You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

281 lines
12 KiB

// Copyright 2015 The Gemmlowp Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// unpack.h: unpacking the result blocks computed by compute.h,
// storing them into the destination matrix.
#ifndef GEMMLOWP_INTERNAL_UNPACK_H_
#define GEMMLOWP_INTERNAL_UNPACK_H_
#include "allocator.h"
#include "block_params.h"
#include "output.h"
#include "pack.h"
#include <cmath>
namespace gemmlowp {
class PackedResult {
public:
PackedResult(Allocator* _allocator, const BlockParams& _block_params)
: allocator_(_allocator), block_params_(_block_params) {
matrix_handle_ = allocator_->Reserve<std::int32_t>(block_params_.l2_rows *
block_params_.l2_cols);
}
~PackedResult() {}
MatrixMap<std::int32_t, MapOrder::ColMajor> Map() {
return MatrixMap<std::int32_t, MapOrder::ColMajor>(
allocator_->GetPointer<std::int32_t>(matrix_handle_),
block_params_.l2_rows, block_params_.l2_cols, block_params_.l2_rows);
}
MatrixMap<const std::int32_t, MapOrder::ColMajor> Map() const {
return MatrixMap<const std::int32_t, MapOrder::ColMajor>(
allocator_->GetPointer<const std::int32_t>(matrix_handle_),
block_params_.l2_rows, block_params_.l2_cols, block_params_.l2_rows);
}
private:
Allocator* allocator_;
Allocator::Handle matrix_handle_;
const BlockParams& block_params_;
};
struct MatrixBlockBounds {
int start_row;
int start_col;
int rows;
int cols;
MatrixBlockBounds(int start_row_, int start_col_, int rows_, int cols_)
: start_row(start_row_),
start_col(start_col_),
rows(rows_),
cols(cols_) {}
};
template <int Rows, int Cols, typename SrcMapType>
void PrefetchResultBlock(const SrcMapType& src,
const VectorMap<const std::int32_t, VectorShape::Col>&
lhs_sums_of_each_slice,
int src_row, int src_col) {
const std::int32_t* src_data = src.data(src_row, src_col);
const int src_stride = src.stride();
const std::int32_t* lhs_sums_data = lhs_sums_of_each_slice.data(src_row);
for (int r = 0; r < Rows; r += 4) {
Prefetch(lhs_sums_data + r);
}
for (int c = 0; c < Cols; c++) {
for (int r = 0; r < Rows; r += 4) {
Prefetch(src_data + r + c * src_stride);
}
}
}
template <typename KernelFormat, typename RegisterBlockType,
typename SrcMapType, typename LhsOffset, typename RhsOffset,
typename OutputPipelineExecutorType, typename DstType>
void UnpackResultBlock(const SrcMapType& src,
const OutputPipelineExecutorType& executor, DstType* dst,
const VectorMap<const std::int32_t, VectorShape::Col>&
lhs_sums_of_each_slice,
const VectorMap<const std::int32_t, VectorShape::Row>&
rhs_sums_of_each_slice,
const LhsOffset& lhs_offset, const RhsOffset& rhs_offset,
int depth, int src_row, int src_col, int src_global_row,
int src_global_col, int dst_row, int dst_col) {
using KernelLhsInputScalar = typename KernelFormat::Lhs::InputScalar;
using KernelLhsScalar = typename KernelFormat::Lhs::Scalar;
using KernelRhsInputScalar = typename KernelFormat::Rhs::InputScalar;
using KernelRhsScalar = typename KernelFormat::Rhs::Scalar;
static constexpr int KernelLhsZeroPointInput =
ZeroPointInputValue<KernelLhsInputScalar, KernelLhsScalar>::kValue;
static constexpr int KernelRhsZeroPointInput =
ZeroPointInputValue<KernelRhsInputScalar, KernelRhsScalar>::kValue;
auto acc = Load<RegisterBlockType>(src, src_row, src_col);
const auto& lhs_sums_of_each_slice_block =
LoadForBroadcasting<RegisterBlockType>(lhs_sums_of_each_slice, src_row);
const auto& rhs_sums_of_each_slice_block =
LoadForBroadcasting<RegisterBlockType>(rhs_sums_of_each_slice, src_col);
