You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2633 lines
102 KiB
2633 lines
102 KiB
/* gpt.cc -- Functions for loading, saving, and manipulating legacy MBR and GPT partition
|
|
data. */
|
|
|
|
/* By Rod Smith, initial coding January to February, 2009 */
|
|
|
|
/* This program is copyright (c) 2009-2018 by Roderick W. Smith. It is distributed
|
|
under the terms of the GNU GPL version 2, as detailed in the COPYING file. */
|
|
|
|
#define __STDC_LIMIT_MACROS
|
|
#ifndef __STDC_CONSTANT_MACROS
|
|
#define __STDC_CONSTANT_MACROS
|
|
#endif
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <stdint.h>
|
|
#include <fcntl.h>
|
|
#include <string.h>
|
|
#include <math.h>
|
|
#include <time.h>
|
|
#include <sys/stat.h>
|
|
#include <errno.h>
|
|
#include <iostream>
|
|
#include <algorithm>
|
|
#include "crc32.h"
|
|
#include "gpt.h"
|
|
#include "bsd.h"
|
|
#include "support.h"
|
|
#include "parttypes.h"
|
|
#include "attributes.h"
|
|
#include "diskio.h"
|
|
|
|
using namespace std;
|
|
|
|
#ifdef __FreeBSD__
|
|
#define log2(x) (log(x) / M_LN2)
|
|
#endif // __FreeBSD__
|
|
|
|
#ifdef _MSC_VER
|
|
#define log2(x) (log((double) x) / log(2.0))
|
|
#endif // Microsoft Visual C++
|
|
|
|
#ifdef EFI
|
|
// in UEFI mode MMX registers are not yet available so using the
|
|
// x86_64 ABI to move "double" values around is not an option.
|
|
#ifdef log2
|
|
#undef log2
|
|
#endif
|
|
#define log2(x) log2_32( x )
|
|
static inline uint32_t log2_32(uint32_t v) {
|
|
int r = -1;
|
|
while (v >= 1) {
|
|
r++;
|
|
v >>= 1;
|
|
}
|
|
return r;
|
|
}
|
|
#endif
|
|
|
|
/****************************************
|
|
* *
|
|
* GPTData class and related structures *
|
|
* *
|
|
****************************************/
|
|
|
|
// Default constructor
|
|
GPTData::GPTData(void) {
|
|
blockSize = SECTOR_SIZE; // set a default
|
|
physBlockSize = 0; // 0 = can't be determined
|
|
diskSize = 0;
|
|
partitions = NULL;
|
|
state = gpt_valid;
|
|
device = "";
|
|
justLooking = 0;
|
|
mainCrcOk = 0;
|
|
secondCrcOk = 0;
|
|
mainPartsCrcOk = 0;
|
|
secondPartsCrcOk = 0;
|
|
apmFound = 0;
|
|
bsdFound = 0;
|
|
sectorAlignment = MIN_AF_ALIGNMENT; // Align partitions on 4096-byte boundaries by default
|
|
beQuiet = 0;
|
|
whichWasUsed = use_new;
|
|
mainHeader.numParts = 0;
|
|
numParts = 0;
|
|
SetGPTSize(NUM_GPT_ENTRIES);
|
|
// Initialize CRC functions...
|
|
chksum_crc32gentab();
|
|
} // GPTData default constructor
|
|
|
|
GPTData::GPTData(const GPTData & orig) {
|
|
uint32_t i;
|
|
|
|
if (&orig != this) {
|
|
mainHeader = orig.mainHeader;
|
|
numParts = orig.numParts;
|
|
secondHeader = orig.secondHeader;
|
|
protectiveMBR = orig.protectiveMBR;
|
|
device = orig.device;
|
|
blockSize = orig.blockSize;
|
|
physBlockSize = orig.physBlockSize;
|
|
diskSize = orig.diskSize;
|
|
state = orig.state;
|
|
justLooking = orig.justLooking;
|
|
mainCrcOk = orig.mainCrcOk;
|
|
secondCrcOk = orig.secondCrcOk;
|
|
mainPartsCrcOk = orig.mainPartsCrcOk;
|
|
secondPartsCrcOk = orig.secondPartsCrcOk;
|
|
apmFound = orig.apmFound;
|
|
bsdFound = orig.bsdFound;
|
|
sectorAlignment = orig.sectorAlignment;
|
|
beQuiet = orig.beQuiet;
|
|
whichWasUsed = orig.whichWasUsed;
|
|
|
|
myDisk.OpenForRead(orig.myDisk.GetName());
|
|
|
|
delete[] partitions;
|
|
partitions = new GPTPart [numParts];
|
|
if (partitions == NULL) {
|
|
cerr << "Error! Could not allocate memory for partitions in GPTData::operator=()!\n"
|
|
<< "Terminating!\n";
|
|
exit(1);
|
|
} // if
|
|
for (i = 0; i < numParts; i++) {
|
|
partitions[i] = orig.partitions[i];
|
|
} // for
|
|
} // if
|
|
} // GPTData copy constructor
|
|
|
|
// The following constructor loads GPT data from a device file
|
|
GPTData::GPTData(string filename) {
|
|
blockSize = SECTOR_SIZE; // set a default
|
|
diskSize = 0;
|
|
partitions = NULL;
|
|
state = gpt_invalid;
|
|
device = "";
|
|
justLooking = 0;
|
|
mainCrcOk = 0;
|
|
secondCrcOk = 0;
|
|
mainPartsCrcOk = 0;
|
|
secondPartsCrcOk = 0;
|
|
apmFound = 0;
|
|
bsdFound = 0;
|
|
sectorAlignment = MIN_AF_ALIGNMENT; // Align partitions on 4096-byte boundaries by default
|
|
beQuiet = 0;
|
|
whichWasUsed = use_new;
|
|
mainHeader.numParts = 0;
|
|
numParts = 0;
|
|
// Initialize CRC functions...
|
|
chksum_crc32gentab();
|
|
if (!LoadPartitions(filename))
|
|
exit(2);
|
|
} // GPTData(string filename) constructor
|
|
|
|
// Destructor
|
|
GPTData::~GPTData(void) {
|
|
delete[] partitions;
|
|
} // GPTData destructor
|
|
|
|
// Assignment operator
|
|
GPTData & GPTData::operator=(const GPTData & orig) {
|
|
uint32_t i;
|
|
|
|
if (&orig != this) {
|
|
mainHeader = orig.mainHeader;
|
|
numParts = orig.numParts;
|
|
secondHeader = orig.secondHeader;
|
|
protectiveMBR = orig.protectiveMBR;
|
|
device = orig.device;
|
|
blockSize = orig.blockSize;
|
|
physBlockSize = orig.physBlockSize;
|
|
diskSize = orig.diskSize;
|
|
state = orig.state;
|
|
justLooking = orig.justLooking;
|
|
mainCrcOk = orig.mainCrcOk;
|
|
secondCrcOk = orig.secondCrcOk;
|
|
mainPartsCrcOk = orig.mainPartsCrcOk;
|
|
secondPartsCrcOk = orig.secondPartsCrcOk;
|
|
apmFound = orig.apmFound;
|
|
bsdFound = orig.bsdFound;
|
|
sectorAlignment = orig.sectorAlignment;
|
|
beQuiet = orig.beQuiet;
|
|
whichWasUsed = orig.whichWasUsed;
|
|
|
|
myDisk.OpenForRead(orig.myDisk.GetName());
|
|
|
|
delete[] partitions;
|
|
partitions = new GPTPart [numParts];
|
|
if (partitions == NULL) {
|
|
cerr << "Error! Could not allocate memory for partitions in GPTData::operator=()!\n"
|
|
<< "Terminating!\n";
|
|
exit(1);
|
|
} // if
|
|
for (i = 0; i < numParts; i++) {
|
|
partitions[i] = orig.partitions[i];
|
|
} // for
|
|
} // if
|
|
|
|
return *this;
|
|
} // GPTData::operator=()
|
|
|
|
/*********************************************************************
|
|
* *
|
|
* Begin functions that verify data, or that adjust the verification *
|
|
* information (compute CRCs, rebuild headers) *
|
|
* *
|
|
*********************************************************************/
|
|
|
|
// Perform detailed verification, reporting on any problems found, but
|
|
// do *NOT* recover from these problems. Returns the total number of
|
|
// problems identified.
|
|
int GPTData::Verify(void) {
|
|
int problems = 0, alignProbs = 0;
|
|
uint32_t i, numSegments, testAlignment = sectorAlignment;
|
|
uint64_t totalFree, largestSegment;
|
|
|
|
// First, check for CRC errors in the GPT data....
|
|
if (!mainCrcOk) {
|
|
problems++;
|
|
cout << "\nProblem: The CRC for the main GPT header is invalid. The main GPT header may\n"
|
|
<< "be corrupt. Consider loading the backup GPT header to rebuild the main GPT\n"
|
|
<< "header ('b' on the recovery & transformation menu). This report may be a false\n"
|
|
<< "alarm if you've already corrected other problems.\n";
|
|
} // if
|
|
if (!mainPartsCrcOk) {
|
|
problems++;
|
|
cout << "\nProblem: The CRC for the main partition table is invalid. This table may be\n"
|
|
<< "corrupt. Consider loading the backup partition table ('c' on the recovery &\n"
|
|
<< "transformation menu). This report may be a false alarm if you've already\n"
|
|
<< "corrected other problems.\n";
|
|
} // if
|
|
if (!secondCrcOk) {
|
|
problems++;
|
|
cout << "\nProblem: The CRC for the backup GPT header is invalid. The backup GPT header\n"
|
|
<< "may be corrupt. Consider using the main GPT header to rebuild the backup GPT\n"
|
|
<< "header ('d' on the recovery & transformation menu). This report may be a false\n"
|
|
<< "alarm if you've already corrected other problems.\n";
|
|
} // if
|
|
if (!secondPartsCrcOk) {
|
|
problems++;
|
|
cout << "\nCaution: The CRC for the backup partition table is invalid. This table may\n"
|
|
<< "be corrupt. This program will automatically create a new backup partition\n"
|
|
<< "table when you save your partitions.\n";
|
|
} // if
|
|
|
|
// Now check that the main and backup headers both point to themselves....
|
|
if (mainHeader.currentLBA != 1) {
|
|
problems++;
|
|
cout << "\nProblem: The main header's self-pointer doesn't point to itself. This problem\n"
|
|
<< "is being automatically corrected, but it may be a symptom of more serious\n"
|
|
<< "problems. Think carefully before saving changes with 'w' or using this disk.\n";
|
|
mainHeader.currentLBA = 1;
|
|
} // if
|
|
if (secondHeader.currentLBA != (diskSize - UINT64_C(1))) {
|
|
problems++;
|
|
cout << "\nProblem: The secondary header's self-pointer indicates that it doesn't reside\n"
|
|
<< "at the end of the disk. If you've added a disk to a RAID array, use the 'e'\n"
|
|
<< "option on the experts' menu to adjust the secondary header's and partition\n"
|
|
<< "table's locations.\n";
|
|
} // if
|
|
|
|
// Now check that critical main and backup GPT entries match each other
|
|
if (mainHeader.currentLBA != secondHeader.backupLBA) {
|
|
problems++;
|
|
cout << "\nProblem: main GPT header's current LBA pointer (" << mainHeader.currentLBA
|
|
<< ") doesn't\nmatch the backup GPT header's alternate LBA pointer("
|
|
<< secondHeader.backupLBA << ").\n";
|
|
} // if
|
|
if (mainHeader.backupLBA != secondHeader.currentLBA) {
|
|
problems++;
|
|
cout << "\nProblem: main GPT header's backup LBA pointer (" << mainHeader.backupLBA
|
|
<< ") doesn't\nmatch the backup GPT header's current LBA pointer ("
|
|
<< secondHeader.currentLBA << ").\n"
|
|
<< "The 'e' option on the experts' menu may fix this problem.\n";
|
|
} // if
|
|
if (mainHeader.firstUsableLBA != secondHeader.firstUsableLBA) {
|
|
problems++;
|
|
cout << "\nProblem: main GPT header's first usable LBA pointer (" << mainHeader.firstUsableLBA
|
|
<< ") doesn't\nmatch the backup GPT header's first usable LBA pointer ("
|
|
<< secondHeader.firstUsableLBA << ")\n";
|
|
} // if
|
|
if (mainHeader.lastUsableLBA != secondHeader.lastUsableLBA) {
|
|
problems++;
|
|
cout << "\nProblem: main GPT header's last usable LBA pointer (" << mainHeader.lastUsableLBA
|
|
<< ") doesn't\nmatch the backup GPT header's last usable LBA pointer ("
|
|
<< secondHeader.lastUsableLBA << ")\n"
|
|
<< "The 'e' option on the experts' menu can probably fix this problem.\n";
|
|
} // if
|
|
if ((mainHeader.diskGUID != secondHeader.diskGUID)) {
|
|
problems++;
|
|
cout << "\nProblem: main header's disk GUID (" << mainHeader.diskGUID
|
|
<< ") doesn't\nmatch the backup GPT header's disk GUID ("
|
|
<< secondHeader.diskGUID << ")\n"
|
|
<< "You should use the 'b' or 'd' option on the recovery & transformation menu to\n"
|
|
<< "select one or the other header.\n";
|
|
} // if
|
|
if (mainHeader.numParts != secondHeader.numParts) {
|
|
problems++;
|
|
cout << "\nProblem: main GPT header's number of partitions (" << mainHeader.numParts
|
|
<< ") doesn't\nmatch the backup GPT header's number of partitions ("
|
|
<< secondHeader.numParts << ")\n"
|
|
<< "Resizing the partition table ('s' on the experts' menu) may help.\n";
|
|
} // if
|
|
if (mainHeader.sizeOfPartitionEntries != secondHeader.sizeOfPartitionEntries) {
|
|
problems++;
|
|
cout << "\nProblem: main GPT header's size of partition entries ("
|
|
<< mainHeader.sizeOfPartitionEntries << ") doesn't\n"
|
|
<< "match the backup GPT header's size of partition entries ("
|
|
<< secondHeader.sizeOfPartitionEntries << ")\n"
|
|
<< "You should use the 'b' or 'd' option on the recovery & transformation menu to\n"
|
|
<< "select one or the other header.\n";
|
|
} // if
|
|
|
|
// Now check for a few other miscellaneous problems...
|
|
// Check that the disk size will hold the data...
