You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2081 lines
117 KiB

// Copyright 2020 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <algorithm>
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <iomanip>
#include <ios>
#include <vector>
#include <gtest/gtest.h>
#include <fp16.h>
#include <xnnpack/AlignedAllocator.h>
#include <xnnpack/common.h>
#include <xnnpack/math-stubs.h>
constexpr int kBlockSize = 1024;
#if XNN_ARCH_X86 || XNN_ARCH_X86_64
TEST(ROUNDZ__SSE_ADDSUB, positive_normal) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x00000000); n < UINT32_C(0x4B800000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_roundz__sse_addsub(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__SSE_ADDSUB, negative_normal) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x80000000); n < UINT32_C(0xCB800000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_roundz__sse_addsub(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__SSE_ADDSUB, positive_integral) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x4B800000); n < UINT32_C(0x7F800000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_roundz__sse_addsub(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__SSE_ADDSUB, negative_integral) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0xCB800000); n < UINT32_C(0xFF800000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_roundz__sse_addsub(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__SSE_ADDSUB, positive_infinity) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
std::fill(inputs.begin(), inputs.end(), +std::numeric_limits<float>::infinity());
xnn_math_f32_roundz__sse_addsub(kBlockSize * sizeof(float), inputs.data(), outputs.data());
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[0]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[0]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[0]);
}
TEST(ROUNDZ__SSE_ADDSUB, negative_infinity) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
std::fill(inputs.begin(), inputs.end(), -std::numeric_limits<float>::infinity());
xnn_math_f32_roundz__sse_addsub(kBlockSize * sizeof(float), inputs.data(), outputs.data());
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[0]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[0]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[0]);
}
TEST(ROUNDZ__SSE_ADDSUB, positive_qnan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7FC00000); n < UINT32_C(0x80000000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_roundz__sse_addsub(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__SSE_ADDSUB, negative_qnan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7FC00000); n < UINT32_C(0x80000000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(UINT32_C(0x80000000) | (n + i));
}
xnn_math_f32_roundz__sse_addsub(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__SSE_ADDSUB, positive_snan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7F800000); n < UINT32_C(0x7FC00000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(std::max<uint32_t>(n + i, UINT32_C(0x7F800001)));
}
xnn_math_f32_roundz__sse_addsub(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output & UINT32_C(0xFFBFFFFF), fp32_to_bits(outputs[i]) & UINT32_C(0xFFBFFFFF))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__SSE_ADDSUB, negative_snan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7F800000); n < UINT32_C(0x7FC00000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(UINT32_C(0x80000000) | std::max<uint32_t>(n + i, UINT32_C(0x7F800001)));
}
xnn_math_f32_roundz__sse_addsub(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output & UINT32_C(0xFFBFFFFF), fp32_to_bits(outputs[i]) & UINT32_C(0xFFBFFFFF))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__SSE_ADDSUB, positive_snan_to_qnan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7F800000); n < UINT32_C(0x7FC00000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(std::max<uint32_t>(n + i, UINT32_C(0x7F800001)));
}
xnn_math_f32_roundz__sse_addsub(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__SSE_ADDSUB, negative_snan_to_qnan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7F800000); n < UINT32_C(0x7FC00000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(UINT32_C(0x80000000) | std::max<uint32_t>(n + i, UINT32_C(0x7F800001)));
}
xnn_math_f32_roundz__sse_addsub(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
#endif // XNN_ARCH_X86 || XNN_ARCH_X86_64
#if XNN_ARCH_X86 || XNN_ARCH_X86_64
TEST(ROUNDZ__SSE2_CVT, positive_normal) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x00000000); n < UINT32_C(0x4B800000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_roundz__sse2_cvt(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__SSE2_CVT, negative_normal) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x80000000); n < UINT32_C(0xCB800000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_roundz__sse2_cvt(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__SSE2_CVT, positive_integral) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x4B800000); n < UINT32_C(0x7F800000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_roundz__sse2_cvt(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__SSE2_CVT, negative_integral) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0xCB800000); n < UINT32_C(0xFF800000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_roundz__sse2_cvt(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__SSE2_CVT, positive_infinity) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
