36 KiB
AmberScript
- DRAFT
This document defines the script input language for the Amber system. The format is based on the Talvos format, VkRunner format, and VkScript proposed format.
Specification
All amber scripts must start with #!amber
as the first line. Comments are
specified by a # character and continue to the end of the line, except in
inlined shader source code, where AmberScript comments are not
possible. Keywords are case sensitive. All names are made up of ASCII
characters, and delimited by whitespace.
TODO(dneto): What characters are valid in a name?
Number literals
Literal numbers are normally presented in decimal form. They are interpreted as integers or floating point depending on context: a command parameter is predefined as either integral or floating point, or the data type is user-specified (such as for buffer data).
Hex values: Whenever an integer is expected, you may use a hexadecimal number,
which is the characters 0x
followed by hexadecimal digits.
Requesting features
If specific device features are required you can use the DEVICE_FEATURE
command to enable them.
DEVICE_FEATURE vertexPipelineStoresAndAtomics
DEVICE_FEATURE VariablePointerFeatures.variablePointersStorageBuffer
Currently each of the items in VkPhysicalDeviceFeatures
are recognized along
with:
VariablePointerFeatures.variablePointers
VariablePointerFeatures.variablePointersStorageBuffer
Float16Int8Features.shaderFloat16
Float16Int8Features.shaderInt8
Storage8BitFeatures.storageBuffer8BitAccess
Storage8BitFeatures.uniformAndStorageBuffer8BitAccess
Storage8BitFeatures.storagePushConstant8
Storage16BitFeatures.storageBuffer16BitAccess
Storage16BitFeatures.uniformAndStorageBuffer16BitAccess
Storage16BitFeatures.storagePushConstant16
Storage16BitFeatures.storageInputOutput16
SubgroupSizeControl.subgroupSizeControl
SubgroupSizeControl.computeFullSubgroups
Extensions can be enabled with the DEVICE_EXTENSION
and INSTANCE_EXTENSION
commands.
DEVICE_EXTENSION VK_KHR_get_physical_device_properties2
INSTANCE_EXTENSION VK_KHR_storage_buffer_storage_class
Setting Engine Configuration
In some instances there is extra data we want to provide to an engine for
configuration purposes. The SET ENGINE_DATA
command allows that for the given
set of data types.
Engine Data Variables
fence_timeout_ms
- value must be a single uint32 in milliseconds.
SET ENGINE_DATA {engine data variable} {value}*
Virtual File Store
Each amber script contains a virtual file system that can store files of textual data. This lets you bundle multiple source files into a single, hermetic amber script file.
Virtual files are declared using the VIRTUAL_FILE
command:
VIRTUAL_FILE {path}
{file-content}
END
Paths must be unique.
Shaders can directly reference these virtual files for their source.
HLSL shaders that #include
other .hlsl
files will first check the virtual
file system, before falling back to the standard file system.
Shaders
Shader programs are declared using the SHADER
command.
Shaders can be declared as PASSTHROUGH
, with inlined source or using source
from a VIRTUAL_FILE
.
Pass-through shader:
# Creates a passthrough vertex shader. The shader passes the vec4 at input
# location 0 through to the `gl_Position`.
SHADER vertex {shader_name} PASSTHROUGH
Shader using inlined source:
# Creates a shader of |shader_type| with the given |shader_name|. The shader
# will be of |shader_format|. The shader source then follows and is terminated
# with the |END| tag.
SHADER {shader_type} {shader_name} {shader_format} [ TARGET_ENV {target_env} ]
{shader_source}
END
Shader using source from VIRTUAL_FILE
:
# Creates a shader of |shader_type| with the given |shader_name|. The shader
# will be of |shader_format|. The shader will use the virtual file with |path|.
SHADER {shader_type} {shader_name} {shader_format} [ TARGET_ENV {target_env} ] VIRTUAL_FILE {path}
{shader_name}
is used to identify the shader to attach to PIPELINE
s,
{shader_type}
and {shader_format}
are described below:
Shader Type
vertex
fragment
geometry
tessellation_evaluation
tessellation_control
compute
multi
The compute pipeline can only contain compute shaders. The graphics pipeline can not contain compute shaders, and must contain a vertex shader and a fragment shader.
The provided multi
shader can only be used with SPIRV-ASM
and SPIRV-HEX
and allows for providing multiple shaders in a single module (so the vertex
and fragment
shaders can be provided together.)
Note, SPIRV-ASM
and SPIRV-HEX
can also be used with each of the other shader
types, but in that case must only provide a single shader type in the module.
Shader Format
GLSL
(with glslang)HLSL
(with dxc or glslang if dxc disabled)SPIRV-ASM
(with spirv-as; specifyingTARGET_ENV
is highly recommended in this case, as explained below)SPIRV-HEX
(decoded straight to SPIR-V)OPENCL-C
(with clspv)
Target environment
Specifying TARGET_ENV
is optional and can be used to select a target
SPIR-V environment. For example:
spv1.0
spv1.5
vulkan1.0
vulkan1.2
Check the help text of the corresponding tool (e.g. spirv-as, glslangValidator)
for the full list. The SPIRV-HEX
shader format is not affected by the target
environment.