|
|
if (mainHeader.backupLBA >= diskSize) {
|
|
problems++;
|
|
cout << "\nProblem: Disk is too small to hold all the data!\n"
|
|
<< "(Disk size is " << diskSize << " sectors, needs to be "
|
|
<< mainHeader.backupLBA + UINT64_C(1) << " sectors.)\n"
|
|
<< "The 'e' option on the experts' menu may fix this problem.\n";
|
|
} // if
|
|
|
|
// Check the main and backup partition tables for overlap with things and unusual gaps
|
|
if (mainHeader.partitionEntriesLBA + GetTableSizeInSectors() > mainHeader.firstUsableLBA) {
|
|
problems++;
|
|
cout << "\nProblem: Main partition table extends past the first usable LBA.\n"
|
|
<< "Using 'j' on the experts' menu may enable fixing this problem.\n";
|
|
} // if
|
|
if (mainHeader.partitionEntriesLBA < 2) {
|
|
problems++;
|
|
cout << "\nProblem: Main partition table appears impossibly early on the disk.\n"
|
|
<< "Using 'j' on the experts' menu may enable fixing this problem.\n";
|
|
} // if
|
|
if (secondHeader.partitionEntriesLBA + GetTableSizeInSectors() > secondHeader.currentLBA) {
|
|
problems++;
|
|
cout << "\nProblem: The backup partition table overlaps the backup header.\n"
|
|
<< "Using 'e' on the experts' menu may fix this problem.\n";
|
|
} // if
|
|
if (mainHeader.partitionEntriesLBA != 2) {
|
|
cout << "\nWarning: There is a gap between the main metadata (sector 1) and the main\n"
|
|
<< "partition table (sector " << mainHeader.partitionEntriesLBA
|
|
<< "). This is helpful in some exotic configurations,\n"
|
|
<< "but is generally ill-advised. Using 'j' on the experts' menu can adjust this\n"
|
|
<< "gap.\n";
|
|
} // if
|
|
if (mainHeader.partitionEntriesLBA + GetTableSizeInSectors() != mainHeader.firstUsableLBA) {
|
|
cout << "\nWarning: There is a gap between the main partition table (ending sector "
|
|
<< mainHeader.partitionEntriesLBA + GetTableSizeInSectors() - 1 << ")\n"
|
|
<< "and the first usable sector (" << mainHeader.firstUsableLBA << "). This is helpful in some exotic configurations,\n"
|
|
<< "but is unusual. The util-linux fdisk program often creates disks like this.\n"
|
|
<< "Using 'j' on the experts' menu can adjust this gap.\n";
|
|
} // if
|
|
|
|
if (mainHeader.sizeOfPartitionEntries * mainHeader.numParts < 16384) {
|
|
cout << "\nWarning: The size of the partition table (" << mainHeader.sizeOfPartitionEntries * mainHeader.numParts
|
|
<< " bytes) is less than the minimum\n"
|
|
<< "required by the GPT specification. Most OSes and tools seem to work fine on\n"
|
|
<< "such disks, but this is a violation of the GPT specification and so may cause\n"
|
|
<< "problems.\n";
|
|
} // if
|
|
|
|
if ((mainHeader.lastUsableLBA >= diskSize) || (mainHeader.lastUsableLBA > mainHeader.backupLBA)) {
|
|
problems++;
|
|
cout << "\nProblem: GPT claims the disk is larger than it is! (Claimed last usable\n"
|
|
<< "sector is " << mainHeader.lastUsableLBA << ", but backup header is at\n"
|
|
<< mainHeader.backupLBA << " and disk size is " << diskSize << " sectors.\n"
|
|
<< "The 'e' option on the experts' menu will probably fix this problem\n";
|
|
}
|
|
|
|
// Check for overlapping partitions....
|
|
problems += FindOverlaps();
|
|
|
|
// Check for insane partitions (start after end, hugely big, etc.)
|
|
problems += FindInsanePartitions();
|
|
|
|
// Check for mismatched MBR and GPT partitions...
|
|
problems += FindHybridMismatches();
|
|
|
|
// Check for MBR-specific problems....
|
|
problems += VerifyMBR();
|
|
|
|
// Check for a 0xEE protective partition that's marked as active....
|
|
if (protectiveMBR.IsEEActive()) {
|
|
cout << "\nWarning: The 0xEE protective partition in the MBR is marked as active. This is\n"
|
|
<< "technically a violation of the GPT specification, and can cause some EFIs to\n"
|
|
<< "ignore the disk, but it is required to boot from a GPT disk on some BIOS-based\n"
|
|
<< "computers. You can clear this flag by creating a fresh protective MBR using\n"
|
|
<< "the 'n' option on the experts' menu.\n";
|
|
}
|
|
|
|
// Verify that partitions don't run into GPT data areas....
|
|
problems += CheckGPTSize();
|
|
|
|
if (!protectiveMBR.DoTheyFit()) {
|
|
cout << "\nPartition(s) in the protective MBR are too big for the disk! Creating a\n"
|
|
<< "fresh protective or hybrid MBR is recommended.\n";
|
|
problems++;
|
|
}
|
|
|
|
// Check that partitions are aligned on proper boundaries (for WD Advanced
|
|
// Format and similar disks)....
|
|
if ((physBlockSize != 0) && (blockSize != 0))
|
|
testAlignment = physBlockSize / blockSize;
|
|
testAlignment = max(testAlignment, sectorAlignment);
|
|
if (testAlignment == 0) // Should not happen; just being paranoid.
|
|
testAlignment = sectorAlignment;
|
|
for (i = 0; i < numParts; i++) {
|
|
if ((partitions[i].IsUsed()) && (partitions[i].GetFirstLBA() % testAlignment) != 0) {
|
|
cout << "\nCaution: Partition " << i + 1 << " doesn't begin on a "
|
|
<< testAlignment << "-sector boundary. This may\nresult "
|
|
<< "in degraded performance on some modern (2009 and later) hard disks.\n";
|
|
alignProbs++;
|
|
} // if
|
|
} // for
|
|
if (alignProbs > 0)
|
|
cout << "\nConsult http://www.ibm.com/developerworks/linux/library/l-4kb-sector-disks/\n"
|
|
<< "for information on disk alignment.\n";
|
|
|
|
// Now compute available space, but only if no problems found, since
|
|
// problems could affect the results
|
|
if (problems == 0) {
|
|
totalFree = FindFreeBlocks(&numSegments, &largestSegment);
|
|
cout << "\nNo problems found. " << totalFree << " free sectors ("
|
|
<< BytesToIeee(totalFree, blockSize) << ") available in "
|
|
<< numSegments << "\nsegments, the largest of which is "
|
|
<< largestSegment << " (" << BytesToIeee(largestSegment, blockSize)
|
|
<< ") in size.\n";
|
|
} else {
|
|
cout << "\nIdentified " << problems << " problems!\n";
|
|
} // if/else
|
|
|
|
return (problems);
|
|
} // GPTData::Verify()
|
|
|
|
// Checks to see if the GPT tables overrun existing partitions; if they
|
|
// do, issues a warning but takes no action. Returns number of problems
|
|
// detected (0 if OK, 1 to 2 if problems).
|
|
int GPTData::CheckGPTSize(void) {
|
|
uint64_t overlap, firstUsedBlock, lastUsedBlock;
|
|
uint32_t i;
|
|
int numProbs = 0;
|
|
|
|
// first, locate the first & last used blocks
|
|
firstUsedBlock = UINT64_MAX;
|
|
lastUsedBlock = 0;
|
|
for (i = 0; i < numParts; i++) {
|
|
if (partitions[i].IsUsed()) {
|
|
if (partitions[i].GetFirstLBA() < firstUsedBlock)
|
|
firstUsedBlock = partitions[i].GetFirstLBA();
|
|
if (partitions[i].GetLastLBA() > lastUsedBlock) {
|
|
lastUsedBlock = partitions[i].GetLastLBA();
|
|
} // if
|
|
} // if
|
|
} // for
|
|
|
|
// If the disk size is 0 (the default), then it means that various
|
|
// variables aren't yet set, so the below tests will be useless;
|
|
// therefore we should skip everything
|
|
if (diskSize != 0) {
|
|
if (mainHeader.firstUsableLBA > firstUsedBlock) {
|
|
overlap = mainHeader.firstUsableLBA - firstUsedBlock;
|
|
cout << "Warning! Main partition table overlaps the first partition by "
|
|
<< overlap << " blocks!\n";
|
|
if (firstUsedBlock > 2) {
|
|
cout << "Try reducing the partition table size by " << overlap * 4
|
|
<< " entries.\n(Use the 's' item on the experts' menu.)\n";
|
|
} else {
|
|
cout << "You will need to delete this partition or resize it in another utility.\n";
|
|
} // if/else
|
|
numProbs++;
|
|
} // Problem at start of disk
|
|
if (mainHeader.lastUsableLBA < lastUsedBlock) {
|
|
overlap = lastUsedBlock - mainHeader.lastUsableLBA;
|
|
cout << "\nWarning! Secondary partition table overlaps the last partition by\n"
|
|
<< overlap << " blocks!\n";
|
|
if (lastUsedBlock > (diskSize - 2)) {
|
|
cout << "You will need to delete this partition or resize it in another utility.\n";
|
|
} else {
|
|
cout << "Try reducing the partition table size by " << overlap * 4
|
|
<< " entries.\n(Use the 's' item on the experts' menu.)\n";
|
|
} // if/else
|
|
numProbs++;
|
|
} // Problem at end of disk
|
|
} // if (diskSize != 0)
|
|
return numProbs;
|
|
} // GPTData::CheckGPTSize()
|
|
|
|
// Check the validity of the GPT header. Returns 1 if the main header
|
|
// is valid, 2 if the backup header is valid, 3 if both are valid, and
|
|
// 0 if neither is valid. Note that this function checks the GPT signature,
|
|
// revision value, and CRCs in both headers.
|
|
int GPTData::CheckHeaderValidity(void) {
|
|
int valid = 3;
|
|
|
|
cout.setf(ios::uppercase);
|
|
cout.fill('0');
|
|
|
|
// Note: failed GPT signature checks produce no error message because
|
|
// a message is displayed in the ReversePartitionBytes() function
|
|
if ((mainHeader.signature != GPT_SIGNATURE) || (!CheckHeaderCRC(&mainHeader, 1))) {
|
|
valid -= 1;
|
|
} else if ((mainHeader.revision != 0x00010000) && valid) {
|
|
valid -= 1;
|
|
cout << "Unsupported GPT version in main header; read 0x";
|
|
cout.width(8);
|
|
cout << hex << mainHeader.revision << ", should be\n0x";
|
|
cout.width(8);
|
|
cout << UINT32_C(0x00010000) << dec << "\n";
|
|
} // if/else/if
|
|
|
|
if ((secondHeader.signature != GPT_SIGNATURE) || (!CheckHeaderCRC(&secondHeader))) {
|
|
valid -= 2;
|
|
} else if ((secondHeader.revision != 0x00010000) && valid) {
|
|
valid -= 2;
|
|
cout << "Unsupported GPT version in backup header; read 0x";
|
|
cout.width(8);
|
|
cout << hex << secondHeader.revision << ", should be\n0x";
|
|
cout.width(8);
|
|
cout << UINT32_C(0x00010000) << dec << "\n";
|
|
} // if/else/if
|
|
|
|
// Check for an Apple disk signature
|
|
if (((mainHeader.signature << 32) == APM_SIGNATURE1) ||
|
|
(mainHeader.signature << 32) == APM_SIGNATURE2) {
|
|
apmFound = 1; // Will display warning message later
|
|
} // if
|
|
cout.fill(' ');
|
|
|
|
return valid;
|
|
} // GPTData::CheckHeaderValidity()
|
|
|
|
// Check the header CRC to see if it's OK...
|
|
// Note: Must be called with header in platform-ordered byte order.
|
|
// Returns 1 if header's computed CRC matches the stored value, 0 if the
|
|
// computed and stored values don't match
|
|
int GPTData::CheckHeaderCRC(struct GPTHeader* header, int warn) {
|
|
uint32_t oldCRC, newCRC, hSize;
|
|
uint8_t *temp;
|
|
|
|
// Back up old header CRC and then blank it, since it must be 0 for
|
|
// computation to be valid
|
|
oldCRC = header->headerCRC;
|
|
header->headerCRC = UINT32_C(0);
|
|
|
|
hSize = header->headerSize;
|
|
|
|
if (IsLittleEndian() == 0)
|
|
ReverseHeaderBytes(header);
|
|
|
|
if ((hSize > blockSize) || (hSize < HEADER_SIZE)) {
|
|
if (warn) {
|
|
cerr << "\aWarning! Header size is specified as " << hSize << ", which is invalid.\n";
|
|
cerr << "Setting the header size for CRC computation to " << HEADER_SIZE << "\n";
|
|
} // if
|
|
hSize = HEADER_SIZE;
|
|
} else if ((hSize > sizeof(GPTHeader)) && warn) {
|
|
cout << "\aCaution! Header size for CRC check is " << hSize << ", which is greater than " << sizeof(GPTHeader) << ".\n";
|
|
cout << "If stray data exists after the header on the header sector, it will be ignored,\n"
|
|
<< "which may result in a CRC false alarm.\n";
|
|
} // if/elseif
|
|
temp = new uint8_t[hSize];
|
|
if (temp != NULL) {
|
|
memset(temp, 0, hSize);
|
|
if (hSize < sizeof(GPTHeader))
|
|
memcpy(temp, header, hSize);
|
|
else
|
|
memcpy(temp, header, sizeof(GPTHeader));
|
|
|
|
newCRC = chksum_crc32((unsigned char*) temp, hSize);
|
|
delete[] temp;
|
|
} else {
|
|
cerr << "Could not allocate memory in GPTData::CheckHeaderCRC()! Aborting!\n";
|
|
exit(1);
|
|
}
|
|
if (IsLittleEndian() == 0)
|
|
ReverseHeaderBytes(header);
|
|
header->headerCRC = oldCRC;
|
|
return (oldCRC == newCRC);
|
|
} // GPTData::CheckHeaderCRC()
|
|
|
|
// Recompute all the CRCs. Must be called before saving if any changes have
|
|
// been made. Must be called on platform-ordered data (this function reverses
|
|
// byte order and then undoes that reversal.)
|
|
void GPTData::RecomputeCRCs(void) {
|
|
uint32_t crc, hSize;
|
|
int littleEndian = 1;
|
|
|
|
// If the header size is bigger than the GPT header data structure, reset it;
|
|
// otherwise, set both header sizes to whatever the main one is....
|
|
if (mainHeader.headerSize > sizeof(GPTHeader))
|
|
hSize = secondHeader.headerSize = mainHeader.headerSize = HEADER_SIZE;
|
|
else
|
|
hSize = secondHeader.headerSize = mainHeader.headerSize;
|
|
|
|
if ((littleEndian = IsLittleEndian()) == 0) {
|
|
ReversePartitionBytes();
|
|
ReverseHeaderBytes(&mainHeader);
|
|
ReverseHeaderBytes(&secondHeader);
|
|
} // if
|
|
|
|
// Compute CRC of partition tables & store in main and secondary headers
|
|
crc = chksum_crc32((unsigned char*) partitions, numParts * GPT_SIZE);
|
|
mainHeader.partitionEntriesCRC = crc;
|
|
secondHeader.partitionEntriesCRC = crc;
|
|
if (littleEndian == 0) {
|
|
ReverseBytes(&mainHeader.partitionEntriesCRC, 4);
|
|
ReverseBytes(&secondHeader.partitionEntriesCRC, 4);
|
|
} // if
|
|
|
|
// Zero out GPT headers' own CRCs (required for correct computation)
|
|
mainHeader.headerCRC = 0;
|
|
secondHeader.headerCRC = 0;
|
|
|
|
crc = chksum_crc32((unsigned char*) &mainHeader, hSize);
|
|
if (littleEndian == 0)
|
|
ReverseBytes(&crc, 4);
|
|
mainHeader.headerCRC = crc;
|
|
crc = chksum_crc32((unsigned char*) &secondHeader, hSize);
|
|
if (littleEndian == 0)
|
|
ReverseBytes(&crc, 4);
|
|
secondHeader.headerCRC = crc;
|
|
|
|
if (littleEndian == 0) {
|
|
ReverseHeaderBytes(&mainHeader);
|
|
ReverseHeaderBytes(&secondHeader);
|
|
ReversePartitionBytes();
|
|
} // if
|
|
} // GPTData::RecomputeCRCs()
|
|
|
|
// Rebuild the main GPT header, using the secondary header as a model.
|
|
// Typically called when the main header has been found to be corrupt.