std::fill(inputs.begin(), inputs.end(), +std::numeric_limits<float>::infinity());
xnn_math_f32_roundz__sse2_cvt(kBlockSize * sizeof(float), inputs.data(), outputs.data());
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[0]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[0]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[0]);
}
TEST(ROUNDZ__SSE2_CVT, negative_infinity) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
std::fill(inputs.begin(), inputs.end(), -std::numeric_limits<float>::infinity());
xnn_math_f32_roundz__sse2_cvt(kBlockSize * sizeof(float), inputs.data(), outputs.data());
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[0]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[0]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[0]);
}
TEST(ROUNDZ__SSE2_CVT, positive_qnan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7FC00000); n < UINT32_C(0x80000000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_roundz__sse2_cvt(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__SSE2_CVT, negative_qnan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7FC00000); n < UINT32_C(0x80000000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(UINT32_C(0x80000000) | (n + i));
}
xnn_math_f32_roundz__sse2_cvt(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__SSE2_CVT, positive_snan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7F800000); n < UINT32_C(0x7FC00000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(std::max<uint32_t>(n + i, UINT32_C(0x7F800001)));
}
xnn_math_f32_roundz__sse2_cvt(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output & UINT32_C(0xFFBFFFFF), fp32_to_bits(outputs[i]) & UINT32_C(0xFFBFFFFF))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__SSE2_CVT, negative_snan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7F800000); n < UINT32_C(0x7FC00000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(UINT32_C(0x80000000) | std::max<uint32_t>(n + i, UINT32_C(0x7F800001)));
}
xnn_math_f32_roundz__sse2_cvt(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output & UINT32_C(0xFFBFFFFF), fp32_to_bits(outputs[i]) & UINT32_C(0xFFBFFFFF))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__SSE2_CVT, DISABLED_positive_snan_to_qnan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7F800000); n < UINT32_C(0x7FC00000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(std::max<uint32_t>(n + i, UINT32_C(0x7F800001)));
}
xnn_math_f32_roundz__sse2_cvt(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__SSE2_CVT, DISABLED_negative_snan_to_qnan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7F800000); n < UINT32_C(0x7FC00000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(UINT32_C(0x80000000) | std::max<uint32_t>(n + i, UINT32_C(0x7F800001)));
}
xnn_math_f32_roundz__sse2_cvt(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
#endif // XNN_ARCH_X86 || XNN_ARCH_X86_64
#if XNN_ARCH_X86 || XNN_ARCH_X86_64
TEST(ROUNDZ__SSE41, positive_normal) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x00000000); n < UINT32_C(0x4B800000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_roundz__sse41(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__SSE41, negative_normal) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x80000000); n < UINT32_C(0xCB800000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_roundz__sse41(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__SSE41, positive_integral) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x4B800000); n < UINT32_C(0x7F800000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_roundz__sse41(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__SSE41, negative_integral) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0xCB800000); n < UINT32_C(0xFF800000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_roundz__sse41(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__SSE41, positive_infinity) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
std::fill(inputs.begin(), inputs.end(), +std::numeric_limits<float>::infinity());
xnn_math_f32_roundz__sse41(kBlockSize * sizeof(float), inputs.data(), outputs.data());
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[0]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[0]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[0]);
}
TEST(ROUNDZ__SSE41, negative_infinity) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
std::fill(inputs.begin(), inputs.end(), -std::numeric_limits<float>::infinity());
xnn_math_f32_roundz__sse41(kBlockSize * sizeof(float), inputs.data(), outputs.data());
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[0]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[0]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[0]);
}