The specified target environment for the shader overrides the default (spv1.0
)
or the one specified on the command line.
Specifying the target environment when using the SPIRV-ASM
shader format
is highly recommended, otherwise the SPIR-V version of the final SPIR-V binary
shader passed to the graphics device might not be what you expect.
Typically, SPIR-V assembly text will contain a comment near the beginning similar
to ; Version: 1.0
but this is ignored by the spirv-as assembler.
Thus, you should specify the equivalent target environment (e.g. spv1.0
)
in the SHADER
command.
Specifying the target environment for other shader formats depends on whether
you want to vary the final SPIR-V shader binary based on the target environment
specified on the command line. For example, you could write one AmberScript file
that contains a GLSL shader without specifying a target environment.
You could then run the AmberScript file several times with different
target environments specified on the command line
(spv1.0
, spv1.1
, spv1.2
, etc.) to test the different SPIR-V shader variants.
Buffers
An AmberScript buffer represents a set of contiguous bits. This can be used for either image buffers or, what the target API would refer to as a buffer.
Data Types
int8
int16
int32
int64
uint8
uint16
uint32
uint64
float16
float
double
- vec[2,3,4]{type}
- mat[2,3,4]x[2,3,4]{type} (matx)
- Any of the
Image Formats
listed below. - For any of the non-Image Formats types above appending '[]' will treat the data as an array. e.g. int8[], vec2[]
Sized arrays and structures are not currently representable.
# Filling the buffer with a given initializer. Initializer data must be
# of |type|. Buffers are STD430 by default.
BUFFER {name} DATA_TYPE {type} {STD140 | STD430} {initializer}
# Defines a buffer which is filled with data as specified by the `initializer`.
BUFFER {name} DATA_TYPE {type} {STD140 | STD430} SIZE _size_in_items_ \
{initializer}
# Deprecated
# Defines a buffer with width and height and filled by data as specified by the
# `initializer`.
BUFFER {name} DATA_TYPE {type} {STD140 | STD430} WIDTH {w} HEIGHT {h} \
{initializer}
# Defines a buffer which is filled with binary data from a file specified
# by `FILE`.
BUFFER {name} DATA_TYPE {type} {STD140 | STD430} SIZE _size_in_items_ \
FILE BINARY {file_name}
# Defines a buffer which is filled with text data parsed from a file specified
# by `FILE`.
BUFFER {name} DATA_TYPE {type} {STD140 | STD430} SIZE _size_in_items_ \
FILE TEXT {file_name}
# Creates a buffer which will store the given `FORMAT` of data. These
# buffers are used as image and depth buffers in the `PIPELINE` commands.
# The buffer will be sized based on the `RENDER_SIZE` of the `PIPELINE`.
# For multisampled images use value greater than one for `SAMPLES`. Allowed
# sample counts are 1, 2, 4, 8, 16, 32, and 64. Note that Amber doesn't
# preserve multisampled images across pipelines.
BUFFER {name} FORMAT {format_string} \
[ MIP_LEVELS _mip_levels_ (default 1) ] \
[ SAMPLES _samples_ (default 1) ]
# Load buffer data from a PNG image with file name specified by `FILE`.
# The file path is relative to the script file being run. Format specified
# by `FORMAT` must match the image format.
BUFFER {name} FORMAT {format_string} FILE PNG {file_name.png}
Images
An AmberScript image is a specialized buffer that specifies image-specific attributes.
Dimensionality
DIM_1D
-- A 1-dimensional imageDIM_2D
-- A 2-dimensional imageDIM_3D
-- A 3-dimensional image
# Specify an image buffer with a format. HEIGHT is necessary for DIM_2D and
# DIM_3D. DEPTH is necessary for DIM_3D.
IMAGE {name} FORMAT {format_string} [ MIP_LEVELS _mip_levels_ (default 1) ] \
[ SAMPLES _samples_ (default 1) ] \
{dimensionality} \
WIDTH {w} [ HEIGHT {h} [ DEPTH {d} ] ] \
{initializer}
# Specify an image buffer with a data type. HEIGHT is necessary for DIM_2D and
# DIM_3D. DEPTH is necessary for DIM_3D.
IMAGE {name} DATA_TYPE {type} {dimensionality} \
WIDTH {w} [ HEIGHT {h} [ DEPTH {d} ] ] \
{intializer}
Buffer Initializers
# Filling the buffer with a given set of data. The values must be
# of the correct type. The data can be provided as the type or as a hex
# value.
DATA
_value_+
END
```groovy
# Fill the buffer with a single value.
FILL _value_
# Fill the buffer with an increasing value from |start| increasing by |inc|.
# Floating point data uses floating point addition to generate increasing
# values. Likewise, integer data uses integer addition to generate increasing
# values.
SERIES_FROM _start_ INC_BY _inc_
Buffer Copy
# Copies all data, values and memory from |buffer_from| to |buffer_to|.
# Both buffers must be declared, and of the same data type.
# Buffers used as copy destination can be used only as copy destination, and as
# argument to an EXPECT command.
COPY {buffer_from} TO {buffer_to}
Samplers
Samplers are used for sampling buffers that are bound to a pipeline as sampled image or combined image sampler.