|
|
void GPTData::RebuildMainHeader(void) {
|
|
mainHeader.signature = GPT_SIGNATURE;
|
|
mainHeader.revision = secondHeader.revision;
|
|
mainHeader.headerSize = secondHeader.headerSize;
|
|
mainHeader.headerCRC = UINT32_C(0);
|
|
mainHeader.reserved = secondHeader.reserved;
|
|
mainHeader.currentLBA = secondHeader.backupLBA;
|
|
mainHeader.backupLBA = secondHeader.currentLBA;
|
|
mainHeader.firstUsableLBA = secondHeader.firstUsableLBA;
|
|
mainHeader.lastUsableLBA = secondHeader.lastUsableLBA;
|
|
mainHeader.diskGUID = secondHeader.diskGUID;
|
|
mainHeader.numParts = secondHeader.numParts;
|
|
mainHeader.partitionEntriesLBA = secondHeader.firstUsableLBA - GetTableSizeInSectors();
|
|
mainHeader.sizeOfPartitionEntries = secondHeader.sizeOfPartitionEntries;
|
|
mainHeader.partitionEntriesCRC = secondHeader.partitionEntriesCRC;
|
|
memcpy(mainHeader.reserved2, secondHeader.reserved2, sizeof(mainHeader.reserved2));
|
|
mainCrcOk = secondCrcOk;
|
|
SetGPTSize(mainHeader.numParts, 0);
|
|
} // GPTData::RebuildMainHeader()
|
|
|
|
// Rebuild the secondary GPT header, using the main header as a model.
|
|
void GPTData::RebuildSecondHeader(void) {
|
|
secondHeader.signature = GPT_SIGNATURE;
|
|
secondHeader.revision = mainHeader.revision;
|
|
secondHeader.headerSize = mainHeader.headerSize;
|
|
secondHeader.headerCRC = UINT32_C(0);
|
|
secondHeader.reserved = mainHeader.reserved;
|
|
secondHeader.currentLBA = mainHeader.backupLBA;
|
|
secondHeader.backupLBA = mainHeader.currentLBA;
|
|
secondHeader.firstUsableLBA = mainHeader.firstUsableLBA;
|
|
secondHeader.lastUsableLBA = mainHeader.lastUsableLBA;
|
|
secondHeader.diskGUID = mainHeader.diskGUID;
|
|
secondHeader.partitionEntriesLBA = secondHeader.lastUsableLBA + UINT64_C(1);
|
|
secondHeader.numParts = mainHeader.numParts;
|
|
secondHeader.sizeOfPartitionEntries = mainHeader.sizeOfPartitionEntries;
|
|
secondHeader.partitionEntriesCRC = mainHeader.partitionEntriesCRC;
|
|
memcpy(secondHeader.reserved2, mainHeader.reserved2, sizeof(secondHeader.reserved2));
|
|
secondCrcOk = mainCrcOk;
|
|
SetGPTSize(secondHeader.numParts, 0);
|
|
} // GPTData::RebuildSecondHeader()
|
|
|
|
// Search for hybrid MBR entries that have no corresponding GPT partition.
|
|
// Returns number of such mismatches found
|
|
int GPTData::FindHybridMismatches(void) {
|
|
int i, found, numFound = 0;
|
|
uint32_t j;
|
|
uint64_t mbrFirst, mbrLast;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
if ((protectiveMBR.GetType(i) != 0xEE) && (protectiveMBR.GetType(i) != 0x00)) {
|
|
j = 0;
|
|
found = 0;
|
|
mbrFirst = (uint64_t) protectiveMBR.GetFirstSector(i);
|
|
mbrLast = mbrFirst + (uint64_t) protectiveMBR.GetLength(i) - UINT64_C(1);
|
|
do {
|
|
if ((j < numParts) && (partitions[j].GetFirstLBA() == mbrFirst) &&
|
|
(partitions[j].GetLastLBA() == mbrLast) && (partitions[j].IsUsed()))
|
|
found = 1;
|
|
j++;
|
|
} while ((!found) && (j < numParts));
|
|
if (!found) {
|
|
numFound++;
|
|
cout << "\nWarning! Mismatched GPT and MBR partition! MBR partition "
|
|
<< i + 1 << ", of type 0x";
|
|
cout.fill('0');
|
|
cout.setf(ios::uppercase);
|
|
cout.width(2);
|
|
cout << hex << (int) protectiveMBR.GetType(i) << ",\n"
|
|
<< "has no corresponding GPT partition! You may continue, but this condition\n"
|
|
<< "might cause data loss in the future!\a\n" << dec;
|
|
cout.fill(' ');
|
|
} // if
|
|
} // if
|
|
} // for
|
|
return numFound;
|
|
} // GPTData::FindHybridMismatches
|
|
|
|
// Find overlapping partitions and warn user about them. Returns number of
|
|
// overlapping partitions.
|
|
// Returns number of overlapping segments found.
|
|
int GPTData::FindOverlaps(void) {
|
|
int problems = 0;
|
|
uint32_t i, j;
|
|
|
|
for (i = 1; i < numParts; i++) {
|
|
for (j = 0; j < i; j++) {
|
|
if ((partitions[i].IsUsed()) && (partitions[j].IsUsed()) &&
|
|
(partitions[i].DoTheyOverlap(partitions[j]))) {
|
|
problems++;
|
|
cout << "\nProblem: partitions " << i + 1 << " and " << j + 1 << " overlap:\n";
|
|
cout << " Partition " << i + 1 << ": " << partitions[i].GetFirstLBA()
|
|
<< " to " << partitions[i].GetLastLBA() << "\n";
|
|
cout << " Partition " << j + 1 << ": " << partitions[j].GetFirstLBA()
|
|
<< " to " << partitions[j].GetLastLBA() << "\n";
|
|
} // if
|
|
} // for j...
|
|
} // for i...
|
|
return problems;
|
|
} // GPTData::FindOverlaps()
|
|
|
|
// Find partitions that are insane -- they start after they end or are too
|
|
// big for the disk. (The latter should duplicate detection of overlaps
|
|
// with GPT backup data structures, but better to err on the side of
|
|
// redundant tests than to miss something....)
|
|
// Returns number of problems found.
|
|
int GPTData::FindInsanePartitions(void) {
|
|
uint32_t i;
|
|
int problems = 0;
|
|
|
|
for (i = 0; i < numParts; i++) {
|
|
if (partitions[i].IsUsed()) {
|
|
if (partitions[i].GetFirstLBA() > partitions[i].GetLastLBA()) {
|
|
problems++;
|
|
cout << "\nProblem: partition " << i + 1 << " ends before it begins.\n";
|
|
} // if
|
|
if (partitions[i].GetLastLBA() >= diskSize) {
|
|
problems++;
|
|
cout << "\nProblem: partition " << i + 1 << " is too big for the disk.\n";
|
|
} // if
|
|
} // if
|
|
} // for
|
|
return problems;
|
|
} // GPTData::FindInsanePartitions(void)
|
|
|
|
|
|
/******************************************************************
|
|
* *
|
|
* Begin functions that load data from disk or save data to disk. *
|
|
* *
|
|
******************************************************************/
|
|
|
|
// Change the filename associated with the GPT. Used for duplicating
|
|
// the partition table to a new disk and saving backups.
|
|
// Returns 1 on success, 0 on failure.
|
|
int GPTData::SetDisk(const string & deviceFilename) {
|
|
int err, allOK = 1;
|
|
|
|
device = deviceFilename;
|
|
if (allOK && myDisk.OpenForRead(deviceFilename)) {
|
|
// store disk information....
|
|
diskSize = myDisk.DiskSize(&err);
|
|
blockSize = (uint32_t) myDisk.GetBlockSize();
|
|
physBlockSize = (uint32_t) myDisk.GetPhysBlockSize();
|
|
} // if
|
|
protectiveMBR.SetDisk(&myDisk);
|
|
protectiveMBR.SetDiskSize(diskSize);
|
|
protectiveMBR.SetBlockSize(blockSize);
|
|
return allOK;
|
|
} // GPTData::SetDisk()
|
|
|
|
int GPTData::SetDisk(const DiskIO & disk) {
|
|
myDisk = disk;
|
|
return 1;
|
|
} // GPTData::SetDisk()
|
|
|
|
// Scan for partition data. This function loads the MBR data (regular MBR or
|
|
// protective MBR) and loads BSD disklabel data (which is probably invalid).
|
|
// It also looks for APM data, forces a load of GPT data, and summarizes
|
|
// the results.
|
|
void GPTData::PartitionScan(void) {
|
|
BSDData bsdDisklabel;
|
|
|
|
// Read the MBR & check for BSD disklabel
|
|
protectiveMBR.ReadMBRData(&myDisk);
|
|
bsdDisklabel.ReadBSDData(&myDisk, 0, diskSize - 1);
|
|
|
|
// Load the GPT data, whether or not it's valid
|
|
ForceLoadGPTData();
|
|
|
|
// Some tools create a 0xEE partition that's too big. If this is detected,
|
|
// normalize it....
|
|
if ((state == gpt_valid) && !protectiveMBR.DoTheyFit() && (protectiveMBR.GetValidity() == gpt)) {
|
|
if (!beQuiet) {
|
|
cerr << "\aThe protective MBR's 0xEE partition is oversized! Auto-repairing.\n\n";
|
|
} // if
|
|
protectiveMBR.MakeProtectiveMBR();
|
|
} // if
|
|
|
|
if (!beQuiet) {
|
|
cout << "Partition table scan:\n";
|
|
protectiveMBR.ShowState();
|
|
bsdDisklabel.ShowState();
|
|
ShowAPMState(); // Show whether there's an Apple Partition Map present
|
|
ShowGPTState(); // Show GPT status
|
|
cout << "\n";
|
|
} // if
|
|
|
|
if (apmFound) {
|
|
cout << "\n*******************************************************************\n"
|
|
<< "This disk appears to contain an Apple-format (APM) partition table!\n";
|
|
if (!justLooking) {
|
|
cout << "It will be destroyed if you continue!\n";
|
|
} // if
|
|
cout << "*******************************************************************\n\n\a";
|
|
} // if
|
|
} // GPTData::PartitionScan()
|
|
|
|
// Read GPT data from a disk.
|
|
int GPTData::LoadPartitions(const string & deviceFilename) {
|
|
BSDData bsdDisklabel;
|
|
int err, allOK = 1;
|
|
MBRValidity mbrState;
|
|
|
|
if (myDisk.OpenForRead(deviceFilename)) {
|
|
err = myDisk.OpenForWrite(deviceFilename);
|
|
if ((err == 0) && (!justLooking)) {
|
|
cout << "\aNOTE: Write test failed with error number " << errno
|
|
<< ". It will be impossible to save\nchanges to this disk's partition table!\n";
|
|
#if defined (__FreeBSD__) || defined (__FreeBSD_kernel__)
|
|
cout << "You may be able to enable writes by exiting this program, typing\n"
|
|
<< "'sysctl kern.geom.debugflags=16' at a shell prompt, and re-running this\n"
|
|
<< "program.\n";
|
|
#endif
|
|
#if defined (__APPLE__)
|
|
cout << "You may need to deactivate System Integrity Protection to use this program. See\n"
|
|
<< "https://www.quora.com/How-do-I-turn-off-the-rootless-in-OS-X-El-Capitan-10-11\n"
|
|
<< "for more information.\n";
|
|
#endif
|
|
cout << "\n";
|
|
} // if
|
|
myDisk.Close(); // Close and re-open read-only in case of bugs
|
|
} else allOK = 0; // if
|
|
|
|
if (allOK && myDisk.OpenForRead(deviceFilename)) {
|
|
// store disk information....
|
|
diskSize = myDisk.DiskSize(&err);
|
|
blockSize = (uint32_t) myDisk.GetBlockSize();
|
|
physBlockSize = (uint32_t) myDisk.GetPhysBlockSize();
|
|
device = deviceFilename;
|
|
PartitionScan(); // Check for partition types, load GPT, & print summary
|
|
|
|
whichWasUsed = UseWhichPartitions();
|
|
switch (whichWasUsed) {
|
|
case use_mbr:
|
|
XFormPartitions();
|
|
break;
|
|
case use_bsd:
|
|
bsdDisklabel.ReadBSDData(&myDisk, 0, diskSize - 1);
|
|
// bsdDisklabel.DisplayBSDData();
|
|
ClearGPTData();
|
|
protectiveMBR.MakeProtectiveMBR(1); // clear boot area (option 1)
|
|
XFormDisklabel(&bsdDisklabel);
|
|
break;
|
|
case use_gpt:
|
|
mbrState = protectiveMBR.GetValidity();
|
|
if ((mbrState == invalid) || (mbrState == mbr))
|
|
protectiveMBR.MakeProtectiveMBR();
|
|
break;
|
|
case use_new:
|
|
ClearGPTData();
|
|
protectiveMBR.MakeProtectiveMBR();
|
|
break;
|
|
case use_abort:
|
|
allOK = 0;
|
|
cerr << "Invalid partition data!\n";
|
|
break;
|
|
} // switch
|
|
|
|
if (allOK)
|
|
CheckGPTSize();
|
|
myDisk.Close();
|
|
ComputeAlignment();
|
|
} else {
|
|
allOK = 0;
|
|
} // if/else
|
|
return (allOK);
|
|
} // GPTData::LoadPartitions()
|
|
|
|
// Loads the GPT, as much as possible. Returns 1 if this seems to have
|
|
// succeeded, 0 if there are obvious problems....
|
|
int GPTData::ForceLoadGPTData(void) {
|
|
int allOK, validHeaders, loadedTable = 1;
|
|
|
|
allOK = LoadHeader(&mainHeader, myDisk, 1, &mainCrcOk);
|
|
|
|
if (mainCrcOk && (mainHeader.backupLBA < diskSize)) {
|
|
allOK = LoadHeader(&secondHeader, myDisk, mainHeader.backupLBA, &secondCrcOk) && allOK;
|
|
} else {
|
|
allOK = LoadHeader(&secondHeader, myDisk, diskSize - UINT64_C(1), &secondCrcOk) && allOK;
|
|
if (mainCrcOk && (mainHeader.backupLBA >= diskSize))
|
|
cout << "Warning! Disk size is smaller than the main header indicates! Loading\n"
|
|
<< "secondary header from the last sector of the disk! You should use 'v' to\n"
|
|
<< "verify disk integrity, and perhaps options on the experts' menu to repair\n"
|
|
<< "the disk.\n";
|
|
} // if/else
|
|
if (!allOK)
|
|
state = gpt_invalid;
|
|
|
|
// Return valid headers code: 0 = both headers bad; 1 = main header
|
|
// good, backup bad; 2 = backup header good, main header bad;
|
|
// 3 = both headers good. Note these codes refer to valid GPT
|
|
// signatures, version numbers, and CRCs.
|
|
validHeaders = CheckHeaderValidity();
|
|
|
|
// Read partitions (from primary array)
|
|
if (validHeaders > 0) { // if at least one header is OK....
|
|
// GPT appears to be valid....
|
|
state = gpt_valid;
|
|
|
|
// We're calling the GPT valid, but there's a possibility that one
|
|
// of the two headers is corrupt. If so, use the one that seems to
|
|
// be in better shape to regenerate the bad one
|
|
if (validHeaders == 1) { // valid main header, invalid backup header
|
|
cerr << "\aCaution: invalid backup GPT header, but valid main header; regenerating\n"
|
|
<< "backup header from main header.\n\n";
|
|
RebuildSecondHeader();
|
|
state = gpt_corrupt;
|
|
secondCrcOk = mainCrcOk; // Since regenerated, use CRC validity of main
|
|
} else if (validHeaders == 2) { // valid backup header, invalid main header
|
|
cerr << "\aCaution: invalid main GPT header, but valid backup; regenerating main header\n"
|
|
<< "from backup!\n\n";
|
|
RebuildMainHeader();
|
|
state = gpt_corrupt;
|
|
mainCrcOk = secondCrcOk; // Since copied, use CRC validity of backup
|
|
} // if/else/if
|
|
|
|
// Figure out which partition table to load....