TEST(ROUNDZ__SSE41, positive_qnan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7FC00000); n < UINT32_C(0x80000000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_roundz__sse41(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__SSE41, negative_qnan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7FC00000); n < UINT32_C(0x80000000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(UINT32_C(0x80000000) | (n + i));
}
xnn_math_f32_roundz__sse41(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__SSE41, positive_snan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7F800000); n < UINT32_C(0x7FC00000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(std::max<uint32_t>(n + i, UINT32_C(0x7F800001)));
}
xnn_math_f32_roundz__sse41(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output & UINT32_C(0xFFBFFFFF), fp32_to_bits(outputs[i]) & UINT32_C(0xFFBFFFFF))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__SSE41, negative_snan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7F800000); n < UINT32_C(0x7FC00000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(UINT32_C(0x80000000) | std::max<uint32_t>(n + i, UINT32_C(0x7F800001)));
}
xnn_math_f32_roundz__sse41(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output & UINT32_C(0xFFBFFFFF), fp32_to_bits(outputs[i]) & UINT32_C(0xFFBFFFFF))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__SSE41, positive_snan_to_qnan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7F800000); n < UINT32_C(0x7FC00000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(std::max<uint32_t>(n + i, UINT32_C(0x7F800001)));
}
xnn_math_f32_roundz__sse41(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__SSE41, negative_snan_to_qnan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7F800000); n < UINT32_C(0x7FC00000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(UINT32_C(0x80000000) | std::max<uint32_t>(n + i, UINT32_C(0x7F800001)));
}
xnn_math_f32_roundz__sse41(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
#endif // XNN_ARCH_X86 || XNN_ARCH_X86_64
#if XNN_ARCH_ARM || XNN_ARCH_ARM64
TEST(ROUNDZ__NEON_ADDSUB, positive_normal) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x00000000); n < UINT32_C(0x4B800000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_roundz__neon_addsub(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__NEON_ADDSUB, negative_normal) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x80000000); n < UINT32_C(0xCB800000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_roundz__neon_addsub(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__NEON_ADDSUB, positive_integral) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x4B800000); n < UINT32_C(0x7F800000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_roundz__neon_addsub(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__NEON_ADDSUB, negative_integral) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0xCB800000); n < UINT32_C(0xFF800000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_roundz__neon_addsub(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__NEON_ADDSUB, positive_infinity) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
std::fill(inputs.begin(), inputs.end(), +std::numeric_limits<float>::infinity());
xnn_math_f32_roundz__neon_addsub(kBlockSize * sizeof(float), inputs.data(), outputs.data());
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[0]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[0]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[0]);
}
TEST(ROUNDZ__NEON_ADDSUB, negative_infinity) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
std::fill(inputs.begin(), inputs.end(), -std::numeric_limits<float>::infinity());
xnn_math_f32_roundz__neon_addsub(kBlockSize * sizeof(float), inputs.data(), outputs.data());
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[0]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[0]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[0]);
}
TEST(ROUNDZ__NEON_ADDSUB, positive_qnan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7FC00000); n < UINT32_C(0x80000000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_roundz__neon_addsub(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__NEON_ADDSUB, negative_qnan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7FC00000); n < UINT32_C(0x80000000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(UINT32_C(0x80000000) | (n + i));
}
xnn_math_f32_roundz__neon_addsub(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__NEON_ADDSUB, positive_snan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7F800000); n < UINT32_C(0x7FC00000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(std::max<uint32_t>(n + i, UINT32_C(0x7F800001)));
}
xnn_math_f32_roundz__neon_addsub(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output & UINT32_C(0xFFBFFFFF), fp32_to_bits(outputs[i]) & UINT32_C(0xFFBFFFFF))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__NEON_ADDSUB, negative_snan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7F800000); n < UINT32_C(0x7FC00000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(UINT32_C(0x80000000) | std::max<uint32_t>(n + i, UINT32_C(0x7F800001)));
