You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
jianglk.darker 7ee447c011
v811_spc009_project
4 months ago
..
bench v811_spc009_project 4 months ago
cmake v811_spc009_project 4 months ago
eval v811_spc009_project 4 months ago
include v811_spc009_project 4 months ago
models v811_spc009_project 4 months ago
scripts v811_spc009_project 4 months ago
src v811_spc009_project 4 months ago
test v811_spc009_project 4 months ago
third_party v811_spc009_project 4 months ago
tools v811_spc009_project 4 months ago
.bazelrc v811_spc009_project 4 months ago
Android.bp v811_spc009_project 4 months ago
BUILD.bazel v811_spc009_project 4 months ago
CMakeLists.txt v811_spc009_project 4 months ago
CONTRIBUTING.md v811_spc009_project 4 months ago
LICENSE v811_spc009_project 4 months ago
METADATA v811_spc009_project 4 months ago
MODULE_LICENSE_BSD v811_spc009_project 4 months ago
OWNERS v811_spc009_project 4 months ago
README.md v811_spc009_project 4 months ago
TEST_MAPPING v811_spc009_project 4 months ago
WORKSPACE v811_spc009_project 4 months ago
build_defs.bzl v811_spc009_project 4 months ago
emscripten.bzl v811_spc009_project 4 months ago
preamble.js.lds v811_spc009_project 4 months ago

README.md

XNNPACK

XNNPACK is a highly optimized library of floating-point neural network inference operators for ARM, WebAssembly, and x86 platforms. XNNPACK is not intended for direct use by deep learning practitioners and researchers; instead it provides low-level performance primitives for accelerating high-level machine learning frameworks, such as TensorFlow Lite, TensorFlow.js, PyTorch, and MediaPipe.

Supported Architectures

  • ARM64 on Android, Linux, macOS, and iOS (including WatchOS and tvOS)
  • ARMv7 (with NEON) on Android, Linux, and iOS (including WatchOS)
  • x86 and x86-64 (up to AVX512) on Windows, Linux, macOS, Android, and iOS simulator
  • WebAssembly MVP
  • WebAssembly SIMD (experimental)

Operator Coverage

XNNPACK implements the following neural network operators:

  • 2D Convolution (including grouped and depthwise)
  • 2D Deconvolution (AKA Transposed Convolution)
  • 2D Average Pooling
  • 2D Max Pooling
  • 2D ArgMax Pooling (Max Pooling + indices)
  • 2D Unpooling
  • 2D Bilinear Resize
  • 2D Depth-to-Space (AKA Pixel Shuffle)
  • Add (including broadcasting, two inputs only)
  • Subtract (including broadcasting)
  • Divide (including broadcasting)
  • Maximum (including broadcasting)
  • Minimum (including broadcasting)
  • Multiply (including broadcasting)
  • Squared Difference (including broadcasting)
  • Global Average Pooling
  • Channel Shuffle
  • Fully Connected
  • Abs (absolute value)
  • Bankers' Rounding (rounding to nearest, ties to even)
  • Ceiling (rounding to integer above)
  • Clamp (includes ReLU and ReLU6)
  • Copy
  • ELU
  • Floor (rounding to integer below)
  • HardSwish
  • Leaky ReLU
  • Negate
  • Sigmoid
  • Softmax
  • Square
  • Truncation (rounding to integer towards zero)
  • PReLU

All operators in XNNPACK support NHWC layout, but additionally allow custom stride along the Channel dimension. Thus, operators can consume a subset of channels in the input tensor, and produce a subset of channels in the output tensor, providing a zero-cost Channel Split and Channel Concatenation operations.

Performance

Mobile phones

The table below presents single-threaded performance of XNNPACK library on three generations of MobileNet models and three generations of Pixel phones.

Model Pixel, ms Pixel 2, ms Pixel 3a, ms
MobileNet v1 1.0X 82 86 88
MobileNet v2 1.0X 49 53 55
MobileNet v3 Large 39 42 44
MobileNet v3 Small 12 14 14

The following table presents multi-threaded (using as many threads as there are big cores) performance of XNNPACK library on three generations of MobileNet models and three generations of Pixel phones.

Model Pixel, ms Pixel 2, ms Pixel 3a, ms
MobileNet v1 1.0X 43 27 46
MobileNet v2 1.0X 26 18 28
MobileNet v3 Large 22 16 24
MobileNet v3 Small 7 6 8

Benchmarked on March 27, 2020 with end2end_bench --benchmark_min_time=5 on an Android/ARM64 build with Android NDK r21 (bazel build -c opt --config android_arm64 :end2end_bench) and neural network models with randomized weights and inputs.

Raspberry Pi

The table below presents multi-threaded performance of XNNPACK library on three generations of MobileNet models and three generations of Raspberry Pi boards.

Model RPi Zero W (BCM2835), ms RPi 2 (BCM2836), ms RPi 3+ (BCM2837B0), ms RPi 4 (BCM2711), ms
MobileNet v1 1.0X 4004 337 116 72
MobileNet v2 1.0X 2011 195 83 41
MobileNet v3 Large 1694 163 70 38
MobileNet v3 Small 482 52 23 13

Benchmarked on May 22, 2020 with end2end-bench --benchmark_min_time=5 on a Raspbian Buster build with CMake (./scripts/build-local.sh) and neural network models with randomized weights and inputs.

Publications

Ecosystem

Machine Learning Frameworks

Acknowledgements

XNNPACK is a based on QNNPACK library. Over time its codebase diverged a lot, and XNNPACK API is no longer compatible with QNNPACK.