|
|
// Load the main partition table, if its header's CRC is OK
|
|
if (validHeaders != 2) {
|
|
if (LoadMainTable() == 0)
|
|
allOK = 0;
|
|
} else { // bad main header CRC and backup header CRC is OK
|
|
state = gpt_corrupt;
|
|
if (LoadSecondTableAsMain()) {
|
|
loadedTable = 2;
|
|
cerr << "\aWarning: Invalid CRC on main header data; loaded backup partition table.\n";
|
|
} else { // backup table bad, bad main header CRC, but try main table in desperation....
|
|
if (LoadMainTable() == 0) {
|
|
allOK = 0;
|
|
loadedTable = 0;
|
|
cerr << "\a\aWarning! Unable to load either main or backup partition table!\n";
|
|
} // if
|
|
} // if/else (LoadSecondTableAsMain())
|
|
} // if/else (load partition table)
|
|
|
|
if (loadedTable == 1)
|
|
secondPartsCrcOk = CheckTable(&secondHeader);
|
|
else if (loadedTable == 2)
|
|
mainPartsCrcOk = CheckTable(&mainHeader);
|
|
else
|
|
mainPartsCrcOk = secondPartsCrcOk = 0;
|
|
|
|
// Problem with main partition table; if backup is OK, use it instead....
|
|
if (secondPartsCrcOk && secondCrcOk && !mainPartsCrcOk) {
|
|
state = gpt_corrupt;
|
|
allOK = allOK && LoadSecondTableAsMain();
|
|
mainPartsCrcOk = 0; // LoadSecondTableAsMain() resets this, so re-flag as bad
|
|
cerr << "\aWarning! Main partition table CRC mismatch! Loaded backup "
|
|
<< "partition table\ninstead of main partition table!\n\n";
|
|
} // if */
|
|
|
|
// Check for valid CRCs and warn if there are problems
|
|
if ((validHeaders != 3) || (mainPartsCrcOk == 0) ||
|
|
(secondPartsCrcOk == 0)) {
|
|
cerr << "Warning! One or more CRCs don't match. You should repair the disk!\n";
|
|
// Show detail status of header and table
|
|
if (validHeaders & 0x1)
|
|
cerr << "Main header: OK\n";
|
|
else
|
|
cerr << "Main header: ERROR\n";
|
|
if (validHeaders & 0x2)
|
|
cerr << "Backup header: OK\n";
|
|
else
|
|
cerr << "Backup header: ERROR\n";
|
|
if (mainPartsCrcOk)
|
|
cerr << "Main partition table: OK\n";
|
|
else
|
|
cerr << "Main partition table: ERROR\n";
|
|
if (secondPartsCrcOk)
|
|
cerr << "Backup partition table: OK\n";
|
|
else
|
|
cerr << "Backup partition table: ERROR\n";
|
|
cerr << "\n";
|
|
state = gpt_corrupt;
|
|
} // if
|
|
} else {
|
|
state = gpt_invalid;
|
|
} // if/else
|
|
return allOK;
|
|
} // GPTData::ForceLoadGPTData()
|
|
|
|
// Loads the partition table pointed to by the main GPT header. The
|
|
// main GPT header in memory MUST be valid for this call to do anything
|
|
// sensible!
|
|
// Returns 1 on success, 0 on failure. CRC errors do NOT count as failure.
|
|
int GPTData::LoadMainTable(void) {
|
|
return LoadPartitionTable(mainHeader, myDisk);
|
|
} // GPTData::LoadMainTable()
|
|
|
|
// Load the second (backup) partition table as the primary partition
|
|
// table. Used in repair functions, and when starting up if the main
|
|
// partition table is damaged.
|
|
// Returns 1 on success, 0 on failure. CRC errors do NOT count as failure.
|
|
int GPTData::LoadSecondTableAsMain(void) {
|
|
return LoadPartitionTable(secondHeader, myDisk);
|
|
} // GPTData::LoadSecondTableAsMain()
|
|
|
|
// Load a single GPT header (main or backup) from the specified disk device and
|
|
// sector. Applies byte-order corrections on big-endian platforms. Sets crcOk
|
|
// value appropriately.
|
|
// Returns 1 on success, 0 on failure. Note that CRC errors do NOT qualify as
|
|
// failure.
|
|
int GPTData::LoadHeader(struct GPTHeader *header, DiskIO & disk, uint64_t sector, int *crcOk) {
|
|
int allOK = 1;
|
|
GPTHeader tempHeader;
|
|
|
|
disk.Seek(sector);
|
|
if (disk.Read(&tempHeader, 512) != 512) {
|
|
cerr << "Warning! Read error " << errno << "; strange behavior now likely!\n";
|
|
allOK = 0;
|
|
} // if
|
|
|
|
// Reverse byte order, if necessary
|
|
if (IsLittleEndian() == 0) {
|
|
ReverseHeaderBytes(&tempHeader);
|
|
} // if
|
|
*crcOk = CheckHeaderCRC(&tempHeader);
|
|
|
|
if (allOK && (numParts != tempHeader.numParts) && *crcOk) {
|
|
allOK = SetGPTSize(tempHeader.numParts, 0);
|
|
}
|
|
|
|
*header = tempHeader;
|
|
return allOK;
|
|
} // GPTData::LoadHeader
|
|
|
|
// Load a partition table (either main or secondary) from the specified disk,
|
|
// using header as a reference for what to load. If sector != 0 (the default
|
|
// is 0), loads from the specified sector; otherwise loads from the sector
|
|
// indicated in header.
|
|
// Returns 1 on success, 0 on failure. CRC errors do NOT count as failure.
|
|
int GPTData::LoadPartitionTable(const struct GPTHeader & header, DiskIO & disk, uint64_t sector) {
|
|
uint32_t sizeOfParts, newCRC;
|
|
int retval;
|
|
|
|
if (header.sizeOfPartitionEntries != sizeof(GPTPart)) {
|
|
cerr << "Error! GPT header contains invalid partition entry size!\n";
|
|
retval = 0;
|
|
} else if (disk.OpenForRead()) {
|
|
if (sector == 0) {
|
|
retval = disk.Seek(header.partitionEntriesLBA);
|
|
} else {
|
|
retval = disk.Seek(sector);
|
|
} // if/else
|
|
if (retval == 1)
|
|
retval = SetGPTSize(header.numParts, 0);
|
|
if (retval == 1) {
|
|
sizeOfParts = header.numParts * header.sizeOfPartitionEntries;
|
|
if (disk.Read(partitions, sizeOfParts) != (int) sizeOfParts) {
|
|
cerr << "Warning! Read error " << errno << "! Misbehavior now likely!\n";
|
|
retval = 0;
|
|
} // if
|
|
newCRC = chksum_crc32((unsigned char*) partitions, sizeOfParts);
|
|
mainPartsCrcOk = secondPartsCrcOk = (newCRC == header.partitionEntriesCRC);
|
|
if (IsLittleEndian() == 0)
|
|
ReversePartitionBytes();
|
|
if (!mainPartsCrcOk) {
|
|
cout << "Caution! After loading partitions, the CRC doesn't check out!\n";
|
|
} // if
|
|
} else {
|
|
cerr << "Error! Couldn't seek to partition table!\n";
|
|
} // if/else
|
|
} else {
|
|
cerr << "Error! Couldn't open device " << device
|
|
<< " when reading partition table!\n";
|
|
retval = 0;
|
|
} // if/else
|
|
return retval;
|
|
} // GPTData::LoadPartitionsTable()
|
|
|
|
// Check the partition table pointed to by header, but don't keep it
|
|
// around.
|
|
// Returns 1 if the CRC is OK & this table matches the one already in memory,
|
|
// 0 if not or if there was a read error.
|
|
int GPTData::CheckTable(struct GPTHeader *header) {
|
|
uint32_t sizeOfParts, newCRC;
|
|
GPTPart *partsToCheck;
|
|
GPTHeader *otherHeader;
|
|
int allOK = 0;
|
|
|
|
// Load partition table into temporary storage to check
|
|
// its CRC and store the results, then discard this temporary
|
|
// storage, since we don't use it in any but recovery operations
|
|
if (myDisk.Seek(header->partitionEntriesLBA)) {
|
|
partsToCheck = new GPTPart[header->numParts];
|
|
sizeOfParts = header->numParts * header->sizeOfPartitionEntries;
|
|
if (partsToCheck == NULL) {
|
|
cerr << "Could not allocate memory in GPTData::CheckTable()! Terminating!\n";
|
|
exit(1);
|
|
} // if
|
|
if (myDisk.Read(partsToCheck, sizeOfParts) != (int) sizeOfParts) {
|
|
cerr << "Warning! Error " << errno << " reading partition table for CRC check!\n";
|
|
} else {
|
|
newCRC = chksum_crc32((unsigned char*) partsToCheck, sizeOfParts);
|
|
allOK = (newCRC == header->partitionEntriesCRC);
|
|
if (header == &mainHeader)
|
|
otherHeader = &secondHeader;
|
|
else
|
|
otherHeader = &mainHeader;
|
|
if (newCRC != otherHeader->partitionEntriesCRC) {
|
|
cerr << "Warning! Main and backup partition tables differ! Use the 'c' and 'e' options\n"
|
|
<< "on the recovery & transformation menu to examine the two tables.\n\n";
|
|
allOK = 0;
|
|
} // if
|
|
} // if/else
|
|
delete[] partsToCheck;
|
|
} // if
|
|
return allOK;
|
|
} // GPTData::CheckTable()
|
|
|
|
// Writes GPT (and protective MBR) to disk. If quiet==1, moves the second
|
|
// header later on the disk without asking for permission, if necessary, and
|
|
// doesn't confirm the operation before writing. If quiet==0, asks permission
|
|
// before moving the second header and asks for final confirmation of any
|
|
// write.
|
|
// Returns 1 on successful write, 0 if there was a problem.
|
|
int GPTData::SaveGPTData(int quiet) {
|
|
int allOK = 1, syncIt = 1;
|
|
char answer;
|
|
|
|
// First do some final sanity checks....
|
|
|
|
// This test should only fail on read-only disks....
|
|
if (justLooking) {
|
|
cout << "The justLooking flag is set. This probably means you can't write to the disk.\n";
|
|
allOK = 0;
|
|
} // if
|
|
|
|
// Check that disk is really big enough to handle the second header...
|
|
if (mainHeader.backupLBA >= diskSize) {
|
|
cerr << "Caution! Secondary header was placed beyond the disk's limits! Moving the\n"
|
|
<< "header, but other problems may occur!\n";
|
|
MoveSecondHeaderToEnd();
|
|
} // if
|
|
|
|
// Is there enough space to hold the GPT headers and partition tables,
|
|
// given the partition sizes?
|
|
if (CheckGPTSize() > 0) {
|
|
allOK = 0;
|
|
} // if
|
|
|
|
// Check that second header is properly placed. Warn and ask if this should
|
|
// be corrected if the test fails....
|
|
if (mainHeader.backupLBA < (diskSize - UINT64_C(1))) {
|
|
if (quiet == 0) {
|
|
cout << "Warning! Secondary header is placed too early on the disk! Do you want to\n"
|
|
<< "correct this problem? ";
|
|
if (GetYN() == 'Y') {
|
|
MoveSecondHeaderToEnd();
|
|
cout << "Have moved second header and partition table to correct location.\n";
|
|
} else {
|
|
cout << "Have not corrected the problem. Strange problems may occur in the future!\n";
|
|
} // if correction requested
|
|
} else { // Go ahead and do correction automatically
|
|
MoveSecondHeaderToEnd();
|
|
} // if/else quiet
|
|
} // if
|
|
|
|
if ((mainHeader.lastUsableLBA >= diskSize) || (mainHeader.lastUsableLBA > mainHeader.backupLBA)) {
|
|
if (quiet == 0) {
|
|
cout << "Warning! The claimed last usable sector is incorrect! Do you want to correct\n"
|
|
<< "this problem? ";
|
|
if (GetYN() == 'Y') {
|
|
MoveSecondHeaderToEnd();
|
|
cout << "Have adjusted the second header and last usable sector value.\n";
|
|
} else {
|
|
cout << "Have not corrected the problem. Strange problems may occur in the future!\n";
|
|
} // if correction requested
|
|
} else { // go ahead and do correction automatically
|
|
MoveSecondHeaderToEnd();
|
|
} // if/else quiet
|
|
} // if
|
|
|
|
// Check for overlapping or insane partitions....
|
|
if ((FindOverlaps() > 0) || (FindInsanePartitions() > 0)) {
|
|
allOK = 0;
|
|
cerr << "Aborting write operation!\n";
|
|
} // if
|
|
|
|
// Check that protective MBR fits, and warn if it doesn't....
|
|
if (!protectiveMBR.DoTheyFit()) {
|
|
cerr << "\nPartition(s) in the protective MBR are too big for the disk! Creating a\n"
|
|
<< "fresh protective or hybrid MBR is recommended.\n";
|
|
}
|
|
|
|
// Check for mismatched MBR and GPT data, but let it pass if found
|
|
// (function displays warning message)
|
|
FindHybridMismatches();
|
|
|
|
RecomputeCRCs();
|
|
|
|
if ((allOK) && (!quiet)) {
|
|
cout << "\nFinal checks complete. About to write GPT data. THIS WILL OVERWRITE EXISTING\n"
|
|
<< "PARTITIONS!!\n\nDo you want to proceed? ";
|
|
answer = GetYN();
|
|
if (answer == 'Y') {
|
|
cout << "OK; writing new GUID partition table (GPT) to " << myDisk.GetName() << ".\n";
|
|
} else {
|
|
allOK = 0;
|
|
} // if/else
|
|
} // if
|
|
|
|
// Do it!
|
|
if (allOK) {
|
|
if (myDisk.OpenForWrite()) {
|
|
// As per UEFI specs, write the secondary table and GPT first....
|
|
allOK = SavePartitionTable(myDisk, secondHeader.partitionEntriesLBA);
|
|
if (!allOK) {
|
|
cerr << "Unable to save backup partition table! Perhaps the 'e' option on the experts'\n"
|
|
<< "menu will resolve this problem.\n";
|
|
syncIt = 0;
|
|
} // if
|
|
|
|
// Now write the secondary GPT header...
|
|
allOK = allOK && SaveHeader(&secondHeader, myDisk, mainHeader.backupLBA);
|
|
|
|
// Now write the main partition tables...
|
|
allOK = allOK && SavePartitionTable(myDisk, mainHeader.partitionEntriesLBA);
|
|
|
|
// Now write the main GPT header...
|
|
allOK = allOK && SaveHeader(&mainHeader, myDisk, 1);
|
|
|
|
// To top it off, write the protective MBR...
|
|
allOK = allOK && protectiveMBR.WriteMBRData(&myDisk);
|
|
|
|
// re-read the partition table
|
|
// Note: Done even if some write operations failed, but not if all of them failed.
|
|
// Done this way because I've received one problem report from a user one whose
|
|
// system the MBR write failed but everything else was OK (on a GPT disk under
|
|
// Windows), and the failure to sync therefore caused Windows to restore the
|
|
// original partition table from its cache. OTOH, such restoration might be
|
|
// desirable if the error occurs later; but that seems unlikely unless the initial
|
|
// write fails....