auto lhs_offset_block =
LoadForBroadcasting<RegisterBlockType>(lhs_offset, src_row);
auto rhs_offset_block =
LoadForBroadcasting<RegisterBlockType>(rhs_offset, src_col);
AddConstant<KernelLhsZeroPointInput>(&lhs_offset_block);
AddConstant<KernelRhsZeroPointInput>(&rhs_offset_block);
BroadcastMulAdd(lhs_sums_of_each_slice_block, rhs_offset_block, &acc);
for (int i = 0; i < decltype(rhs_offset_block)::kRegisterCount; i++) {
rhs_offset_block.buf.reg[i] = Mul(rhs_offset_block.buf.reg[i], depth);
}
BroadcastMulAdd(BroadcastAdd(rhs_sums_of_each_slice_block, rhs_offset_block),
lhs_offset_block, &acc);
executor.Execute(acc, dst, src_global_row, src_global_col, dst_row, dst_col);
}
template <typename KernelFormat, typename ResultBlockType,
typename PackedResultType, typename LhsOffset, typename RhsOffset,
typename OutputPipelineType>
void UnpackResult(ResultBlockType* dst, const MatrixBlockBounds& dst_block,
const PackedResultType& src, int depth,
const std::int32_t* lhs_sums_of_each_slice_ptr,
const std::int32_t* rhs_sums_of_each_slice_ptr,
const LhsOffset& lhs_offset, const RhsOffset& rhs_offset,
const OutputPipelineType& output_pipeline) {
ScopedProfilingLabel label(ResultBlockType::kOrder == MapOrder::ColMajor
? "unpack to column-major"
: "unpack to row-major");
assert(dst_block.start_row >= 0);
assert(dst_block.start_row + dst_block.rows <= dst->rows());
assert(dst_block.start_col >= 0);
assert(dst_block.start_col + dst_block.cols <= dst->cols());
const auto src_map = src.Map();
const VectorMap<const std::int32_t, VectorShape::Col> lhs_sums_of_each_slice(
lhs_sums_of_each_slice_ptr, dst_block.rows);
const VectorMap<const std::int32_t, VectorShape::Row> rhs_sums_of_each_slice(
rhs_sums_of_each_slice_ptr, dst_block.cols);
using Int32x1x1 = RegisterBlock<std::int32_t, 1, 1>;
using Int32x4x1 = RegisterBlock<std::int32_t, 4, 1>;
using Int32x8x1 = RegisterBlock<std::int32_t, 8, 1>;
using Int32x1x4 = RegisterBlock<std::int32_t, 1, 4>;
using Int32x4x4 = RegisterBlock<std::int32_t, 4, 4>;
using Int32x8x4 = RegisterBlock<std::int32_t, 8, 4>;
using DstScalarType = typename ResultBlockType::Scalar;
using DstScalarx8x8 = RegisterBlock<DstScalarType, 8, 8>;
OutputPipelineExecutor<OutputPipelineType, Int32x1x1>
output_pipeline_executor_1x1(output_pipeline);
OutputPipelineExecutor<OutputPipelineType, Int32x4x1>
output_pipeline_executor_4x1(output_pipeline);
OutputPipelineExecutor<OutputPipelineType, Int32x8x1>
output_pipeline_executor_8x1(output_pipeline);
OutputPipelineExecutor<OutputPipelineType, Int32x1x4>
output_pipeline_executor_1x4(output_pipeline);
OutputPipelineExecutor<OutputPipelineType, Int32x4x4>
output_pipeline_executor_4x4(output_pipeline);
OutputPipelineExecutor<OutputPipelineType, Int32x8x4>
output_pipeline_executor_8x4(output_pipeline);
int c8 = 0;
if (ResultBlockType::kOrder == MapOrder::RowMajor) {
for (; c8 <= dst_block.cols - 8; c8 += 8) {
PrefetchResultBlock<8, 8>(src_map, lhs_sums_of_each_slice, 0, c8);
int r = 0;
for (; r <= dst_block.rows - 8; r += 8) {
const int global_row = r + dst_block.start_row;
PrefetchResultBlock<8, 8>(src_map, lhs_sums_of_each_slice, r + 8, c8);
DstScalarType dst_colmajor_buf[64];
MatrixMap<DstScalarType, MapOrder::ColMajor> dst_colmajor_map(
dst_colmajor_buf, 8, 8);
for (int cx = 0; cx < 8; cx += 4) {
const int c = c8 + cx;
const int global_col = c + dst_block.start_col;
UnpackResultBlock<KernelFormat, Int32x8x4>(
src_map, output_pipeline_executor_8x4, &dst_colmajor_map,