}
xnn_math_f32_roundz__neon_addsub(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output & UINT32_C(0xFFBFFFFF), fp32_to_bits(outputs[i]) & UINT32_C(0xFFBFFFFF))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__NEON_ADDSUB, positive_snan_to_qnan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7F800000); n < UINT32_C(0x7FC00000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(std::max<uint32_t>(n + i, UINT32_C(0x7F800001)));
}
xnn_math_f32_roundz__neon_addsub(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__NEON_ADDSUB, negative_snan_to_qnan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7F800000); n < UINT32_C(0x7FC00000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(UINT32_C(0x80000000) | std::max<uint32_t>(n + i, UINT32_C(0x7F800001)));
}
xnn_math_f32_roundz__neon_addsub(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
#endif // XNN_ARCH_ARM || XNN_ARCH_ARM64
#if XNN_ARCH_ARM || XNN_ARCH_ARM64
TEST(ROUNDZ__NEON_CVT, positive_normal) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x00000000); n < UINT32_C(0x4B800000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_roundz__neon_cvt(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__NEON_CVT, negative_normal) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x80000000); n < UINT32_C(0xCB800000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_roundz__neon_cvt(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__NEON_CVT, positive_integral) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x4B800000); n < UINT32_C(0x7F800000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_roundz__neon_cvt(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__NEON_CVT, negative_integral) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0xCB800000); n < UINT32_C(0xFF800000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_roundz__neon_cvt(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__NEON_CVT, positive_infinity) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
std::fill(inputs.begin(), inputs.end(), +std::numeric_limits<float>::infinity());
xnn_math_f32_roundz__neon_cvt(kBlockSize * sizeof(float), inputs.data(), outputs.data());
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[0]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[0]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[0]);
}
TEST(ROUNDZ__NEON_CVT, negative_infinity) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
std::fill(inputs.begin(), inputs.end(), -std::numeric_limits<float>::infinity());
xnn_math_f32_roundz__neon_cvt(kBlockSize * sizeof(float), inputs.data(), outputs.data());
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[0]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[0]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[0]);
}
TEST(ROUNDZ__NEON_CVT, positive_qnan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7FC00000); n < UINT32_C(0x80000000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_roundz__neon_cvt(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__NEON_CVT, negative_qnan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7FC00000); n < UINT32_C(0x80000000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(UINT32_C(0x80000000) | (n + i));
}
xnn_math_f32_roundz__neon_cvt(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__NEON_CVT, positive_snan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7F800000); n < UINT32_C(0x7FC00000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(std::max<uint32_t>(n + i, UINT32_C(0x7F800001)));
}
xnn_math_f32_roundz__neon_cvt(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output & UINT32_C(0xFFBFFFFF), fp32_to_bits(outputs[i]) & UINT32_C(0xFFBFFFFF))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__NEON_CVT, negative_snan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7F800000); n < UINT32_C(0x7FC00000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(UINT32_C(0x80000000) | std::max<uint32_t>(n + i, UINT32_C(0x7F800001)));
}
xnn_math_f32_roundz__neon_cvt(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output & UINT32_C(0xFFBFFFFF), fp32_to_bits(outputs[i]) & UINT32_C(0xFFBFFFFF))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__NEON_CVT, DISABLED_positive_snan_to_qnan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7F800000); n < UINT32_C(0x7FC00000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(std::max<uint32_t>(n + i, UINT32_C(0x7F800001)));
}
xnn_math_f32_roundz__neon_cvt(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__NEON_CVT, DISABLED_negative_snan_to_qnan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7F800000); n < UINT32_C(0x7FC00000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(UINT32_C(0x80000000) | std::max<uint32_t>(n + i, UINT32_C(0x7F800001)));
}
xnn_math_f32_roundz__neon_cvt(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
#endif // XNN_ARCH_ARM || XNN_ARCH_ARM64
#if XNN_ARCH_ARM || XNN_ARCH_ARM64
