You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

660 lines
18 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

/*
* Copyright © 2017 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Paul Kocialkowski <paul.kocialkowski@linux.intel.com>
*/
#include "config.h"
#include <errno.h>
#include <fcntl.h>
#include <gsl/gsl_fft_real.h>
#include <math.h>
#include <unistd.h>
#include "igt_audio.h"
#include "igt_core.h"
#define FREQS_MAX 64
#define CHANNELS_MAX 8
#define SYNTHESIZE_AMPLITUDE 0.9
#define SYNTHESIZE_ACCURACY 0.2
/** MIN_FREQ: minimum frequency that audio_signal can generate.
*
* To make sure the audio signal doesn't contain noise, #audio_signal_detect
* checks that low frequencies have a power lower than #NOISE_THRESHOLD.
* However if too-low frequencies are generated, noise detection can fail.
*
* This value should be at least 100Hz plus one bin. Best is not to change this
* value.
*/
#define MIN_FREQ 200 /* Hz */
#define NOISE_THRESHOLD 0.0005
/**
* SECTION:igt_audio
* @short_description: Library for audio-related tests
* @title: Audio
* @include: igt_audio.h
*
* This library contains helpers for audio-related tests. More specifically,
* it allows generating additions of sine signals as well as detecting them.
*/
struct audio_signal_freq {
int freq;
int channel;
double *period;
size_t period_len;
int offset;
};
struct audio_signal {
int channels;
int sampling_rate;
struct audio_signal_freq freqs[FREQS_MAX];
size_t freqs_count;
};
/**
* audio_signal_init:
* @channels: The number of channels to use for the signal
* @sampling_rate: The sampling rate to use for the signal
*
* Allocate and initialize an audio signal structure with the given parameters.
*
* Returns: A newly-allocated audio signal structure
*/
struct audio_signal *audio_signal_init(int channels, int sampling_rate)
{
struct audio_signal *signal;
igt_assert(channels > 0);
igt_assert(channels <= CHANNELS_MAX);
signal = calloc(1, sizeof(struct audio_signal));
signal->sampling_rate = sampling_rate;
signal->channels = channels;
return signal;
}
/**
* audio_signal_add_frequency:
* @signal: The target signal structure
* @frequency: The frequency to add to the signal
* @channel: The channel to add this frequency to, or -1 to add it to all
* channels
*
* Add a frequency to the signal.
*
* Returns: An integer equal to zero for success and negative for failure
*/
int audio_signal_add_frequency(struct audio_signal *signal, int frequency,
int channel)
{
size_t index = signal->freqs_count;
struct audio_signal_freq *freq;
igt_assert(index < FREQS_MAX);
igt_assert(channel < signal->channels);
igt_assert(frequency >= MIN_FREQ);
/* Stay within the NyquistShannon sampling theorem. */
if (frequency > signal->sampling_rate / 2) {
igt_debug("Skipping frequency %d: too high for a %d Hz "
"sampling rate\n", frequency, signal->sampling_rate);
return -1;
}
/* Clip the frequency to an integer multiple of the sampling rate.
* This to be able to store a full period of it and use that for
* signal generation, instead of recurrent calls to sin().
*/
frequency = signal->sampling_rate / (signal->sampling_rate / frequency);
igt_debug("Adding test frequency %d to channel %d\n",
frequency, channel);
freq = &signal->freqs[index];
memset(freq, 0, sizeof(*freq));
freq->freq = frequency;
freq->channel = channel;
signal->freqs_count++;
return 0;
}
/**
* audio_signal_synthesize:
* @signal: The target signal structure
*
* Synthesize the data tables for the audio signal, that can later be used
* to fill audio buffers. The resources allocated by this function must be
* freed with a call to audio_signal_clean when the signal is no longer used.
*/
void audio_signal_synthesize(struct audio_signal *signal)
{
double *period;
double value;
size_t period_len;
int freq;
int i, j;
for (i = 0; i < signal->freqs_count; i++) {
freq = signal->freqs[i].freq;
period_len = signal->sampling_rate / freq;
period = calloc(period_len, sizeof(double));
for (j = 0; j < period_len; j++) {
value = 2.0 * M_PI * freq / signal->sampling_rate * j;
value = sin(value) * SYNTHESIZE_AMPLITUDE;
period[j] = value;
}
signal->freqs[i].period = period;
signal->freqs[i].period_len = period_len;
}
}
/**
* audio_signal_fini:
*
* Release the signal.