Filter types
nearest
linear
Address modes
repeat
mirrored_repeat
clamp_to_edge
clamp_to_border
mirrored_clamp_to_edge
Border colors
float_transparent_black
int_transparent_black
float_opaque_black
int_opaque_black
float_opaque_white
int_opaque_white
# Creates a sampler with |name|.
SAMPLER {name} \
[ MAG_FILTER {filter_type} (default nearest) ] \
[ MIN_FILTER {filter_type} (default nearest) ] \
[ ADDRESS_MODE_U {address_mode} (default repeat) ] \
[ ADDRESS_MODE_V {address_mode} (default repeat) ] \
[ ADDRESS_MODE_W {address_mode} (default repeat) ] \
[ BORDER_COLOR {border_color} (default float_transparent_black) ] \
[ MIN_LOD _val_ (default 0.0) ] \
[ MAX_LOD _val_ (default 1.0) ] \
[ NORMALIZED_COORDS | UNNORMALIZED_COORDS (default NORMALIZED_COORDS) ]
Note: unnormalized coordinates will override MIN_LOD and MAX_LOD to 0.0.
OpenCL Literal Samplers
Literal constant samplers defined in the OpenCL program are automatically generated and bound to the pipeline in Amber.
Note: currently the border color is always transparent black.
Note: the addressing mode is used for all coordinates currently. Arrayed images
should use clamp_to_edge
for the array index.
Pipelines
Pipeline type
compute
graphics
# The PIPELINE command creates a pipeline. This can be either compute or
# graphics. Shaders are attached to the pipeline at pipeline creation time.
PIPELINE {pipeline_type} {pipeline_name}
...
END
# Create a pipeline and inherit from a previously declared pipeline.
DERIVE_PIPELINE {pipeline_name} FROM {parent_pipeline}
...
END
Pipeline Content
The following commands are all specified within the PIPELINE
command.
# Attach the shader provided by |name_of_shader| to the pipeline with an
# entry point name of |name|. The provided shader for ATTACH must _not_ be
# a 'multi' shader.
ATTACH {name_of_shader} \
[ ENTRY_POINT {name} (default "main") ]