TEST(ROUNDZ__NEONV8, positive_normal) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x00000000); n < UINT32_C(0x4B800000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_roundz__neonv8(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__NEONV8, negative_normal) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x80000000); n < UINT32_C(0xCB800000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_roundz__neonv8(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__NEONV8, positive_integral) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x4B800000); n < UINT32_C(0x7F800000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_roundz__neonv8(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__NEONV8, negative_integral) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0xCB800000); n < UINT32_C(0xFF800000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_roundz__neonv8(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__NEONV8, positive_infinity) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
std::fill(inputs.begin(), inputs.end(), +std::numeric_limits<float>::infinity());
xnn_math_f32_roundz__neonv8(kBlockSize * sizeof(float), inputs.data(), outputs.data());
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[0]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[0]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[0]);
}
TEST(ROUNDZ__NEONV8, negative_infinity) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
std::fill(inputs.begin(), inputs.end(), -std::numeric_limits<float>::infinity());
xnn_math_f32_roundz__neonv8(kBlockSize * sizeof(float), inputs.data(), outputs.data());
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[0]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[0]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[0]);
}
TEST(ROUNDZ__NEONV8, positive_qnan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7FC00000); n < UINT32_C(0x80000000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_roundz__neonv8(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__NEONV8, negative_qnan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7FC00000); n < UINT32_C(0x80000000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(UINT32_C(0x80000000) | (n + i));
}
xnn_math_f32_roundz__neonv8(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__NEONV8, positive_snan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7F800000); n < UINT32_C(0x7FC00000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(std::max<uint32_t>(n + i, UINT32_C(0x7F800001)));
}
xnn_math_f32_roundz__neonv8(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output & UINT32_C(0xFFBFFFFF), fp32_to_bits(outputs[i]) & UINT32_C(0xFFBFFFFF))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__NEONV8, negative_snan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7F800000); n < UINT32_C(0x7FC00000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(UINT32_C(0x80000000) | std::max<uint32_t>(n + i, UINT32_C(0x7F800001)));
}
xnn_math_f32_roundz__neonv8(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output & UINT32_C(0xFFBFFFFF), fp32_to_bits(outputs[i]) & UINT32_C(0xFFBFFFFF))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__NEONV8, positive_snan_to_qnan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7F800000); n < UINT32_C(0x7FC00000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(std::max<uint32_t>(n + i, UINT32_C(0x7F800001)));
}
xnn_math_f32_roundz__neonv8(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__NEONV8, negative_snan_to_qnan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7F800000); n < UINT32_C(0x7FC00000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(UINT32_C(0x80000000) | std::max<uint32_t>(n + i, UINT32_C(0x7F800001)));
}
xnn_math_f32_roundz__neonv8(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
#endif // XNN_ARCH_ARM || XNN_ARCH_ARM64
#if XNN_ARCH_WASMSIMD
TEST(ROUNDZ__WASMSIMD_ADDSUB, positive_normal) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x00000000); n < UINT32_C(0x4B800000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_roundz__wasmsimd_addsub(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__WASMSIMD_ADDSUB, negative_normal) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x80000000); n < UINT32_C(0xCB800000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_roundz__wasmsimd_addsub(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__WASMSIMD_ADDSUB, positive_integral) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x4B800000); n < UINT32_C(0x7F800000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_roundz__wasmsimd_addsub(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__WASMSIMD_ADDSUB, negative_integral) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0xCB800000); n < UINT32_C(0xFF800000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_roundz__wasmsimd_addsub(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__WASMSIMD_ADDSUB, positive_infinity) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
std::fill(inputs.begin(), inputs.end(), +std::numeric_limits<float>::infinity());
xnn_math_f32_roundz__wasmsimd_addsub(kBlockSize * sizeof(float), inputs.data(), outputs.data());
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[0]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[0]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[0]);