|
|
if (syncIt)
|
|
myDisk.DiskSync();
|
|
|
|
if (allOK) { // writes completed OK
|
|
cout << "The operation has completed successfully.\n";
|
|
} else {
|
|
cerr << "Warning! An error was reported when writing the partition table! This error\n"
|
|
<< "MIGHT be harmless, or the disk might be damaged! Checking it is advisable.\n";
|
|
} // if/else
|
|
|
|
myDisk.Close();
|
|
} else {
|
|
cerr << "Unable to open device '" << myDisk.GetName() << "' for writing! Errno is "
|
|
<< errno << "! Aborting write!\n";
|
|
allOK = 0;
|
|
} // if/else
|
|
} else {
|
|
cout << "Aborting write of new partition table.\n";
|
|
} // if
|
|
|
|
return (allOK);
|
|
} // GPTData::SaveGPTData()
|
|
|
|
// Save GPT data to a backup file. This function does much less error
|
|
// checking than SaveGPTData(). It can therefore preserve many types of
|
|
// corruption for later analysis; however, it preserves only the MBR,
|
|
// the main GPT header, the backup GPT header, and the main partition
|
|
// table; it discards the backup partition table, since it should be
|
|
// identical to the main partition table on healthy disks.
|
|
int GPTData::SaveGPTBackup(const string & filename) {
|
|
int allOK = 1;
|
|
DiskIO backupFile;
|
|
|
|
if (backupFile.OpenForWrite(filename)) {
|
|
// Recomputing the CRCs is likely to alter them, which could be bad
|
|
// if the intent is to save a potentially bad GPT for later analysis;
|
|
// but if we don't do this, we get bogus errors when we load the
|
|
// backup. I'm favoring misses over false alarms....
|
|
RecomputeCRCs();
|
|
|
|
protectiveMBR.WriteMBRData(&backupFile);
|
|
protectiveMBR.SetDisk(&myDisk);
|
|
|
|
if (allOK) {
|
|
// MBR write closed disk, so re-open and seek to end....
|
|
backupFile.OpenForWrite();
|
|
allOK = SaveHeader(&mainHeader, backupFile, 1);
|
|
} // if (allOK)
|
|
|
|
if (allOK)
|
|
allOK = SaveHeader(&secondHeader, backupFile, 2);
|
|
|
|
if (allOK)
|
|
allOK = SavePartitionTable(backupFile, 3);
|
|
|
|
if (allOK) { // writes completed OK
|
|
cout << "The operation has completed successfully.\n";
|
|
} else {
|
|
cerr << "Warning! An error was reported when writing the backup file.\n"
|
|
<< "It may not be usable!\n";
|
|
} // if/else
|
|
backupFile.Close();
|
|
} else {
|
|
cerr << "Unable to open file '" << filename << "' for writing! Aborting!\n";
|
|
allOK = 0;
|
|
} // if/else
|
|
return allOK;
|
|
} // GPTData::SaveGPTBackup()
|
|
|
|
// Write a GPT header (main or backup) to the specified sector. Used by both
|
|
// the SaveGPTData() and SaveGPTBackup() functions.
|
|
// Should be passed an architecture-appropriate header (DO NOT call
|
|
// ReverseHeaderBytes() on the header before calling this function)
|
|
// Returns 1 on success, 0 on failure
|
|
int GPTData::SaveHeader(struct GPTHeader *header, DiskIO & disk, uint64_t sector) {
|
|
int littleEndian, allOK = 1;
|
|
|
|
littleEndian = IsLittleEndian();
|
|
if (!littleEndian)
|
|
ReverseHeaderBytes(header);
|
|
if (disk.Seek(sector)) {
|
|
if (disk.Write(header, 512) == -1)
|
|
allOK = 0;
|
|
} else allOK = 0; // if (disk.Seek()...)
|
|
if (!littleEndian)
|
|
ReverseHeaderBytes(header);
|
|
return allOK;
|
|
} // GPTData::SaveHeader()
|
|
|
|
// Save the partitions to the specified sector. Used by both the SaveGPTData()
|
|
// and SaveGPTBackup() functions.
|
|
// Should be passed an architecture-appropriate header (DO NOT call
|
|
// ReverseHeaderBytes() on the header before calling this function)
|
|
// Returns 1 on success, 0 on failure
|
|
int GPTData::SavePartitionTable(DiskIO & disk, uint64_t sector) {
|
|
int littleEndian, allOK = 1;
|
|
|
|
littleEndian = IsLittleEndian();
|
|
if (disk.Seek(sector)) {
|
|
if (!littleEndian)
|
|
ReversePartitionBytes();
|
|
if (disk.Write(partitions, mainHeader.sizeOfPartitionEntries * numParts) == -1)
|
|
allOK = 0;
|
|
if (!littleEndian)
|
|
ReversePartitionBytes();
|
|
} else allOK = 0; // if (myDisk.Seek()...)
|
|
return allOK;
|
|
} // GPTData::SavePartitionTable()
|
|
|
|
// Load GPT data from a backup file created by SaveGPTBackup(). This function
|
|
// does minimal error checking. It returns 1 if it completed successfully,
|
|
// 0 if there was a problem. In the latter case, it creates a new empty
|
|
// set of partitions.
|
|
int GPTData::LoadGPTBackup(const string & filename) {
|
|
int allOK = 1, val, err;
|
|
int shortBackup = 0;
|
|
DiskIO backupFile;
|
|
|
|
if (backupFile.OpenForRead(filename)) {
|
|
// Let the MBRData class load the saved MBR...
|
|
protectiveMBR.ReadMBRData(&backupFile, 0); // 0 = don't check block size
|
|
protectiveMBR.SetDisk(&myDisk);
|
|
|
|
LoadHeader(&mainHeader, backupFile, 1, &mainCrcOk);
|
|
|
|
// Check backup file size and rebuild second header if file is right
|
|
// size to be direct dd copy of MBR, main header, and main partition
|
|
// table; if other size, treat it like a GPT fdisk-generated backup
|
|
// file
|
|
shortBackup = ((backupFile.DiskSize(&err) * backupFile.GetBlockSize()) ==
|
|
(mainHeader.numParts * mainHeader.sizeOfPartitionEntries) + 1024);
|
|
if (shortBackup) {
|
|
RebuildSecondHeader();
|
|
secondCrcOk = mainCrcOk;
|
|
} else {
|
|
LoadHeader(&secondHeader, backupFile, 2, &secondCrcOk);
|
|
} // if/else
|
|
|
|
// Return valid headers code: 0 = both headers bad; 1 = main header
|
|
// good, backup bad; 2 = backup header good, main header bad;
|
|
// 3 = both headers good. Note these codes refer to valid GPT
|
|
// signatures and version numbers; more subtle problems will elude
|
|
// this check!
|
|
if ((val = CheckHeaderValidity()) > 0) {
|
|
if (val == 2) { // only backup header seems to be good
|
|
SetGPTSize(secondHeader.numParts, 0);
|
|
} else { // main header is OK
|
|
SetGPTSize(mainHeader.numParts, 0);
|
|
} // if/else
|
|
|
|
if (secondHeader.currentLBA != diskSize - UINT64_C(1)) {
|
|
cout << "Warning! Current disk size doesn't match that of the backup!\n"
|
|
<< "Adjusting sizes to match, but subsequent problems are possible!\n";
|
|
MoveSecondHeaderToEnd();
|
|
} // if
|
|
|
|
if (!LoadPartitionTable(mainHeader, backupFile, (uint64_t) (3 - shortBackup)))
|
|
cerr << "Warning! Read error " << errno
|
|
<< " loading partition table; strange behavior now likely!\n";
|
|
} else {
|
|
allOK = 0;
|
|
} // if/else
|
|
// Something went badly wrong, so blank out partitions
|
|
if (allOK == 0) {
|
|
cerr << "Improper backup file! Clearing all partition data!\n";
|
|
ClearGPTData();
|
|
protectiveMBR.MakeProtectiveMBR();
|
|
} // if
|
|
} else {
|
|
allOK = 0;
|
|
cerr << "Unable to open file '" << filename << "' for reading! Aborting!\n";
|
|
} // if/else
|
|
|
|
return allOK;
|
|
} // GPTData::LoadGPTBackup()
|
|
|
|
int GPTData::SaveMBR(void) {
|
|
return protectiveMBR.WriteMBRData(&myDisk);
|
|
} // GPTData::SaveMBR()
|
|
|
|
// This function destroys the on-disk GPT structures, but NOT the on-disk
|
|
// MBR.
|
|
// Returns 1 if the operation succeeds, 0 if not.
|
|
int GPTData::DestroyGPT(void) {
|
|
int sum, tableSize, allOK = 1;
|
|
uint8_t blankSector[512];
|
|
uint8_t* emptyTable;
|
|
|
|
memset(blankSector, 0, sizeof(blankSector));
|
|
ClearGPTData();
|
|
|
|
if (myDisk.OpenForWrite()) {
|
|
if (!myDisk.Seek(mainHeader.currentLBA))
|
|
allOK = 0;
|
|
if (myDisk.Write(blankSector, 512) != 512) { // blank it out
|
|
cerr << "Warning! GPT main header not overwritten! Error is " << errno << "\n";
|
|
allOK = 0;
|
|
} // if
|
|
if (!myDisk.Seek(mainHeader.partitionEntriesLBA))
|
|
allOK = 0;
|
|
tableSize = numParts * mainHeader.sizeOfPartitionEntries;
|
|
emptyTable = new uint8_t[tableSize];
|
|
if (emptyTable == NULL) {
|
|
cerr << "Could not allocate memory in GPTData::DestroyGPT()! Terminating!\n";
|
|
exit(1);
|
|
} // if
|
|
memset(emptyTable, 0, tableSize);
|
|
if (allOK) {
|
|
sum = myDisk.Write(emptyTable, tableSize);
|
|
if (sum != tableSize) {
|
|
cerr << "Warning! GPT main partition table not overwritten! Error is " << errno << "\n";
|
|
allOK = 0;
|
|
} // if write failed
|
|
} // if
|
|
if (!myDisk.Seek(secondHeader.partitionEntriesLBA))
|
|
allOK = 0;
|
|
if (allOK) {
|
|
sum = myDisk.Write(emptyTable, tableSize);
|
|
if (sum != tableSize) {
|
|
cerr << "Warning! GPT backup partition table not overwritten! Error is "
|
|
<< errno << "\n";
|
|
allOK = 0;
|
|
} // if wrong size written
|
|
} // if
|
|
if (!myDisk.Seek(secondHeader.currentLBA))
|
|
allOK = 0;
|
|
if (allOK) {
|
|
if (myDisk.Write(blankSector, 512) != 512) { // blank it out
|
|
cerr << "Warning! GPT backup header not overwritten! Error is " << errno << "\n";
|
|
allOK = 0;
|
|
} // if
|
|
} // if
|
|
myDisk.DiskSync();
|
|
myDisk.Close();
|
|
cout << "GPT data structures destroyed! You may now partition the disk using fdisk or\n"
|
|
<< "other utilities.\n";
|
|
delete[] emptyTable;
|
|
} else {
|
|
cerr << "Problem opening '" << device << "' for writing! Program will now terminate.\n";
|
|
} // if/else (fd != -1)
|
|
return (allOK);
|
|
} // GPTDataTextUI::DestroyGPT()
|
|
|
|
// Wipe MBR data from the disk (zero it out completely)
|
|
// Returns 1 on success, 0 on failure.
|
|
int GPTData::DestroyMBR(void) {
|
|
int allOK;
|
|
uint8_t blankSector[512];
|
|
|
|
memset(blankSector, 0, sizeof(blankSector));
|
|
|
|
allOK = myDisk.OpenForWrite() && myDisk.Seek(0) && (myDisk.Write(blankSector, 512) == 512);
|
|
|
|
if (!allOK)
|
|
cerr << "Warning! MBR not overwritten! Error is " << errno << "!\n";
|
|
return allOK;
|
|
} // GPTData::DestroyMBR(void)
|
|
|
|
// Tell user whether Apple Partition Map (APM) was discovered....
|
|
void GPTData::ShowAPMState(void) {
|
|
if (apmFound)
|
|
cout << " APM: present\n";
|
|
else
|
|
cout << " APM: not present\n";
|
|
} // GPTData::ShowAPMState()
|
|
|
|
// Tell user about the state of the GPT data....
|
|
void GPTData::ShowGPTState(void) {
|
|
switch (state) {
|
|
case gpt_invalid:
|
|
cout << " GPT: not present\n";
|
|
break;
|
|
case gpt_valid:
|
|
cout << " GPT: present\n";
|
|
break;
|
|
case gpt_corrupt:
|
|
cout << " GPT: damaged\n";
|
|
break;
|
|
default:
|
|
cout << "\a GPT: unknown -- bug!\n";
|
|
break;
|
|
} // switch
|
|
} // GPTData::ShowGPTState()
|
|
|
|
// Display the basic GPT data
|
|
void GPTData::DisplayGPTData(void) {
|
|
uint32_t i;
|
|
uint64_t temp, totalFree;
|
|
|
|
cout << "Disk " << device << ": " << diskSize << " sectors, "
|
|
<< BytesToIeee(diskSize, blockSize) << "\n";
|
|
if (myDisk.GetModel() != "")
|
|
cout << "Model: " << myDisk.GetModel() << "\n";
|
|
if (physBlockSize > 0)
|
|
cout << "Sector size (logical/physical): " << blockSize << "/" << physBlockSize << " bytes\n";
|
|
else
|
|
cout << "Sector size (logical): " << blockSize << " bytes\n";
|
|
cout << "Disk identifier (GUID): " << mainHeader.diskGUID << "\n";
|
|
cout << "Partition table holds up to " << numParts << " entries\n";
|
|
cout << "Main partition table begins at sector " << mainHeader.partitionEntriesLBA
|
|
<< " and ends at sector " << mainHeader.partitionEntriesLBA + GetTableSizeInSectors() - 1 << "\n";
|
|
cout << "First usable sector is " << mainHeader.firstUsableLBA
|
|
<< ", last usable sector is " << mainHeader.lastUsableLBA << "\n";
|
|
totalFree = FindFreeBlocks(&i, &temp);
|
|
cout << "Partitions will be aligned on " << sectorAlignment << "-sector boundaries\n";
|
|
cout << "Total free space is " << totalFree << " sectors ("
|
|
<< BytesToIeee(totalFree, blockSize) << ")\n";
|
|
cout << "\nNumber Start (sector) End (sector) Size Code Name\n";
|
|
for (i = 0; i < numParts; i++) {
|
|
partitions[i].ShowSummary(i, blockSize);
|
|
} // for
|
|
} // GPTData::DisplayGPTData()
|
|
|
|
// Show detailed information on the specified partition
|
|
void GPTData::ShowPartDetails(uint32_t partNum) {
|
|
if ((partNum < numParts) && !IsFreePartNum(partNum)) {
|
|
partitions[partNum].ShowDetails(blockSize);
|
|
} else {
|
|
cout << "Partition #" << partNum + 1 << " does not exist.\n";
|
|
} // if
|
|
} // GPTData::ShowPartDetails()
|
|
|
|
/**************************************************************************
|
|
* *
|
|
* Partition table transformation functions (MBR or BSD disklabel to GPT) *
|
|
* (some of these functions may require user interaction) *
|
|
* *
|
|
**************************************************************************/
|
|
|
|
// Examines the MBR & GPT data to determine which set of data to use: the
|
|
// MBR (use_mbr), the GPT (use_gpt), the BSD disklabel (use_bsd), or create
|
|
// a new set of partitions (use_new). A return value of use_abort indicates
|
|
// that this function couldn't determine what to do. Overriding functions
|
|
// in derived classes may ask users questions in such cases.