# Attach a 'multi' shader to the pipeline of |shader_type| and use the entry
# point with |name|. The provided shader _must_ be a 'multi' shader.
ATTACH {name_of_multi_shader} TYPE {shader_type} ENTRY_POINT {name}
# Attach specialized shader. Specialization can be specified multiple times.
# Specialization values must be a 32-bit type. Shader type and entry point
# must be specified prior to specializing the shader.
ATTACH {name_of_shader} SPECIALIZE _id_ AS uint32 _value_
ATTACH {name_of_shader} \
SPECIALIZE _id_ AS uint32 _value_ \
SPECIALIZE _id_ AS float _value_
# Set the SPIRV-Tools optimization passes to use for a given shader. The
# default is to run no optimization passes.
SHADER_OPTIMIZATION {shader_name}
{optimization_name}+
END
# Set the compile options used to compile the given shader. Options are parsed
# the same as on the command line. Currently, only supported for OPENCL-C shaders.
COMPILE_OPTIONS {shader_name}
{option}+
END
# Set the polygon mode used for all drawing with the pipeline.
# |mode| is fill, line, or point and it defaults to fill.
POLYGON_MODE {mode}
Compare operations
never
less
equal
less_or_equal
greater
not_equal
greater_or_equal
always
# Set depth test settings. All enable options are specified with keywords on and off.
# BOUNDS and BIAS values are specified with decimal numbers. |compare_op| is selected
# from the list of compare operations above.
DEPTH
TEST {test_enable}
WRITE {write_enable}
COMPARE_OP {compare_op}
CLAMP {clamp_enable}
BOUNDS min {bound_min} max {bounds_max}
BIAS constant {bias_constant} clamp {bias_clamp} slope {bias_slope}
END
Stencil operations
keep
replace
increment_and_clamp
decrement_and_clamp
invert
increment_and_wrap
decrement_and_wrap
# Set stencil test settings. |face| can be front, back, or front_and_back.
# |test_enable| is either on or off and affects both faces. |fail_op|, |pass_op|,
# and |depth_fail_op| are selected from the stencil operations table above,
# and |compare_op| from the compare operations table. |compare_mask|, |write_mask|,
# and |reference| are 8bit unsigned integer values (range 0..255).
STENCIL {face}
TEST {test_enable}
FAIL_OP {fail_op}
PASS_OP {pass_op}
DEPTH_FAIL_OP {depth_fail_op}
COMPARE_OP {compare_op}
COMPARE_MASK {compare_mask}
WRITE_MASK {write_mask}
REFERENCE {reference}
END
# Set the size of the render buffers. |width| and |height| are integers and
# default to 250x250.
FRAMEBUFFER_SIZE _width_ _height_
# Set subgroup size control setting. Require that subgroups must be launched
# with all invocations active for given shader. Allow SubgroupSize to vary
# for given shader. Require a specific SubgroupSize the for given shader.
# |fully_populated_enable| and |varying_size_enable| can be on or off.
# |subgroup_size| can be set one of the values below:
# - a power-of-two integer that _must_ be greater or equal to minSubgroupSize
# and be less than or equal to maxSubgroupSize
# - MIN to set the required subgroup size to the minSubgroupSize
# - MAX to set the required subgroup size to the maxSubgroupSize
SUBROUP {name_of_shader}
FULLY_POPULATED {fully_populated_enable}
VARYING_SIZE {varying_size_enable}
REQUIRED_SIZE {subgroup_size}
END
Pipeline Buffers
Buffer Types
uniform
storage
uniform_dynamic
storage_dynamic
uniform_texel_buffer
storage_texel_buffer
TODO(dsinclair): Sync the BufferTypes with the list of Vulkan Descriptor types.
A pipeline
can have buffers or samplers bound. This includes buffers to
contain image attachment content, depth/stencil content, uniform buffers, etc.
# Attach |buffer_name| as an output color attachment at location |idx|.
# The provided buffer must be a `FORMAT` buffer. If no color attachments are
# provided a single attachment with format `B8G8R8A8_UNORM` will be created
# for graphics pipelines. The MIP level will have a base of |level|.
BIND BUFFER {buffer_name} AS color LOCATION _idx_ \
[ BASE_MIP_LEVEL _level_ (default 0) ]
# Attach |buffer_name| as the depth/stencil buffer. The provided buffer must
# be a `FORMAT` buffer. If no depth/stencil buffer is specified a default
# buffer of format `D32_SFLOAT_S8_UINT` will be created for graphics
# pipelines.
BIND BUFFER {buffer_name} AS depth_stencil
# Attach |buffer_name| as the push_constant buffer. There can be only one
# push constant buffer attached to a pipeline.
BIND BUFFER {buffer_name} AS push_constant
# Bind OpenCL argument buffer by name. Specifying the buffer type is optional.
# Amber will set the type as appropriate for the argument buffer. All uses
# of the buffer must have a consistent |buffer_type| across all pipelines.
BIND BUFFER {buffer_name} [ AS {buffer_type} (default computed)] \
KERNEL ARG_NAME _name_
# Bind OpenCL argument buffer by argument ordinal. Arguments use 0-based
# numbering. Specifying the buffer type is optional. Amber will set the
# type as appropriate for the argument buffer. All uses of the buffer
# must have a consistent |buffer_type| across all pipelines.
BIND BUFFER {buffer_name} [ AS {buffer_type} (default computed)] \
KERNEL ARG_NUMBER _number_
# Bind OpenCL argument sampler by argument name.
BIND SAMPLER {sampler_name} KERNEL ARG_NAME _name_
# Bind OpenCL argument sampler by argument ordinal. Arguments use 0-based
# numbering.
BIND SAMPLER {sampler_name} KERNEL ARG_NUMBER _number_
All BIND BUFFER and BIND SAMPLER commands below define a descriptor set and binding ID.
These commands can be replaced with BIND BUFFER_ARRAY and BIND SAMPLER_ARRAY commands.
In these cases multiple buffer or sampler names need to be provided, separated by spaces.
This creates a descriptor array of buffers or samplers bound to the same descriptor set
and binding ID. An array of offsets should be provided via OFFSET offset1 offset2 ...
when using dynamic buffers with BUFFER_ARRAY.
# Bind the buffer of the given |buffer_type| at the given descriptor set
# and binding. The buffer will use a start index of 0.
BIND {BUFFER | BUFFER_ARRAY} {buffer_name} AS {buffer_type} DESCRIPTOR_SET _id_ \
BINDING _id_
# Attach |buffer_name| as a storage image. The MIP level will have a base
# value of |level|.
BIND {BUFFER | BUFFER_ARRAY} {buffer_name} AS storage_image \
DESCRIPTOR_SET _id_ BINDING _id_ [ BASE_MIP_LEVEL _level_ (default 0) ]
# Attach |buffer_name| as a sampled image. The MIP level will have a base
# value of |level|.
BIND {BUFFER | BUFFER_ARRAY} {buffer_name} AS sampled_image \
DESCRIPTOR_SET _id_ BINDING _id_ [ BASE_MIP_LEVEL _level_ (default 0) ]