}
TEST(ROUNDZ__WASMSIMD_ADDSUB, negative_infinity) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
std::fill(inputs.begin(), inputs.end(), -std::numeric_limits<float>::infinity());
xnn_math_f32_roundz__wasmsimd_addsub(kBlockSize * sizeof(float), inputs.data(), outputs.data());
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[0]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[0]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[0]);
}
TEST(ROUNDZ__WASMSIMD_ADDSUB, positive_qnan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7FC00000); n < UINT32_C(0x80000000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_roundz__wasmsimd_addsub(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__WASMSIMD_ADDSUB, negative_qnan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7FC00000); n < UINT32_C(0x80000000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(UINT32_C(0x80000000) | (n + i));
}
xnn_math_f32_roundz__wasmsimd_addsub(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__WASMSIMD_ADDSUB, positive_snan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7F800000); n < UINT32_C(0x7FC00000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(std::max<uint32_t>(n + i, UINT32_C(0x7F800001)));
}
xnn_math_f32_roundz__wasmsimd_addsub(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output & UINT32_C(0xFFBFFFFF), fp32_to_bits(outputs[i]) & UINT32_C(0xFFBFFFFF))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__WASMSIMD_ADDSUB, negative_snan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7F800000); n < UINT32_C(0x7FC00000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(UINT32_C(0x80000000) | std::max<uint32_t>(n + i, UINT32_C(0x7F800001)));
}
xnn_math_f32_roundz__wasmsimd_addsub(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output & UINT32_C(0xFFBFFFFF), fp32_to_bits(outputs[i]) & UINT32_C(0xFFBFFFFF))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__WASMSIMD_ADDSUB, positive_snan_to_qnan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7F800000); n < UINT32_C(0x7FC00000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(std::max<uint32_t>(n + i, UINT32_C(0x7F800001)));
}
xnn_math_f32_roundz__wasmsimd_addsub(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__WASMSIMD_ADDSUB, negative_snan_to_qnan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7F800000); n < UINT32_C(0x7FC00000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(UINT32_C(0x80000000) | std::max<uint32_t>(n + i, UINT32_C(0x7F800001)));
}
xnn_math_f32_roundz__wasmsimd_addsub(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
#endif // XNN_ARCH_WASMSIMD
#if XNN_ARCH_WASMSIMD
TEST(ROUNDZ__WASMSIMD_CVT, positive_normal) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x00000000); n < UINT32_C(0x4B800000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_roundz__wasmsimd_cvt(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__WASMSIMD_CVT, negative_normal) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x80000000); n < UINT32_C(0xCB800000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_roundz__wasmsimd_cvt(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__WASMSIMD_CVT, positive_integral) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x4B800000); n < UINT32_C(0x7F800000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_roundz__wasmsimd_cvt(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__WASMSIMD_CVT, negative_integral) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0xCB800000); n < UINT32_C(0xFF800000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_roundz__wasmsimd_cvt(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__WASMSIMD_CVT, positive_infinity) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
std::fill(inputs.begin(), inputs.end(), +std::numeric_limits<float>::infinity());
xnn_math_f32_roundz__wasmsimd_cvt(kBlockSize * sizeof(float), inputs.data(), outputs.data());
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[0]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[0]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[0]);
}
TEST(ROUNDZ__WASMSIMD_CVT, negative_infinity) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
std::fill(inputs.begin(), inputs.end(), -std::numeric_limits<float>::infinity());
xnn_math_f32_roundz__wasmsimd_cvt(kBlockSize * sizeof(float), inputs.data(), outputs.data());
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[0]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[0]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[0]);
}
TEST(ROUNDZ__WASMSIMD_CVT, positive_qnan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7FC00000); n < UINT32_C(0x80000000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_roundz__wasmsimd_cvt(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__WASMSIMD_CVT, negative_qnan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7FC00000); n < UINT32_C(0x80000000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(UINT32_C(0x80000000) | (n + i));
}