|
|
WhichToUse GPTData::UseWhichPartitions(void) {
|
|
WhichToUse which = use_new;
|
|
MBRValidity mbrState;
|
|
|
|
mbrState = protectiveMBR.GetValidity();
|
|
|
|
if ((state == gpt_invalid) && ((mbrState == mbr) || (mbrState == hybrid))) {
|
|
cout << "\n***************************************************************\n"
|
|
<< "Found invalid GPT and valid MBR; converting MBR to GPT format\n"
|
|
<< "in memory. ";
|
|
if (!justLooking) {
|
|
cout << "\aTHIS OPERATION IS POTENTIALLY DESTRUCTIVE! Exit by\n"
|
|
<< "typing 'q' if you don't want to convert your MBR partitions\n"
|
|
<< "to GPT format!";
|
|
} // if
|
|
cout << "\n***************************************************************\n\n";
|
|
which = use_mbr;
|
|
} // if
|
|
|
|
if ((state == gpt_invalid) && bsdFound) {
|
|
cout << "\n**********************************************************************\n"
|
|
<< "Found invalid GPT and valid BSD disklabel; converting BSD disklabel\n"
|
|
<< "to GPT format.";
|
|
if ((!justLooking) && (!beQuiet)) {
|
|
cout << "\a THIS OPERATION IS POTENTIALLY DESTRUCTIVE! Your first\n"
|
|
<< "BSD partition will likely be unusable. Exit by typing 'q' if you don't\n"
|
|
<< "want to convert your BSD partitions to GPT format!";
|
|
} // if
|
|
cout << "\n**********************************************************************\n\n";
|
|
which = use_bsd;
|
|
} // if
|
|
|
|
if ((state == gpt_valid) && (mbrState == gpt)) {
|
|
which = use_gpt;
|
|
if (!beQuiet)
|
|
cout << "Found valid GPT with protective MBR; using GPT.\n";
|
|
} // if
|
|
if ((state == gpt_valid) && (mbrState == hybrid)) {
|
|
which = use_gpt;
|
|
if (!beQuiet)
|
|
cout << "Found valid GPT with hybrid MBR; using GPT.\n";
|
|
} // if
|
|
if ((state == gpt_valid) && (mbrState == invalid)) {
|
|
cout << "\aFound valid GPT with corrupt MBR; using GPT and will write new\n"
|
|
<< "protective MBR on save.\n";
|
|
which = use_gpt;
|
|
} // if
|
|
if ((state == gpt_valid) && (mbrState == mbr)) {
|
|
which = use_abort;
|
|
} // if
|
|
|
|
if (state == gpt_corrupt) {
|
|
if (mbrState == gpt) {
|
|
cout << "\a\a****************************************************************************\n"
|
|
<< "Caution: Found protective or hybrid MBR and corrupt GPT. Using GPT, but disk\n"
|
|
<< "verification and recovery are STRONGLY recommended.\n"
|
|
<< "****************************************************************************\n";
|
|
which = use_gpt;
|
|
} else {
|
|
which = use_abort;
|
|
} // if/else MBR says disk is GPT
|
|
} // if GPT corrupt
|
|
|
|
if (which == use_new)
|
|
cout << "Creating new GPT entries in memory.\n";
|
|
|
|
return which;
|
|
} // UseWhichPartitions()
|
|
|
|
// Convert MBR partition table into GPT form.
|
|
void GPTData::XFormPartitions(void) {
|
|
int i, numToConvert;
|
|
uint8_t origType;
|
|
|
|
// Clear out old data & prepare basics....
|
|
ClearGPTData();
|
|
|
|
// Convert the smaller of the # of GPT or MBR partitions
|
|
if (numParts > MAX_MBR_PARTS)
|
|
numToConvert = MAX_MBR_PARTS;
|
|
else
|
|
numToConvert = numParts;
|
|
|
|
for (i = 0; i < numToConvert; i++) {
|
|
origType = protectiveMBR.GetType(i);
|
|
// don't waste CPU time trying to convert extended, hybrid protective, or
|
|
// null (non-existent) partitions
|
|
if ((origType != 0x05) && (origType != 0x0f) && (origType != 0x85) &&
|
|
(origType != 0x00) && (origType != 0xEE))
|
|
partitions[i] = protectiveMBR.AsGPT(i);
|
|
} // for
|
|
|
|
// Convert MBR into protective MBR
|
|
protectiveMBR.MakeProtectiveMBR();
|
|
|
|
// Record that all original CRCs were OK so as not to raise flags
|
|
// when doing a disk verification
|
|
mainCrcOk = secondCrcOk = mainPartsCrcOk = secondPartsCrcOk = 1;
|
|
} // GPTData::XFormPartitions()
|
|
|
|
// Transforms BSD disklabel on the specified partition (numbered from 0).
|
|
// If an invalid partition number is given, the program does nothing.
|
|
// Returns the number of new partitions created.
|
|
int GPTData::XFormDisklabel(uint32_t partNum) {
|
|
uint32_t low, high;
|
|
int goOn = 1, numDone = 0;
|
|
BSDData disklabel;
|
|
|
|
if (GetPartRange(&low, &high) == 0) {
|
|
goOn = 0;
|
|
cout << "No partitions!\n";
|
|
} // if
|
|
if (partNum > high) {
|
|
goOn = 0;
|
|
cout << "Specified partition is invalid!\n";
|
|
} // if
|
|
|
|
// If all is OK, read the disklabel and convert it.
|
|
if (goOn) {
|
|
goOn = disklabel.ReadBSDData(&myDisk, partitions[partNum].GetFirstLBA(),
|
|
partitions[partNum].GetLastLBA());
|
|
if ((goOn) && (disklabel.IsDisklabel())) {
|
|
numDone = XFormDisklabel(&disklabel);
|
|
if (numDone == 1)
|
|
cout << "Converted 1 BSD partition.\n";
|
|
else
|
|
cout << "Converted " << numDone << " BSD partitions.\n";
|
|
} else {
|
|
cout << "Unable to convert partitions! Unrecognized BSD disklabel.\n";
|
|
} // if/else
|
|
} // if
|
|
if (numDone > 0) { // converted partitions; delete carrier
|
|
partitions[partNum].BlankPartition();
|
|
} // if
|
|
return numDone;
|
|
} // GPTData::XFormDisklabel(uint32_t i)
|
|
|
|
// Transform the partitions on an already-loaded BSD disklabel...
|
|
int GPTData::XFormDisklabel(BSDData* disklabel) {
|
|
int i, partNum = 0, numDone = 0;
|
|
|
|
if (disklabel->IsDisklabel()) {
|
|
for (i = 0; i < disklabel->GetNumParts(); i++) {
|
|
partNum = FindFirstFreePart();
|
|
if (partNum >= 0) {
|
|
partitions[partNum] = disklabel->AsGPT(i);
|
|
if (partitions[partNum].IsUsed())
|
|
numDone++;
|
|
} // if
|
|
} // for
|
|
if (partNum == -1)
|
|
cerr << "Warning! Too many partitions to convert!\n";
|
|
} // if
|
|
|
|
// Record that all original CRCs were OK so as not to raise flags
|
|
// when doing a disk verification
|
|
mainCrcOk = secondCrcOk = mainPartsCrcOk = secondPartsCrcOk = 1;
|
|
|
|
return numDone;
|
|
} // GPTData::XFormDisklabel(BSDData* disklabel)
|
|
|
|
// Add one GPT partition to MBR. Used by PartsToMBR() functions. Created
|
|
// partition has the active/bootable flag UNset and uses the GPT fdisk
|
|
// type code divided by 0x0100 as the MBR type code.
|
|
// Returns 1 if operation was 100% successful, 0 if there were ANY
|
|
// problems.
|
|
int GPTData::OnePartToMBR(uint32_t gptPart, int mbrPart) {
|
|
int allOK = 1;
|
|
|
|
if ((mbrPart < 0) || (mbrPart > 3)) {
|
|
cout << "MBR partition " << mbrPart + 1 << " is out of range; omitting it.\n";
|
|
allOK = 0;
|
|
} // if
|
|
if (gptPart >= numParts) {
|
|
cout << "GPT partition " << gptPart + 1 << " is out of range; omitting it.\n";
|
|
allOK = 0;
|
|
} // if
|
|
if (allOK && (partitions[gptPart].GetLastLBA() == UINT64_C(0))) {
|
|
cout << "GPT partition " << gptPart + 1 << " is undefined; omitting it.\n";
|
|
allOK = 0;
|
|
} // if
|
|
if (allOK && (partitions[gptPart].GetFirstLBA() <= UINT32_MAX) &&
|
|
(partitions[gptPart].GetLengthLBA() <= UINT32_MAX)) {
|
|
if (partitions[gptPart].GetLastLBA() > UINT32_MAX) {
|
|
cout << "Caution: Partition end point past 32-bit pointer boundary;"
|
|
<< " some OSes may\nreact strangely.\n";
|
|
} // if
|
|
protectiveMBR.MakePart(mbrPart, (uint32_t) partitions[gptPart].GetFirstLBA(),
|
|
(uint32_t) partitions[gptPart].GetLengthLBA(),
|
|
partitions[gptPart].GetHexType() / 256, 0);
|
|
} else { // partition out of range
|
|
if (allOK) // Display only if "else" triggered by out-of-bounds condition
|
|
cout << "Partition " << gptPart + 1 << " begins beyond the 32-bit pointer limit of MBR "
|
|
<< "partitions, or is\n too big; omitting it.\n";
|
|
allOK = 0;
|
|
} // if/else
|
|
return allOK;
|
|
} // GPTData::OnePartToMBR()
|
|
|
|
|
|
/**********************************************************************
|
|
* *
|
|
* Functions that adjust GPT data structures WITHOUT user interaction *
|
|
* (they may display information for the user's benefit, though) *
|
|
* *
|
|
**********************************************************************/
|
|
|
|
// Resizes GPT to specified number of entries. Creates a new table if
|
|
// necessary, copies data if it already exists. If fillGPTSectors is 1
|
|
// (the default), rounds numEntries to fill all the sectors necessary to
|
|
// hold the GPT.
|
|
// Returns 1 if all goes well, 0 if an error is encountered.
|
|
int GPTData::SetGPTSize(uint32_t numEntries, int fillGPTSectors) {
|
|
GPTPart* newParts;
|
|
uint32_t i, high, copyNum, entriesPerSector;
|
|
int allOK = 1;
|
|
|
|
// First, adjust numEntries upward, if necessary, to get a number
|
|
// that fills the allocated sectors
|
|
entriesPerSector = blockSize / GPT_SIZE;
|
|
if (fillGPTSectors && ((numEntries % entriesPerSector) != 0)) {
|
|
cout << "Adjusting GPT size from " << numEntries << " to ";
|
|
numEntries = ((numEntries / entriesPerSector) + 1) * entriesPerSector;
|
|
cout << numEntries << " to fill the sector\n";
|
|
} // if
|
|
|
|
// Do the work only if the # of partitions is changing. Along with being
|
|
// efficient, this prevents mucking with the location of the secondary
|
|
// partition table, which causes problems when loading data from a RAID
|
|
// array that's been expanded because this function is called when loading
|
|
// data.
|
|
if (((numEntries != numParts) || (partitions == NULL)) && (numEntries > 0)) {
|
|
newParts = new GPTPart [numEntries];
|
|
if (newParts != NULL) {
|
|
if (partitions != NULL) { // existing partitions; copy them over
|
|
GetPartRange(&i, &high);
|
|
if (numEntries < (high + 1)) { // Highest entry too high for new #
|
|
cout << "The highest-numbered partition is " << high + 1
|
|
<< ", which is greater than the requested\n"
|
|
<< "partition table size of " << numEntries
|
|
<< "; cannot resize. Perhaps sorting will help.\n";
|
|
allOK = 0;
|
|
delete[] newParts;
|
|
} else { // go ahead with copy
|
|
if (numEntries < numParts)
|
|
copyNum = numEntries;
|
|
else
|
|
copyNum = numParts;
|
|
for (i = 0; i < copyNum; i++) {
|
|
newParts[i] = partitions[i];
|
|
} // for
|
|
delete[] partitions;
|
|
partitions = newParts;
|
|
} // if
|
|
} else { // No existing partition table; just create it
|
|
partitions = newParts;
|
|
} // if/else existing partitions
|
|
numParts = numEntries;
|
|
mainHeader.firstUsableLBA = GetTableSizeInSectors() + mainHeader.partitionEntriesLBA;
|
|
secondHeader.firstUsableLBA = mainHeader.firstUsableLBA;
|
|
MoveSecondHeaderToEnd();
|
|
if (diskSize > 0)
|
|
CheckGPTSize();
|
|
} else { // Bad memory allocation
|
|
cerr << "Error allocating memory for partition table! Size is unchanged!\n";
|
|
allOK = 0;
|
|
} // if/else
|
|
} // if/else
|
|
mainHeader.numParts = numParts;
|
|
secondHeader.numParts = numParts;
|
|
return (allOK);
|
|
} // GPTData::SetGPTSize()
|
|
|
|
// Change the start sector for the main partition table.
|
|
// Returns 1 on success, 0 on failure
|
|
int GPTData::MoveMainTable(uint64_t pteSector) {
|
|
uint64_t pteSize = GetTableSizeInSectors();
|
|
int retval = 1;
|
|
|
|
if ((pteSector >= 2) && ((pteSector + pteSize) <= FindFirstUsedLBA())) {
|
|
mainHeader.partitionEntriesLBA = pteSector;
|
|
mainHeader.firstUsableLBA = pteSector + pteSize;
|
|
RebuildSecondHeader();
|
|
} else {
|
|
cerr << "Unable to set the main partition table's location to " << pteSector << "!\n";
|
|
retval = 0;
|
|
} // if/else
|
|
return retval;
|
|
} // GPTData::MoveMainTable()
|
|
|
|
// Blank the partition array
|
|
void GPTData::BlankPartitions(void) {
|
|
uint32_t i;
|
|
|
|
for (i = 0; i < numParts; i++) {
|
|
partitions[i].BlankPartition();
|
|
} // for
|
|
} // GPTData::BlankPartitions()
|
|
|
|
// Delete a partition by number. Returns 1 if successful,
|
|
// 0 if there was a problem. Returns 1 if partition was in
|
|
// range, 0 if it was out of range.
|
|
int GPTData::DeletePartition(uint32_t partNum) {
|
|
uint64_t startSector, length;
|
|
uint32_t low, high, numUsedParts, retval = 1;;
|
|
|
|
numUsedParts = GetPartRange(&low, &high);
|
|
if ((numUsedParts > 0) && (partNum >= low) && (partNum <= high)) {
|
|
// In case there's a protective MBR, look for & delete matching
|
|
// MBR partition....
|
|
startSector = partitions[partNum].GetFirstLBA();
|
|
length = partitions[partNum].GetLengthLBA();
|
|
protectiveMBR.DeleteByLocation(startSector, length);
|
|
|
|
// Now delete the GPT partition
|
|
partitions[partNum].BlankPartition();
|
|
} else {
|
|
cerr << "Partition number " << partNum + 1 << " out of range!\n";
|
|
retval = 0;
|
|
} // if/else
|
|
return retval;
|
|
} // GPTData::DeletePartition(uint32_t partNum)
|
|
|
|
// Non-interactively create a partition.
|
|
// Returns 1 if the operation was successful, 0 if a problem was discovered.
|
|
uint32_t GPTData::CreatePartition(uint32_t partNum, uint64_t startSector, uint64_t endSector) {
|
|
int retval = 1; // assume there'll be no problems
|
|
uint64_t origSector = startSector;
|
|
|
|
if (IsFreePartNum(partNum)) {
|
|
if (Align(&startSector)) {
|
|
cout << "Information: Moved requested sector from " << origSector << " to "
|
|
<< startSector << " in\norder to align on " << sectorAlignment
|
|
<< "-sector boundaries.\n";
|
|
} // if
|
|
if (IsFree(startSector) && (startSector <= endSector)) {
|
|
if (FindLastInFree(startSector) >= endSector) {
|
|
partitions[partNum].SetFirstLBA(startSector);
|
|
partitions[partNum].SetLastLBA(endSector);
|
|
partitions[partNum].SetType(DEFAULT_GPT_TYPE);
|
|
partitions[partNum].RandomizeUniqueGUID();
|
|
} else retval = 0; // if free space until endSector
|
|
} else retval = 0; // if startSector is free
|
|
} else retval = 0; // if legal partition number
|
|
return retval;
|
|
} // GPTData::CreatePartition(partNum, startSector, endSector)
|
|
|
|
// Sort the GPT entries, eliminating gaps and making for a logical
|
|
// ordering.