# Attach |buffer_name| as a combined image sampler. A sampler |sampler_name|
# must also be specified. The MIP level will have a base value of 0.
BIND {BUFFER | BUFFER_ARRAY} {buffer_name} AS combined_image_sampler SAMPLER {sampler_name} \
DESCRIPTOR_SET _id_ BINDING _id_ [ BASE_MIP_LEVEL _level_ (default 0) ]
# Bind the sampler at the given descriptor set and binding.
BIND {SAMPLER | SAMPLER_ARRAY} {sampler_name} DESCRIPTOR_SET _id_ BINDING _id_
# Bind |buffer_name| as dynamic uniform/storage buffer at the given descriptor set
# and binding. The buffer will use a start index of |offset|.
BIND {BUFFER | BUFFER_ARRAY} {buffer_name} AS {uniform_dynamic | storage_dynamic} \
DESCRIPTOR_SET _id_ BINDING _id_ OFFSET _offset_
# Set |buffer_name| as the vertex data at location |val|. RATE defines the
# input rate for vertex attribute reading. OFFSET sets the byte offset for the
# vertex data within the buffer |buffer_name|, which by default is 0. FORMAT
# sets the vertex buffer format, which by default is the format of the buffer
# |buffer_name|. STRIDE sets the byte stride, which by default is the stride
# of the format (set explicitly via FORMAT or from the format of the buffer
# |buffer_name|).
VERTEX_DATA {buffer_name} LOCATION _val_ [ RATE { vertex | instance } (default vertex) ] \
[ FORMAT {format} ] [ OFFSET {offset} ] [ STRIDE {stride} ]
# Set |buffer_name| as the index data to use for `INDEXED` draw commands.
INDEX_DATA {buffer_name}
OpenCL Plain-Old-Data Arguments
OpenCL kernels can have plain-old-data (pod or pod_ubo in the desriptor map) arguments set their data via this command. Amber will generate the appropriate buffers for the pipeline populated with the specified data.
# Set argument |name| to |data_type| with value |val|.
SET KERNEL ARG_NAME _name_ AS {data_type} _val_
# Set argument |number| to |data_type| with value |val|.
# Arguments use 0-based numbering.
SET KERNEL ARG_NUMBER _number_ AS {data_type} _val_
Topologies
POINT_LIST
LINE_LIST
LINE_LIST_WITH_ADJACENCY
LINE_STRIP
LINE_STRIP_WITH_ADJACENCY
TRIANGLE_LIST
TRIANGLE_LIST_WITH_ADJACENCY
TRIANGLE_STRIP
TRIANGLE_STRIP_WITH_ADJACENCY
TRIANGLE_fan
PATCH_LIST
Run a pipeline.
When running a DRAW_ARRAY
command, you must attach the vertex data to the
PIPELINE
with the VERTEX_DATA
command.
To run an indexed draw, attach the index data to the PIPELINE
with an
INDEX_DATA
command.
For the commands which take a START_IDX
and a COUNT
they can be left off the
command (although, START_IDX
is required if COUNT
is provided). The default
value for START_IDX
is 0. The default value for COUNT
is the item count of
vertex buffer minus the START_IDX
. The same applies to START_INSTANCE
(default 0) and INSTANCE_COUNT
(default 1).
# Run the given |pipeline_name| which must be a `compute` pipeline. The
# pipeline will be run with the given number of workgroups in the |x|, |y|, |z|
# dimensions. Each of the x, y and z values must be a uint32.
RUN {pipeline_name} _x_ _y_ _z_
# Run the given |pipeline_name| which must be a `graphics` pipeline. The
# rectangle at |x|, |y|, |width|x|height| will be rendered. Ignores VERTEX_DATA
# and INDEX_DATA on the given pipeline.
RUN {pipeline_name} \
DRAW_RECT POS _x_in_pixels_ _y_in_pixels_ \
SIZE _width_in_pixels_ _height_in_pixels_
# Run the given |pipeline_name| which must be a `graphics` pipeline. The
# grid at |x|, |y|, |width|x|height|, |columns|x|rows| will be rendered.
# Ignores VERTEX_DATA and INDEX_DATA on the given pipeline.
# For columns, rows of (5, 4) a total of 5*4=20 rectangles will be drawn.
RUN {pipeline_name} \
DRAW_GRID POS _x_in_pixels_ _y_in_pixels_ \
SIZE _width_in_pixels_ _height_in_pixels_ \
CELLS _columns_of_cells_ _rows_of_cells_
# Run the |pipeline_name| which must be a `graphics` pipeline. The vertex
# data must be attached to the pipeline.
# A start index of |value| will be used and the count of |count_value| items
# will be processed. The draw is instanced if |inst_count_value| is greater
# than one. In case of instanced draw |inst_value| controls the starting
# instance ID.
RUN {pipeline_name} DRAW_ARRAY AS {topology} \
[ START_IDX _value_ (default 0) ] \
[ COUNT _count_value_ (default vertex_buffer size - start_idx) ] \
[ START_INSTANCE _inst_value_ (default 0) ] \
[ INSTANCE_COUNT _inst_count_value_ (default 1) ]