xnn_math_f32_roundz__wasmsimd_cvt(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__WASMSIMD_CVT, positive_snan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7F800000); n < UINT32_C(0x7FC00000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(std::max<uint32_t>(n + i, UINT32_C(0x7F800001)));
}
xnn_math_f32_roundz__wasmsimd_cvt(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output & UINT32_C(0xFFBFFFFF), fp32_to_bits(outputs[i]) & UINT32_C(0xFFBFFFFF))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__WASMSIMD_CVT, negative_snan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7F800000); n < UINT32_C(0x7FC00000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(UINT32_C(0x80000000) | std::max<uint32_t>(n + i, UINT32_C(0x7F800001)));
}
xnn_math_f32_roundz__wasmsimd_cvt(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output & UINT32_C(0xFFBFFFFF), fp32_to_bits(outputs[i]) & UINT32_C(0xFFBFFFFF))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__WASMSIMD_CVT, DISABLED_positive_snan_to_qnan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7F800000); n < UINT32_C(0x7FC00000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(std::max<uint32_t>(n + i, UINT32_C(0x7F800001)));
}
xnn_math_f32_roundz__wasmsimd_cvt(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__WASMSIMD_CVT, DISABLED_negative_snan_to_qnan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7F800000); n < UINT32_C(0x7FC00000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(UINT32_C(0x80000000) | std::max<uint32_t>(n + i, UINT32_C(0x7F800001)));
}
xnn_math_f32_roundz__wasmsimd_cvt(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
#endif // XNN_ARCH_WASMSIMD
TEST(ROUNDZ__SCALAR_ADDSUB, positive_normal) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x00000000); n < UINT32_C(0x4B800000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_roundz__scalar_addsub(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__SCALAR_ADDSUB, negative_normal) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x80000000); n < UINT32_C(0xCB800000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_roundz__scalar_addsub(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__SCALAR_ADDSUB, positive_integral) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x4B800000); n < UINT32_C(0x7F800000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_roundz__scalar_addsub(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__SCALAR_ADDSUB, negative_integral) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0xCB800000); n < UINT32_C(0xFF800000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_roundz__scalar_addsub(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__SCALAR_ADDSUB, positive_infinity) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
std::fill(inputs.begin(), inputs.end(), +std::numeric_limits<float>::infinity());
xnn_math_f32_roundz__scalar_addsub(kBlockSize * sizeof(float), inputs.data(), outputs.data());
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[0]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[0]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[0]);
}
TEST(ROUNDZ__SCALAR_ADDSUB, negative_infinity) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
std::fill(inputs.begin(), inputs.end(), -std::numeric_limits<float>::infinity());
xnn_math_f32_roundz__scalar_addsub(kBlockSize * sizeof(float), inputs.data(), outputs.data());
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[0]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[0]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[0]);
}
TEST(ROUNDZ__SCALAR_ADDSUB, positive_qnan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7FC00000); n < UINT32_C(0x80000000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_roundz__scalar_addsub(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__SCALAR_ADDSUB, negative_qnan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7FC00000); n < UINT32_C(0x80000000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(UINT32_C(0x80000000) | (n + i));
}
xnn_math_f32_roundz__scalar_addsub(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__SCALAR_ADDSUB, positive_snan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7F800000); n < UINT32_C(0x7FC00000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(std::max<uint32_t>(n + i, UINT32_C(0x7F800001)));
}
xnn_math_f32_roundz__scalar_addsub(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output & UINT32_C(0xFFBFFFFF), fp32_to_bits(outputs[i]) & UINT32_C(0xFFBFFFFF))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__SCALAR_ADDSUB, negative_snan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7F800000); n < UINT32_C(0x7FC00000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(UINT32_C(0x80000000) | std::max<uint32_t>(n + i, UINT32_C(0x7F800001)));
}
xnn_math_f32_roundz__scalar_addsub(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output & UINT32_C(0xFFBFFFFF), fp32_to_bits(outputs[i]) & UINT32_C(0xFFBFFFFF))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__SCALAR_ADDSUB, positive_snan_to_qnan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7F800000); n < UINT32_C(0x7FC00000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(std::max<uint32_t>(n + i, UINT32_C(0x7F800001)));