lhs_sums_of_each_slice, rhs_sums_of_each_slice, lhs_offset,
rhs_offset, depth, r, c, global_row, global_col, 0, cx);
}
StoreFinalOutput(LoadContiguous<DstScalarx8x8>(dst_colmajor_buf), dst,
r + dst_block.start_row, c8 + dst_block.start_col);
}
for (; r <= dst_block.rows - 4; r += 4) {
const int global_row = r + dst_block.start_row;
for (int cx = 0; cx < 8; cx += 4) {
const int c = c8 + cx;
const int global_col = c + dst_block.start_col;
UnpackResultBlock<KernelFormat, Int32x4x4>(
src_map, output_pipeline_executor_4x4, dst,
lhs_sums_of_each_slice, rhs_sums_of_each_slice, lhs_offset,
rhs_offset, depth, r, c, global_row, global_col, global_row,
global_col);
}
}
for (; r < dst_block.rows; r++) {
const int global_row = r + dst_block.start_row;
for (int cx = 0; cx < 8; cx += 4) {
const int c = c8 + cx;
const int global_col = c + dst_block.start_col;
UnpackResultBlock<KernelFormat, Int32x1x4>(
src_map, output_pipeline_executor_1x4, dst,
lhs_sums_of_each_slice, rhs_sums_of_each_slice, lhs_offset,
rhs_offset, depth, r, c, global_row, global_col, global_row,
global_col);
}
}
}
}
int c = c8;
for (; c <= dst_block.cols - 4; c += 4) {
const int global_col = c + dst_block.start_col;
PrefetchResultBlock<8, 4>(src_map, lhs_sums_of_each_slice, 0, c);
int r = 0;
for (; r <= dst_block.rows - 8; r += 8) {
const int global_row = r + dst_block.start_row;
PrefetchResultBlock<8, 4>(src_map, lhs_sums_of_each_slice, r + 8, c);
UnpackResultBlock<KernelFormat, Int32x8x4>(
src_map, output_pipeline_executor_8x4, dst, lhs_sums_of_each_slice,
rhs_sums_of_each_slice, lhs_offset, rhs_offset, depth, r, c,
global_row, global_col, global_row, global_col);
}
for (; r <= dst_block.rows - 4; r += 4) {
const int global_row = r + dst_block.start_row;
UnpackResultBlock<KernelFormat, Int32x4x4>(
src_map, output_pipeline_executor_4x4, dst, lhs_sums_of_each_slice,
rhs_sums_of_each_slice, lhs_offset, rhs_offset, depth, r, c,
global_row, global_col, global_row, global_col);
}
for (; r < dst_block.rows; r++) {
const int global_row = r + dst_block.start_row;
UnpackResultBlock<KernelFormat, Int32x1x4>(
src_map, output_pipeline_executor_1x4, dst, lhs_sums_of_each_slice,
rhs_sums_of_each_slice, lhs_offset, rhs_offset, depth, r, c,
global_row, global_col, global_row, global_col);
}
}
for (; c < dst_block.cols; c++) {
const int global_col = c + dst_block.start_col;
PrefetchResultBlock<8, 1>(src_map, lhs_sums_of_each_slice, 0, c);
int r = 0;
for (; r <= dst_block.rows - 8; r += 8) {
const int global_row = r + dst_block.start_row;
PrefetchResultBlock<8, 1>(src_map, lhs_sums_of_each_slice, r + 8, c);
UnpackResultBlock<KernelFormat, Int32x8x1>(
src_map, output_pipeline_executor_8x1, dst, lhs_sums_of_each_slice,
rhs_sums_of_each_slice, lhs_offset, rhs_offset, depth, r, c,
global_row, global_col, global_row, global_col);
}
for (; r <= dst_block.rows - 4; r += 4) {
const int global_row = r + dst_block.start_row;
UnpackResultBlock<KernelFormat, Int32x4x1>(
src_map, output_pipeline_executor_4x1, dst, lhs_sums_of_each_slice,
rhs_sums_of_each_slice, lhs_offset, rhs_offset, depth, r, c,
global_row, global_col, global_row, global_col);
}
for (; r < dst_block.rows; r++) {
const int global_row = r + dst_block.start_row;
UnpackResultBlock<KernelFormat, Int32x1x1>(
src_map, output_pipeline_executor_1x1, dst, lhs_sums_of_each_slice,
rhs_sums_of_each_slice, lhs_offset, rhs_offset, depth, r, c,
global_row, global_col, global_row, global_col);
}
}
}
} // end namespace gemmlowp
#endif // GEMMLOWP_INTERNAL_UNPACK_H_