# Run the |pipeline_name| which must be a `graphics` pipeline. The vertex
# data and index data must be attached to the pipeline. The vertices will be
# drawn using the given |topology|.
#
# A start index of |value| will be used and the count of |count_value| items
# will be processed. The draw is instanced if |inst_count_value| is greater
# than one. In case of instanced draw |inst_value| controls the starting
# instance ID.
RUN {pipeline_name} DRAW_ARRAY AS {topology} INDEXED \
[ START_IDX _value_ (default 0) ] \
[ COUNT _count_value_ (default index_buffer size - start_idx) ] \
[ START_INSTANCE _inst_value_ (default 0) ] \
[ INSTANCE_COUNT _inst_count_value_ (default 1) ]
Repeating commands
# It is sometimes useful to run a given draw command multiple times. This can be
# to detect deterministic rendering or other features.
REPEAT {count}
{command}+
END
The commands which can be used inside a REPEAT
block are:
CLEAR
CLEAR_COLOR
CLEAR_DEPTH
CLEAR_STENCIL
COPY
EXPECT
RUN
Commands
# Sets the clear color to use for |pipeline| which must be a graphics
# pipeline. The colors are integers from 0 - 255. Defaults to (0, 0, 0, 0)
CLEAR_COLOR {pipeline} _r (0 - 255)_ _g (0 - 255)_ _b (0 - 255)_ _a (0 - 255)_
# Sets the depth clear value to use for |pipeline| which must be a graphics
# pipeline. |value| must be a decimal number.
CLEAR_DEPTH {pipeline} _value_
# Sets the stencil clear value to use for |pipeline| which must be a graphics
# pipeline. |value| must be an integer from 0 - 255.
CLEAR_STENCIL {pipeline} _value_
# Instructs the |pipeline| which must be a graphics pipeline to execute the
# clear command.
CLEAR {pipeline}
Expectations
Comparators
EQ
NE
LT
LE
GT
GE
EQ_RGB
EQ_RGBA
EQ_BUFFER
RMSE_BUFFER
EQ_HISTOGRAM_EMD_BUFFER
# Checks that |buffer_name| at |x| has the given |value|s when compared
# with the given |comparator|.
EXPECT {buffer_name} IDX _x_ {comparator} _value_+
# Checks that |buffer_name| at |x| has values within |tolerance| of |value|
# The |tolerance| can be specified as 1-4 float values separated by spaces.
# The tolerances may be given as a percentage by placing a '%' symbol after
# the value. If less tolerance values are provided then are needed for a given
# data component the default tolerance will be applied.
EXPECT {buffer_name} IDX _x_ TOLERANCE _tolerance_{1,4} EQ _value_+
# Checks that |buffer_name| at |x|, |y| for |width|x|height| pixels has the
# given |r|, |g|, |b| values. Each r, g, b value is an integer from 0-255.
EXPECT {buffer_name} IDX _x_in_pixels_ _y_in_pixels_ \
SIZE _width_in_pixels_ _height_in_pixels_ \
EQ_RGB _r (0 - 255)_ _g (0 - 255)_ _b (0 - 255)_
# Checks that |buffer_name| at |x|, |y| for |width|x|height| pixels has the
# given |r|, |g|, |b|, |a| values. Each r, g, b, a value is an integer
# from 0-255.
EXPECT {buffer_name} IDX _x_in_pixels_ _y_in_pixels_ \
SIZE _width_in_pixels_ _height_in_pixels_ \
EQ_RGBA _r (0 - 255)_ _g (0 - 255)_ _b (0 - 255)_ _a (0 - 255)_
# Checks that |buffer_1| contents are equal to those of |buffer_2|
EXPECT {buffer_1} EQ_BUFFER {buffer_2}
# Checks that the Root Mean Square Error when comparing |buffer_1| to
# |buffer_2| is less than or equal to |tolerance|. Note, |tolerance| is a
# unit-less number.
EXPECT {buffer_1} RMSE_BUFFER {buffer_2} TOLERANCE _value_
