUDIO_OK;
ALOGD("stopAudio() , minNumFrames = %d, maxNumFrames = %d\n", mMinNumFrames, mMaxNumFrames);
// Stop OUTPUT first because it uses INPUT.
if (mOutputStream != nullptr) {
result1 = AAudioStream_requestStop(mOutputStream);
}
// Stop INPUT.
if (mInputStream != nullptr) {
result2 = AAudioStream_requestStop(mInputStream);
}
return result1 != AAUDIO_OK ? result1 : result2;
}
aaudio_result_t NativeAudioAnalyzer::closeAudio() {
aaudio_result_t result1 = AAUDIO_OK;
aaudio_result_t result2 = AAUDIO_OK;
// Stop and close OUTPUT first because it uses INPUT.
if (mOutputStream != nullptr) {
result1 = AAudioStream_close(mOutputStream);
mOutputStream = nullptr;
}
// Stop and close INPUT.
if (mInputStream != nullptr) {
result2 = AAudioStream_close(mInputStream);
mInputStream = nullptr;
}
return result1 != AAUDIO_OK ? result1 : result2;
}