|
|
void GPTData::SortGPT(void) {
|
|
if (numParts > 0)
|
|
sort(partitions, partitions + numParts);
|
|
} // GPTData::SortGPT()
|
|
|
|
// Swap the contents of two partitions.
|
|
// Returns 1 if successful, 0 if either partition is out of range
|
|
// (that is, not a legal number; either or both can be empty).
|
|
// Note that if partNum1 = partNum2 and this number is in range,
|
|
// it will be considered successful.
|
|
int GPTData::SwapPartitions(uint32_t partNum1, uint32_t partNum2) {
|
|
GPTPart temp;
|
|
int allOK = 1;
|
|
|
|
if ((partNum1 < numParts) && (partNum2 < numParts)) {
|
|
if (partNum1 != partNum2) {
|
|
temp = partitions[partNum1];
|
|
partitions[partNum1] = partitions[partNum2];
|
|
partitions[partNum2] = temp;
|
|
} // if
|
|
} else allOK = 0; // partition numbers are valid
|
|
return allOK;
|
|
} // GPTData::SwapPartitions()
|
|
|
|
// Set up data structures for entirely new set of partitions on the
|
|
// specified device. Returns 1 if OK, 0 if there were problems.
|
|
// Note that this function does NOT clear the protectiveMBR data
|
|
// structure, since it may hold the original MBR partitions if the
|
|
// program was launched on an MBR disk, and those may need to be
|
|
// converted to GPT format.
|
|
int GPTData::ClearGPTData(void) {
|
|
int goOn = 1, i;
|
|
|
|
// Set up the partition table....
|
|
delete[] partitions;
|
|
partitions = NULL;
|
|
SetGPTSize(NUM_GPT_ENTRIES);
|
|
|
|
// Now initialize a bunch of stuff that's static....
|
|
mainHeader.signature = GPT_SIGNATURE;
|
|
mainHeader.revision = 0x00010000;
|
|
mainHeader.headerSize = HEADER_SIZE;
|
|
mainHeader.reserved = 0;
|
|
mainHeader.currentLBA = UINT64_C(1);
|
|
mainHeader.partitionEntriesLBA = (uint64_t) 2;
|
|
mainHeader.sizeOfPartitionEntries = GPT_SIZE;
|
|
mainHeader.firstUsableLBA = GetTableSizeInSectors() + mainHeader.partitionEntriesLBA;
|
|
for (i = 0; i < GPT_RESERVED; i++) {
|
|
mainHeader.reserved2[i] = '\0';
|
|
} // for
|
|
if (blockSize > 0)
|
|
sectorAlignment = DEFAULT_ALIGNMENT * SECTOR_SIZE / blockSize;
|
|
else
|
|
sectorAlignment = DEFAULT_ALIGNMENT;
|
|
|
|
// Now some semi-static items (computed based on end of disk)
|
|
mainHeader.backupLBA = diskSize - UINT64_C(1);
|
|
mainHeader.lastUsableLBA = diskSize - mainHeader.firstUsableLBA;
|
|
|
|
// Set a unique GUID for the disk, based on random numbers
|
|
mainHeader.diskGUID.Randomize();
|
|
|
|
// Copy main header to backup header
|
|
RebuildSecondHeader();
|
|
|
|
// Blank out the partitions array....
|
|
BlankPartitions();
|
|
|
|
// Flag all CRCs as being OK....
|
|
mainCrcOk = 1;
|
|
secondCrcOk = 1;
|
|
mainPartsCrcOk = 1;
|
|
secondPartsCrcOk = 1;
|
|
|
|
return (goOn);
|
|
} // GPTData::ClearGPTData()
|
|
|
|
// Set the location of the second GPT header data to the end of the disk.
|
|
// If the disk size has actually changed, this also adjusts the protective
|
|
// entry in the MBR, since it's probably no longer correct.
|
|
// Used internally and called by the 'e' option on the recovery &
|
|
// transformation menu, to help users of RAID arrays who add disk space
|
|
// to their arrays or to adjust data structures in restore operations
|
|
// involving unequal-sized disks.
|
|
void GPTData::MoveSecondHeaderToEnd() {
|
|
mainHeader.backupLBA = secondHeader.currentLBA = diskSize - UINT64_C(1);
|
|
if (mainHeader.lastUsableLBA != diskSize - mainHeader.firstUsableLBA) {
|
|
if (protectiveMBR.GetValidity() == hybrid) {
|
|
protectiveMBR.OptimizeEESize();
|
|
RecomputeCHS();
|
|
} // if
|
|
if (protectiveMBR.GetValidity() == gpt)
|
|
MakeProtectiveMBR();
|
|
} // if
|
|
mainHeader.lastUsableLBA = secondHeader.lastUsableLBA = diskSize - mainHeader.firstUsableLBA;
|
|
secondHeader.partitionEntriesLBA = secondHeader.lastUsableLBA + UINT64_C(1);
|
|
} // GPTData::FixSecondHeaderLocation()
|
|
|
|
// Sets the partition's name to the specified UnicodeString without
|
|
// user interaction.
|
|
// Returns 1 on success, 0 on failure (invalid partition number).
|
|
int GPTData::SetName(uint32_t partNum, const UnicodeString & theName) {
|
|
int retval = 1;
|
|
|
|
if (IsUsedPartNum(partNum))
|
|
partitions[partNum].SetName(theName);
|
|
else
|
|
retval = 0;
|
|
|
|
return retval;
|
|
} // GPTData::SetName
|
|
|
|
// Set the disk GUID to the specified value. Note that the header CRCs must
|
|
// be recomputed after calling this function.
|
|
void GPTData::SetDiskGUID(GUIDData newGUID) {
|
|
mainHeader.diskGUID = newGUID;
|
|
secondHeader.diskGUID = newGUID;
|
|
} // SetDiskGUID()
|
|
|
|
// Set the unique GUID of the specified partition. Returns 1 on
|
|
// successful completion, 0 if there were problems (invalid
|
|
// partition number).
|
|
int GPTData::SetPartitionGUID(uint32_t pn, GUIDData theGUID) {
|
|
int retval = 0;
|
|
|
|
if (pn < numParts) {
|
|
if (partitions[pn].IsUsed()) {
|
|
partitions[pn].SetUniqueGUID(theGUID);
|
|
retval = 1;
|
|
} // if
|
|
} // if
|
|
return retval;
|
|
} // GPTData::SetPartitionGUID()
|
|
|
|
// Set new random GUIDs for the disk and all partitions. Intended to be used
|
|
// after disk cloning or similar operations that don't randomize the GUIDs.
|
|
void GPTData::RandomizeGUIDs(void) {
|
|
uint32_t i;
|
|
|
|
mainHeader.diskGUID.Randomize();
|
|
secondHeader.diskGUID = mainHeader.diskGUID;
|
|
for (i = 0; i < numParts; i++)
|
|
if (partitions[i].IsUsed())
|
|
partitions[i].RandomizeUniqueGUID();
|
|
} // GPTData::RandomizeGUIDs()
|
|
|
|
// Change partition type code non-interactively. Returns 1 if
|
|
// successful, 0 if not....
|
|
int GPTData::ChangePartType(uint32_t partNum, PartType theGUID) {
|
|
int retval = 1;
|
|
|
|
if (!IsFreePartNum(partNum)) {
|
|
partitions[partNum].SetType(theGUID);
|
|
} else retval = 0;
|
|
return retval;
|
|
} // GPTData::ChangePartType()
|
|
|
|
// Recompute the CHS values of all the MBR partitions. Used to reset
|
|
// CHS values that some BIOSes require, despite the fact that the
|
|
// resulting CHS values violate the GPT standard.
|
|
void GPTData::RecomputeCHS(void) {
|
|
int i;
|
|
|
|
for (i = 0; i < 4; i++)
|
|
protectiveMBR.RecomputeCHS(i);
|
|
} // GPTData::RecomputeCHS()
|
|
|
|
// Adjust sector number so that it falls on a sector boundary that's a
|
|
// multiple of sectorAlignment. This is done to improve the performance
|
|
// of Western Digital Advanced Format disks and disks with similar
|
|
// technology from other companies, which use 4096-byte sectors
|
|
// internally although they translate to 512-byte sectors for the
|
|
// benefit of the OS. If partitions aren't properly aligned on these
|
|
// disks, some filesystem data structures can span multiple physical
|
|
// sectors, degrading performance. This function should be called
|
|
// only on the FIRST sector of the partition, not the last!
|
|
// This function returns 1 if the alignment was altered, 0 if it
|
|
// was unchanged.
|
|
int GPTData::Align(uint64_t* sector) {
|
|
int retval = 0, sectorOK = 0;
|
|
uint64_t earlier, later, testSector;
|
|
|
|
if ((*sector % sectorAlignment) != 0) {
|
|
earlier = (*sector / sectorAlignment) * sectorAlignment;
|
|
later = earlier + (uint64_t) sectorAlignment;
|
|
|
|
// Check to see that every sector between the earlier one and the
|
|
// requested one is clear, and that it's not too early....
|
|
if (earlier >= mainHeader.firstUsableLBA) {
|
|
sectorOK = 1;
|
|
testSector = earlier;
|
|
do {
|
|
sectorOK = IsFree(testSector++);
|
|
} while ((sectorOK == 1) && (testSector < *sector));
|
|
if (sectorOK == 1) {
|
|
*sector = earlier;
|
|
retval = 1;
|
|
} // if
|
|
} // if firstUsableLBA check
|
|
|
|
// If couldn't move the sector earlier, try to move it later instead....
|
|
if ((sectorOK != 1) && (later <= mainHeader.lastUsableLBA)) {
|
|
sectorOK = 1;
|
|
testSector = later;
|
|
do {
|
|
sectorOK = IsFree(testSector--);
|
|
} while ((sectorOK == 1) && (testSector > *sector));
|
|
if (sectorOK == 1) {
|
|
*sector = later;
|
|
retval = 1;
|
|
} // if
|
|
} // if
|
|
} // if
|
|
return retval;
|
|
} // GPTData::Align()
|
|
|
|
/********************************************************
|
|
* *
|
|
* Functions that return data about GPT data structures *
|
|
* (most of these are inline in gpt.h) *
|
|
* *
|
|
********************************************************/
|
|
|
|
// Find the low and high used partition numbers (numbered from 0).
|
|
// Return value is the number of partitions found. Note that the
|
|
// *low and *high values are both set to 0 when no partitions
|
|
// are found, as well as when a single partition in the first
|
|
// position exists. Thus, the return value is the only way to
|
|
// tell when no partitions exist.
|
|
int GPTData::GetPartRange(uint32_t *low, uint32_t *high) {
|
|
uint32_t i;
|
|
int numFound = 0;
|
|
|
|
*low = numParts + 1; // code for "not found"
|
|
*high = 0;
|
|
for (i = 0; i < numParts; i++) {
|
|
if (partitions[i].IsUsed()) { // it exists
|
|
*high = i; // since we're counting up, set the high value
|
|
// Set the low value only if it's not yet found...
|
|
if (*low == (numParts + 1)) *low = i;
|
|
numFound++;
|
|
} // if
|
|
} // for
|
|
|
|
// Above will leave *low pointing to its "not found" value if no partitions
|
|
// are defined, so reset to 0 if this is the case....
|
|
if (*low == (numParts + 1))
|
|
*low = 0;
|
|
return numFound;
|
|
} // GPTData::GetPartRange()
|
|
|
|
// Returns the value of the first free partition, or -1 if none is
|
|
// unused.
|
|
int GPTData::FindFirstFreePart(void) {
|
|
int i = 0;
|
|
|
|
if (partitions != NULL) {
|
|
while ((i < (int) numParts) && (partitions[i].IsUsed()))
|
|
i++;
|
|
if (i >= (int) numParts)
|
|
i = -1;
|
|
} else i = -1;
|
|
return i;
|
|
} // GPTData::FindFirstFreePart()
|
|
|
|
// Returns the number of defined partitions.
|
|
uint32_t GPTData::CountParts(void) {
|
|
uint32_t i, counted = 0;
|
|
|
|
for (i = 0; i < numParts; i++) {
|
|
if (partitions[i].IsUsed())
|
|
counted++;
|
|
} // for
|
|
return counted;
|
|
} // GPTData::CountParts()
|
|
|
|
/****************************************************
|
|
* *
|
|
* Functions that return data about disk free space *
|
|
* *
|
|
****************************************************/
|
|
|
|
// Find the first available block after the starting point; returns 0 if
|
|
// there are no available blocks left
|
|
uint64_t GPTData::FindFirstAvailable(uint64_t start) {
|
|
uint64_t first;
|
|
uint32_t i;
|
|
int firstMoved = 0;
|
|
|
|
// Begin from the specified starting point or from the first usable
|
|
// LBA, whichever is greater...
|
|
if (start < mainHeader.firstUsableLBA)
|
|
first = mainHeader.firstUsableLBA;
|
|
else
|
|
first = start;
|
|
|
|
// ...now search through all partitions; if first is within an
|
|
// existing partition, move it to the next sector after that
|
|
// partition and repeat. If first was moved, set firstMoved
|
|
// flag; repeat until firstMoved is not set, so as to catch
|
|
// cases where partitions are out of sequential order....
|
|
do {
|
|
firstMoved = 0;
|
|
for (i = 0; i < numParts; i++) {
|
|
if ((partitions[i].IsUsed()) && (first >= partitions[i].GetFirstLBA()) &&
|
|
(first <= partitions[i].GetLastLBA())) { // in existing part.
|
|
first = partitions[i].GetLastLBA() + 1;
|
|
firstMoved = 1;
|
|
} // if
|
|
} // for
|
|
} while (firstMoved == 1);
|
|
if (first > mainHeader.lastUsableLBA)
|
|
first = 0;
|
|
return (first);
|
|
} // GPTData::FindFirstAvailable()
|
|
|
|
// Returns the LBA of the start of the first partition on the disk (by
|
|
// sector number), or 0 if there are no partitions defined.
|
|
uint64_t GPTData::FindFirstUsedLBA(void) {
|
|
uint32_t i;
|
|
uint64_t firstFound = UINT64_MAX;
|
|
|
|
for (i = 0; i < numParts; i++) {
|
|
if ((partitions[i].IsUsed()) && (partitions[i].GetFirstLBA() < firstFound)) {
|
|
firstFound = partitions[i].GetFirstLBA();
|
|
} // if
|
|
} // for
|
|
return firstFound;
|
|
} // GPTData::FindFirstUsedLBA()
|
|
|
|
// Finds the first available sector in the largest block of unallocated
|
|
// space on the disk. Returns 0 if there are no available blocks left
|
|
uint64_t GPTData::FindFirstInLargest(void) {
|
|
uint64_t start, firstBlock, lastBlock, segmentSize, selectedSize = 0, selectedSegment = 0;
|
|
|
|
start = 0;
|
|
do {
|
|
firstBlock = FindFirstAvailable(start);
|
|
if (firstBlock != UINT32_C(0)) { // something's free...
|
|
lastBlock = FindLastInFree(firstBlock);
|
|
segmentSize = lastBlock - firstBlock + UINT32_C(1);
|
|
if (segmentSize > selectedSize) {
|
|
selectedSize = segmentSize;
|
|
selectedSegment = firstBlock;
|
|
} // if
|
|
start = lastBlock + 1;
|
|
} // if
|
|
} while (firstBlock != 0);
|
|
return selectedSegment;
|
|
} // GPTData::FindFirstInLargest()
|
|
|
|
// Find the last available block on the disk.