# Checks that the Earth Mover's Distance when comparing histograms of
# |buffer_1| to |buffer_2| is less than or equal to |tolerance|.
# Note, |tolerance| is a unit-less number.
EXPECT {buffer_1} EQ_HISTOGRAM_EMD_BUFFER {buffer_2} TOLERANCE _value_
Examples
Compute Shader
#!amber
# Simple amber compute shader.
SHADER compute kComputeShader GLSL
#version 450
layout(binding = 3) buffer block {
vec2 values[];
};
void main() {
values[gl_WorkGroupID.x + gl_WorkGroupID.y * gl_NumWorkGroups.x] =
gl_WorkGroupID.xy;
}
END # shader
BUFFER kComputeBuffer DATA_TYPE vec2<int32> SIZE 524288 FILL 0
PIPELINE compute kComputePipeline
ATTACH kComputeShader
BIND BUFFER kComputeBuffer AS storage DESCRIPTOR_SET 0 BINDING 3
END # pipeline
RUN kComputePipeline 256 256 1
# Four corners
EXPECT kComputeBuffer IDX 0 EQ 0 0
EXPECT kComputeBuffer IDX 2040 EQ 255 0
EXPECT kComputeBuffer IDX 522240 EQ 0 255
EXPECT kComputeBuffer IDX 524280 EQ 255 255
# Center
EXPECT kComputeBuffer IDX 263168 EQ 128 128
Entry Points
#!amber
SHADER vertex kVertexShader PASSTHROUGH
SHADER fragment kFragmentShader SPIRV-ASM
OpCapability Shader
%1 = OpExtInstImport "GLSL.std.450"
OpMemoryModel Logical GLSL450
; two entrypoints
OpEntryPoint Fragment %red "red" %color
OpEntryPoint Fragment %green "green" %color
OpExecutionMode %red OriginUpperLeft
OpExecutionMode %green OriginUpperLeft
OpSource GLSL 430
OpName %red "red"
OpDecorate %color Location 0
%void = OpTypeVoid
%3 = OpTypeFunction %void
%float = OpTypeFloat 32
%v4float = OpTypeVector %float 4
%_ptr_Output_v4float = OpTypePointer Output %v4float
%color = OpVariable %_ptr_Output_v4float Output
%float_1 = OpConstant %float 1
%float_0 = OpConstant %float 0
%red_color = OpConstantComposite %v4float %float_1 %float_0 %float_0 %float_1
%green_color = OpConstantComposite %v4float %float_0 %float_1 %float_0 %float_1
; this entrypoint outputs a red color
%red = OpFunction %void None %3
%5 = OpLabel
OpStore %color %red_color
OpReturn
OpFunctionEnd
; this entrypoint outputs a green color
%green = OpFunction %void None %3
%6 = OpLabel
OpStore %color %green_color
OpReturn
OpFunctionEnd
END # shader
BUFFER kImgBuffer FORMAT R8G8B8A8_UINT
PIPELINE graphics kRedPipeline
ATTACH kVertexShader ENTRY_POINT main
SHADER_OPTIMIZATION kVertexShader
--eliminate-dead-branches
--merge-return
--eliminate-dead-code-aggressive
END
ATTACH kFragmentShader ENTRY_POINT red
FRAMEBUFFER_SIZE 256 256
BIND BUFFER kImgBuffer AS color LOCATION 0
END # pipeline
PIPELINE graphics kGreenPipeline
ATTACH kVertexShader
ATTACH kFragmentShader ENTRY_POINT green
FRAMEBUFFER_SIZE 256 256
BIND BUFFER kImgBuffer AS color LOCATION 0
END # pipeline
RUN kRedPipeline DRAW_RECT POS 0 0 SIZE 256 256
RUN kGreenPipeline DRAW_RECT POS 128 128 SIZE 256 256
EXPECT kImgBuffer IDX 0 0 SIZE 127 127 EQ_RGB 255 0 0
EXPECT kImgBuffer IDX 128 128 SIZE 128 128 EQ_RGB 0 255 0
Buffers
#!amber
SHADER vertex kVertexShader GLSL
#version 430
layout(location = 0) in vec4 position;
layout(location = 1) in vec4 color_in;
layout(location = 0) out vec4 color_out;
void main() {
gl_Position = position;
color_out = color_in;
}
END # shader
SHADER fragment kFragmentShader GLSL
#version 430
layout(location = 0) in vec4 color_in;
layout(location = 0) out vec4 color_out;
void main() {
color_out = color_in;
}
END # shader
BUFFER kPosData DATA_TYPE vec2<int32> DATA
# Top-left
-1 -1
0 -1
-1 0
0 0
# Top-right
0 -1
1 -1
0 0
1 0
# Bottom-left
-1 0