}
xnn_math_f32_roundz__scalar_addsub(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__SCALAR_ADDSUB, negative_snan_to_qnan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7F800000); n < UINT32_C(0x7FC00000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(UINT32_C(0x80000000) | std::max<uint32_t>(n + i, UINT32_C(0x7F800001)));
}
xnn_math_f32_roundz__scalar_addsub(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__SCALAR_CVT, positive_normal) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x00000000); n < UINT32_C(0x4B800000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_roundz__scalar_cvt(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__SCALAR_CVT, negative_normal) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x80000000); n < UINT32_C(0xCB800000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_roundz__scalar_cvt(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__SCALAR_CVT, positive_integral) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x4B800000); n < UINT32_C(0x7F800000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_roundz__scalar_cvt(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__SCALAR_CVT, negative_integral) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0xCB800000); n < UINT32_C(0xFF800000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_roundz__scalar_cvt(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__SCALAR_CVT, positive_infinity) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
std::fill(inputs.begin(), inputs.end(), +std::numeric_limits<float>::infinity());
xnn_math_f32_roundz__scalar_cvt(kBlockSize * sizeof(float), inputs.data(), outputs.data());
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[0]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[0]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[0]);
}
TEST(ROUNDZ__SCALAR_CVT, negative_infinity) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
std::fill(inputs.begin(), inputs.end(), -std::numeric_limits<float>::infinity());
xnn_math_f32_roundz__scalar_cvt(kBlockSize * sizeof(float), inputs.data(), outputs.data());
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[0]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[0]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[0])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[0]);
}
TEST(ROUNDZ__SCALAR_CVT, positive_qnan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7FC00000); n < UINT32_C(0x80000000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(n + i);
}
xnn_math_f32_roundz__scalar_cvt(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__SCALAR_CVT, negative_qnan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7FC00000); n < UINT32_C(0x80000000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(UINT32_C(0x80000000) | (n + i));
}
xnn_math_f32_roundz__scalar_cvt(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__SCALAR_CVT, positive_snan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7F800000); n < UINT32_C(0x7FC00000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(std::max<uint32_t>(n + i, UINT32_C(0x7F800001)));
}
xnn_math_f32_roundz__scalar_cvt(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output & UINT32_C(0xFFBFFFFF), fp32_to_bits(outputs[i]) & UINT32_C(0xFFBFFFFF))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__SCALAR_CVT, negative_snan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7F800000); n < UINT32_C(0x7FC00000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(UINT32_C(0x80000000) | std::max<uint32_t>(n + i, UINT32_C(0x7F800001)));
}
xnn_math_f32_roundz__scalar_cvt(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output & UINT32_C(0xFFBFFFFF), fp32_to_bits(outputs[i]) & UINT32_C(0xFFBFFFFF))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__SCALAR_CVT, DISABLED_positive_snan_to_qnan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7F800000); n < UINT32_C(0x7FC00000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(std::max<uint32_t>(n + i, UINT32_C(0x7F800001)));
}
xnn_math_f32_roundz__scalar_cvt(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}
TEST(ROUNDZ__SCALAR_CVT, DISABLED_negative_snan_to_qnan) {
std::vector<float, AlignedAllocator<float, 64>> inputs(kBlockSize);
std::vector<float, AlignedAllocator<float, 64>> outputs(kBlockSize);
for (uint32_t n = UINT32_C(0x7F800000); n < UINT32_C(0x7FC00000); n += kBlockSize) {
for (uint32_t i = 0; i < kBlockSize; i++) {
inputs[i] = fp32_from_bits(UINT32_C(0x80000000) | std::max<uint32_t>(n + i, UINT32_C(0x7F800001)));
}
xnn_math_f32_roundz__scalar_cvt(kBlockSize * sizeof(float), inputs.data(), outputs.data());
for (uint32_t i = 0; i < kBlockSize; i++) {
const uint32_t reference_output = fp32_to_bits(std::trunc(inputs[i]));
ASSERT_EQ(reference_output, fp32_to_bits(outputs[i]))
<< "input = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(inputs[i])
<< ", reference = 0x" << std::hex << std::setw(8) << std::setfill('0') << reference_output
<< ", optimized = 0x" << std::hex << std::setw(8) << std::setfill('0') << fp32_to_bits(outputs[i]);
}
}
}