|
|
// Returns 0 if there are no available sectors
|
|
uint64_t GPTData::FindLastAvailable(void) {
|
|
uint64_t last;
|
|
uint32_t i;
|
|
int lastMoved = 0;
|
|
|
|
// Start by assuming the last usable LBA is available....
|
|
last = mainHeader.lastUsableLBA;
|
|
|
|
// ...now, similar to algorithm in FindFirstAvailable(), search
|
|
// through all partitions, moving last when it's in an existing
|
|
// partition. Set the lastMoved flag so we repeat to catch cases
|
|
// where partitions are out of logical order.
|
|
do {
|
|
lastMoved = 0;
|
|
for (i = 0; i < numParts; i++) {
|
|
if ((last >= partitions[i].GetFirstLBA()) &&
|
|
(last <= partitions[i].GetLastLBA())) { // in existing part.
|
|
last = partitions[i].GetFirstLBA() - 1;
|
|
lastMoved = 1;
|
|
} // if
|
|
} // for
|
|
} while (lastMoved == 1);
|
|
if (last < mainHeader.firstUsableLBA)
|
|
last = 0;
|
|
return (last);
|
|
} // GPTData::FindLastAvailable()
|
|
|
|
// Find the last available block in the free space pointed to by start.
|
|
uint64_t GPTData::FindLastInFree(uint64_t start) {
|
|
uint64_t nearestStart;
|
|
uint32_t i;
|
|
|
|
nearestStart = mainHeader.lastUsableLBA;
|
|
for (i = 0; i < numParts; i++) {
|
|
if ((nearestStart > partitions[i].GetFirstLBA()) &&
|
|
(partitions[i].GetFirstLBA() > start)) {
|
|
nearestStart = partitions[i].GetFirstLBA() - 1;
|
|
} // if
|
|
} // for
|
|
return (nearestStart);
|
|
} // GPTData::FindLastInFree()
|
|
|
|
// Finds the total number of free blocks, the number of segments in which
|
|
// they reside, and the size of the largest of those segments
|
|
uint64_t GPTData::FindFreeBlocks(uint32_t *numSegments, uint64_t *largestSegment) {
|
|
uint64_t start = UINT64_C(0); // starting point for each search
|
|
uint64_t totalFound = UINT64_C(0); // running total
|
|
uint64_t firstBlock; // first block in a segment
|
|
uint64_t lastBlock; // last block in a segment
|
|
uint64_t segmentSize; // size of segment in blocks
|
|
uint32_t num = 0;
|
|
|
|
*largestSegment = UINT64_C(0);
|
|
if (diskSize > 0) {
|
|
do {
|
|
firstBlock = FindFirstAvailable(start);
|
|
if (firstBlock != UINT64_C(0)) { // something's free...
|
|
lastBlock = FindLastInFree(firstBlock);
|
|
segmentSize = lastBlock - firstBlock + UINT64_C(1);
|
|
if (segmentSize > *largestSegment) {
|
|
*largestSegment = segmentSize;
|
|
} // if
|
|
totalFound += segmentSize;
|
|
num++;
|
|
start = lastBlock + 1;
|
|
} // if
|
|
} while (firstBlock != 0);
|
|
} // if
|
|
*numSegments = num;
|
|
return totalFound;
|
|
} // GPTData::FindFreeBlocks()
|
|
|
|
// Returns 1 if sector is unallocated, 0 if it's allocated to a partition.
|
|
// If it's allocated, return the partition number to which it's allocated
|
|
// in partNum, if that variable is non-NULL. (A value of UINT32_MAX is
|
|
// returned in partNum if the sector is in use by basic GPT data structures.)
|
|
int GPTData::IsFree(uint64_t sector, uint32_t *partNum) {
|
|
int isFree = 1;
|
|
uint32_t i;
|
|
|
|
for (i = 0; i < numParts; i++) {
|
|
if ((sector >= partitions[i].GetFirstLBA()) &&
|
|
(sector <= partitions[i].GetLastLBA())) {
|
|
isFree = 0;
|
|
if (partNum != NULL)
|
|
*partNum = i;
|
|
} // if
|
|
} // for
|
|
if ((sector < mainHeader.firstUsableLBA) ||
|
|
(sector > mainHeader.lastUsableLBA)) {
|
|
isFree = 0;
|
|
if (partNum != NULL)
|
|
*partNum = UINT32_MAX;
|
|
} // if
|
|
return (isFree);
|
|
} // GPTData::IsFree()
|
|
|
|
// Returns 1 if partNum is unused AND if it's a legal value.
|
|
int GPTData::IsFreePartNum(uint32_t partNum) {
|
|
return ((partNum < numParts) && (partitions != NULL) &&
|
|
(!partitions[partNum].IsUsed()));
|
|
} // GPTData::IsFreePartNum()
|
|
|
|
// Returns 1 if partNum is in use.
|
|
int GPTData::IsUsedPartNum(uint32_t partNum) {
|
|
return ((partNum < numParts) && (partitions != NULL) &&
|
|
(partitions[partNum].IsUsed()));
|
|
} // GPTData::IsUsedPartNum()
|
|
|
|
/***********************************************************
|
|
* *
|
|
* Change how functions work or return information on them *
|
|
* *
|
|
***********************************************************/
|
|
|
|
// Set partition alignment value; partitions will begin on multiples of
|
|
// the specified value
|
|
void GPTData::SetAlignment(uint32_t n) {
|
|
if (n > 0) {
|
|
sectorAlignment = n;
|
|
if ((physBlockSize > 0) && (n % (physBlockSize / blockSize) != 0)) {
|
|
cout << "Warning: Setting alignment to a value that does not match the disk's\n"
|
|
<< "physical block size! Performance degradation may result!\n"
|
|
<< "Physical block size = " << physBlockSize << "\n"
|
|
<< "Logical block size = " << blockSize << "\n"
|
|
<< "Optimal alignment = " << physBlockSize / blockSize << " or multiples thereof.\n";
|
|
} // if
|
|
} else {
|
|
cerr << "Attempt to set partition alignment to 0!\n";
|
|
} // if/else
|
|
} // GPTData::SetAlignment()
|
|
|
|
// Compute sector alignment based on the current partitions (if any). Each
|
|
// partition's starting LBA is examined, and if it's divisible by a power-of-2
|
|
// value less than or equal to the DEFAULT_ALIGNMENT value (adjusted for the
|
|
// sector size), but not by the previously-located alignment value, then the
|
|
// alignment value is adjusted down. If the computed alignment is less than 8
|
|
// and the disk is bigger than SMALLEST_ADVANCED_FORMAT, resets it to 8. This
|
|
// is a safety measure for Advanced Format drives. If no partitions are
|
|
// defined, the alignment value is set to DEFAULT_ALIGNMENT (2048) (or an
|
|
// adjustment of that based on the current sector size). The result is that new
|
|
// drives are aligned to 2048-sector multiples but the program won't complain
|
|
// about other alignments on existing disks unless a smaller-than-8 alignment
|
|
// is used on big disks (as safety for Advanced Format drives).
|
|
// Returns the computed alignment value.
|
|
uint32_t GPTData::ComputeAlignment(void) {
|
|
uint32_t i = 0, found, exponent = 31;
|
|
uint32_t align = DEFAULT_ALIGNMENT;
|
|
|
|
if (blockSize > 0)
|
|
align = DEFAULT_ALIGNMENT * SECTOR_SIZE / blockSize;
|
|
exponent = (uint32_t) log2(align);
|
|
for (i = 0; i < numParts; i++) {
|
|
if (partitions[i].IsUsed()) {
|
|
found = 0;
|
|
while (!found) {
|
|
align = UINT64_C(1) << exponent;
|
|
if ((partitions[i].GetFirstLBA() % align) == 0) {
|
|
found = 1;
|
|
} else {
|
|
exponent--;
|
|
} // if/else
|
|
} // while
|
|
} // if
|
|
} // for
|
|
if ((align < MIN_AF_ALIGNMENT) && (diskSize >= SMALLEST_ADVANCED_FORMAT))
|
|
align = MIN_AF_ALIGNMENT;
|
|
sectorAlignment = align;
|
|
return align;
|
|
} // GPTData::ComputeAlignment()
|
|
|
|
/********************************
|
|
* *
|
|
* Endianness support functions *
|
|
* *
|
|
********************************/
|
|
|
|
void GPTData::ReverseHeaderBytes(struct GPTHeader* header) {
|
|
ReverseBytes(&header->signature, 8);
|
|
ReverseBytes(&header->revision, 4);
|
|
ReverseBytes(&header->headerSize, 4);
|
|
ReverseBytes(&header->headerCRC, 4);
|
|
ReverseBytes(&header->reserved, 4);
|
|
ReverseBytes(&header->currentLBA, 8);
|
|
ReverseBytes(&header->backupLBA, 8);
|
|
ReverseBytes(&header->firstUsableLBA, 8);
|
|
ReverseBytes(&header->lastUsableLBA, 8);
|
|
ReverseBytes(&header->partitionEntriesLBA, 8);
|
|
ReverseBytes(&header->numParts, 4);
|
|
ReverseBytes(&header->sizeOfPartitionEntries, 4);
|
|
ReverseBytes(&header->partitionEntriesCRC, 4);
|
|
ReverseBytes(header->reserved2, GPT_RESERVED);
|
|
} // GPTData::ReverseHeaderBytes()
|
|
|
|
// Reverse byte order for all partitions.
|
|
void GPTData::ReversePartitionBytes() {
|
|
uint32_t i;
|
|
|
|
for (i = 0; i < numParts; i++) {
|
|
partitions[i].ReversePartBytes();
|
|
} // for
|
|
} // GPTData::ReversePartitionBytes()
|
|
|
|
// Validate partition number
|
|
bool GPTData::ValidPartNum (const uint32_t partNum) {
|
|
if (partNum >= numParts) {
|
|
cerr << "Partition number out of range: " << partNum << "\n";
|
|
return false;
|
|
} // if
|
|
return true;
|
|
} // GPTData::ValidPartNum
|
|
|
|
// Return a single partition for inspection (not modification!) by other
|
|
// functions.
|
|
const GPTPart & GPTData::operator[](uint32_t partNum) const {
|
|
if (partNum >= numParts) {
|
|
cerr << "Partition number out of range (" << partNum << " requested, but only "
|
|
<< numParts << " available)\n";
|
|
exit(1);
|
|
} // if
|
|
if (partitions == NULL) {
|
|
cerr << "No partitions defined in GPTData::operator[]; fatal error!\n";
|
|
exit(1);
|
|
} // if
|
|
return partitions[partNum];
|
|
} // operator[]
|
|
|
|
// Return (not for modification!) the disk's GUID value
|
|
const GUIDData & GPTData::GetDiskGUID(void) const {
|
|
return mainHeader.diskGUID;
|
|
} // GPTData::GetDiskGUID()
|
|
|
|
// Manage attributes for a partition, based on commands passed to this function.
|
|
// (Function is non-interactive.)
|
|
// Returns 1 if a modification command succeeded, 0 if the command should not have
|
|
// modified data, and -1 if a modification command failed.
|
|
int GPTData::ManageAttributes(int partNum, const string & command, const string & bits) {
|
|
int retval = 0;
|
|
Attributes theAttr;
|
|
|
|
if (partNum >= (int) numParts) {
|
|
cerr << "Invalid partition number (" << partNum + 1 << ")\n";
|
|
retval = -1;
|
|
} else {
|
|
if (command == "show") {
|
|
ShowAttributes(partNum);
|
|
} else if (command == "get") {
|
|
GetAttribute(partNum, bits);
|
|
} else {
|
|
theAttr = partitions[partNum].GetAttributes();
|
|
if (theAttr.OperateOnAttributes(partNum, command, bits)) {
|
|
partitions[partNum].SetAttributes(theAttr.GetAttributes());
|
|
retval = 1;
|
|
} else {
|
|
retval = -1;
|
|
} // if/else
|
|
} // if/elseif/else
|
|
} // if/else invalid partition #
|
|
|
|
return retval;
|
|
} // GPTData::ManageAttributes()
|
|
|
|
// Show all attributes for a specified partition....
|
|
void GPTData::ShowAttributes(const uint32_t partNum) {
|
|
if ((partNum < numParts) && partitions[partNum].IsUsed())
|
|
partitions[partNum].ShowAttributes(partNum);
|
|
} // GPTData::ShowAttributes
|
|
|
|
// Show whether a single attribute bit is set (terse output)...
|
|
void GPTData::GetAttribute(const uint32_t partNum, const string& attributeBits) {
|
|
if (partNum < numParts)
|
|
partitions[partNum].GetAttributes().OperateOnAttributes(partNum, "get", attributeBits);
|
|
} // GPTData::GetAttribute
|
|
|
|
|
|
/******************************************
|
|
* *
|
|
* Additional non-class support functions *
|
|
* *
|
|
******************************************/
|
|
|
|
// Check to be sure that data type sizes are correct. The basic types (uint*_t) should
|
|
// never fail these tests, but the struct types may fail depending on compile options.
|
|
// Specifically, the -fpack-struct option to gcc may be required to ensure proper structure
|
|
// sizes.
|
|
int SizesOK(void) {
|
|
int allOK = 1;
|
|
|
|
if (sizeof(uint8_t) != 1) {
|
|
cerr << "uint8_t is " << sizeof(uint8_t) << " bytes, should be 1 byte; aborting!\n";
|
|
allOK = 0;
|
|
} // if
|
|
if (sizeof(uint16_t) != 2) {
|
|
cerr << "uint16_t is " << sizeof(uint16_t) << " bytes, should be 2 bytes; aborting!\n";
|
|
allOK = 0;
|
|
} // if
|
|
if (sizeof(uint32_t) != 4) {
|
|
cerr << "uint32_t is " << sizeof(uint32_t) << " bytes, should be 4 bytes; aborting!\n";
|
|
allOK = 0;
|
|
} // if
|
|
if (sizeof(uint64_t) != 8) {
|
|
cerr << "uint64_t is " << sizeof(uint64_t) << " bytes, should be 8 bytes; aborting!\n";
|
|
allOK = 0;
|
|
} // if
|
|
if (sizeof(struct MBRRecord) != 16) {
|
|
cerr << "MBRRecord is " << sizeof(MBRRecord) << " bytes, should be 16 bytes; aborting!\n";
|
|
allOK = 0;
|
|
} // if
|
|
if (sizeof(struct TempMBR) != 512) {
|
|
cerr << "TempMBR is " << sizeof(TempMBR) << " bytes, should be 512 bytes; aborting!\n";
|
|
allOK = 0;
|
|
} // if
|
|
if (sizeof(struct GPTHeader) != 512) {
|
|
cerr << "GPTHeader is " << sizeof(GPTHeader) << " bytes, should be 512 bytes; aborting!\n";
|
|
allOK = 0;
|
|
} // if
|
|
if (sizeof(GPTPart) != 128) {
|
|
cerr << "GPTPart is " << sizeof(GPTPart) << " bytes, should be 128 bytes; aborting!\n";
|
|
allOK = 0;
|
|
} // if
|
|
if (sizeof(GUIDData) != 16) {
|
|
cerr << "GUIDData is " << sizeof(GUIDData) << " bytes, should be 16 bytes; aborting!\n";
|
|
allOK = 0;
|
|
} // if
|
|
if (sizeof(PartType) != 16) {
|
|
cerr << "PartType is " << sizeof(PartType) << " bytes, should be 16 bytes; aborting!\n";
|
|
allOK = 0;
|
|
} // if
|
|
return (allOK);
|
|
} // SizesOK()
|
|
|