0 0
-1 1
0 1
# Bottom-right
0 0
1 0
0 1
1 1
END
BUFFER kColorData DATA_TYPE uint32 DATA
# red
0xff0000ff
0xff0000ff
0xff0000ff
0xff0000ff
# green
0xff00ff00
0xff00ff00
0xff00ff00
0xff00ff00
# blue
0xffff0000
0xffff0000
0xffff0000
0xffff0000
# purple
0xff800080
0xff800080
0xff800080
0xff800080
END
BUFFER kIndices DATA_TYPE int32 DATA
0 1 2 2 1 3
4 5 6 6 5 7
8 9 10 10 9 11
12 13 14 14 13 15
END
PIPELINE graphics kGraphicsPipeline
ATTACH kVertexShader
ATTACH kFragmentShader
VERTEX_DATA kPosData LOCATION 0
VERTEX_DATA kColorData LOCATION 1
INDEX_DATA kIndices
END # pipeline
CLEAR_COLOR kGraphicsPipeline 255 0 0 255
CLEAR kGraphicsPipeline
RUN kGraphicsPipeline DRAW_ARRAY AS TRIANGLE_LIST START_IDX 0 COUNT 24
OpenCL-C Shaders
SHADER compute my_shader OPENCL-C
kernel void line(const int* in, global int* out, int m, int b) {
*out = *in * m + b;
}
END
BUFFER in_buf DATA_TYPE int32 DATA 4 END
BUFFER out_buf DATA_TYPE int32 DATA 0 END
PIPELINE compute my_pipeline
ATTACH my_shader ENTRY_POINT line
COMPILE_OPTIONS
-cluster-pod-kernel-args
-pod-ubo
-constant-args-ubo
-max-ubo-size=128
END
BIND BUFFER in_buf KERNEL ARG_NAME in
BIND BUFFER out_buf KERNEL ARG_NAME out
SET KERNEL ARG_NAME m AS int32 3
SET KERNEL ARG_NAME b AS int32 1
END
RUN my_pipeline 1 1 1
EXPECT out_buf EQ IDX 0 EQ 13
Image Formats
A1R5G5B5_UNORM_PACK16
A2B10G10R10_SINT_PACK32
A2B10G10R10_SNORM_PACK32
A2B10G10R10_SSCALED_PACK32
A2B10G10R10_UINT_PACK32
A2B10G10R10_UNORM_PACK32
A2B10G10R10_USCALED_PACK32
A2R10G10B10_SINT_PACK32
A2R10G10B10_SNORM_PACK32
A2R10G10B10_SSCALED_PACK32
A2R10G10B10_UINT_PACK32
A2R10G10B10_UNORM_PACK32
A2R10G10B10_USCALED_PACK32
A8B8G8R8_SINT_PACK32
A8B8G8R8_SNORM_PACK32
A8B8G8R8_SRGB_PACK32
A8B8G8R8_SSCALED_PACK32
A8B8G8R8_UINT_PACK32
A8B8G8R8_UNORM_PACK32
A8B8G8R8_USCALED_PACK32
B10G11R11_UFLOAT_PACK32
B4G4R4A4_UNORM_PACK16
B5G5R5A1_UNORM_PACK16
B5G6R5_UNORM_PACK16
B8G8R8A8_SINT
B8G8R8A8_SNORM
B8G8R8A8_SRGB
B8G8R8A8_SSCALED
B8G8R8A8_UINT
B8G8R8A8_UNORM
B8G8R8A8_USCALED
B8G8R8_SINT
B8G8R8_SNORM
B8G8R8_SRGB
B8G8R8_SSCALED
B8G8R8_UINT
B8G8R8_UNORM
B8G8R8_USCALED
D16_UNORM
D16_UNORM_S8_UINT
D24_UNORM_S8_UINT
D32_SFLOAT
D32_SFLOAT_S8_UINT
R16G16B16A16_SFLOAT
R16G16B16A16_SINT
R16G16B16A16_SNORM
R16G16B16A16_SSCALED
R16G16B16A16_UINT
R16G16B16A16_UNORM
R16G16B16A16_USCALED
R16G16B16_SFLOAT
R16G16B16_SINT
R16G16B16_SNORM
R16G16B16_SSCALED
R16G16B16_UINT
R16G16B16_UNORM
R16G16B16_USCALED
R16G16_SFLOAT
R16G16_SINT
R16G16_SNORM
R16G16_SSCALED
R16G16_UINT
R16G16_UNORM
R16G16_USCALED
R16_SFLOAT
R16_SINT
R16_SNORM
R16_SSCALED
R16_UINT
R16_UNORM
R16_USCALED
R32G32B32A32_SFLOAT
R32G32B32A32_SINT
R32G32B32A32_UINT
R32G32B32_SFLOAT
R32G32B32_SINT
R32G32B32_UINT
R32G32_SFLOAT
R32G32_SINT
R32G32_UINT
R32_SFLOAT
R32_SINT
R32_UINT
R4G4B4A4_UNORM_PACK16
R4G4_UNORM_PACK8
R5G5B5A1_UNORM_PACK16
R5G6B5_UNORM_PACK16
R64G64B64A64_SFLOAT
R64G64B64A64_SINT
R64G64B64A64_UINT
R64G64B64_SFLOAT
R64G64B64_SINT
R64G64B64_UINT
R64G64_SFLOAT
R64G64_SINT
R64G64_UINT
R64_SFLOAT
R64_SINT
R64_UINT
R8G8B8A8_SINT
R8G8B8A8_SNORM
R8G8B8A8_SRGB
R8G8B8A8_SSCALED
R8G8B8A8_UINT
R8G8B8A8_UNORM
R8G8B8A8_USCALED
R8G8B8_SINT
R8G8B8_SNORM
R8G8B8_SRGB
R8G8B8_SSCALED
R8G8B8_UINT
R8G8B8_UNORM
R8G8B8_USCALED
R8G8_SINT
R8G8_SNORM
R8G8_SRGB
R8G8_SSCALED
R8G8_UINT
R8G8_UNORM
R8G8_USCALED
R8_SINT
R8_SNORM
R8_SRGB
R8_SSCALED
R8_UINT
R8_UNORM
R8_USCALED
S8_UINT
X8_D24_UNORM_PACK32