*/
void audio_signal_fini(struct audio_signal *signal)
{
audio_signal_reset(signal);
free(signal);
}
/**
* audio_signal_reset:
* @signal: The target signal structure
*
* Free the resources allocated by audio_signal_synthesize and remove
* the previously-added frequencies.
*/
void audio_signal_reset(struct audio_signal *signal)
{
size_t i;
for (i = 0; i < signal->freqs_count; i++) {
free(signal->freqs[i].period);
}
signal->freqs_count = 0;
}
static size_t audio_signal_count_freqs(struct audio_signal *signal, int channel)
{
size_t n, i;
struct audio_signal_freq *freq;
n = 0;
for (i = 0; i < signal->freqs_count; i++) {
freq = &signal->freqs[i];
if (freq->channel < 0 || freq->channel == channel)
n++;
}
return n;
}
/** audio_sanity_check:
*
* Make sure our generated signal is not messed up. In particular, make sure
* the maximum reaches a reasonable value but doesn't exceed our
* SYNTHESIZE_AMPLITUDE limit. Same for the minimum.
*
* We want the signal to be powerful enough to be able to hear something. We
* want the signal not to reach 1.0 so that we're sure it won't get capped by
* the audio card or the receiver.
*/
static void audio_sanity_check(double *samples, size_t samples_len)
{
size_t i;
double min = 0, max = 0;
for (i = 0; i < samples_len; i++) {
if (samples[i] < min)
min = samples[i];
if (samples[i] > max)
max = samples[i];
}
igt_assert(-SYNTHESIZE_AMPLITUDE <= min);
igt_assert(min <= -SYNTHESIZE_AMPLITUDE + SYNTHESIZE_ACCURACY);
igt_assert(SYNTHESIZE_AMPLITUDE - SYNTHESIZE_ACCURACY <= max);
igt_assert(max <= SYNTHESIZE_AMPLITUDE);
}
/**
* audio_signal_fill:
* @signal: The target signal structure
* @buffer: The target buffer to fill
* @samples: The number of samples to fill
*
* Fill the requested number of samples to the target buffer with the audio
* signal data (in interleaved double format), at the requested sampling rate
* and number of channels.
*
* Each sample is normalized (ie. between 0 and 1).
*/
void audio_signal_fill(struct audio_signal *signal, double *buffer,
size_t samples)
{
double *dst, *src;
struct audio_signal_freq *freq;
int total;
int count;
int i, j, k;
size_t freqs_per_channel[CHANNELS_MAX];
memset(buffer, 0, sizeof(double) * signal->channels * samples);
for (i = 0; i < signal->channels; i++) {
freqs_per_channel[i] = audio_signal_count_freqs(signal, i);
igt_assert(freqs_per_channel[i] > 0);
}
for (i = 0; i < signal->freqs_count; i++) {
freq = &signal->freqs[i];
total = 0;
igt_assert(freq->period);
while (total < samples) {
src = freq->period + freq->offset;
dst = buffer + total * signal->channels;
count = freq->period_len - freq->offset;
if (count > samples - total)
count = samples - total;
freq->offset += count;
freq->offset %= freq->period_len;
for (j = 0; j < count; j++) {
for (k = 0; k < signal->channels; k++) {
if (freq->channel >= 0 &&
freq->channel != k)
continue;
dst[j * signal->channels + k] +=
src[j] / freqs_per_channel[k];
}
}
total += count;
}
}
audio_sanity_check(buffer, signal->channels * samples);
}
/* See https://en.wikipedia.org/wiki/Window_function#Hann_and_Hamming_windows */
static double hann_window(double v, size_t i, size_t N)
{
return v * 0.5 * (1 - cos(2.0 * M_PI * (double) i / (double) N));
}
/**
* Checks that frequencies specified in signal, and only those, are included
* in the input data.
*
* sampling_rate is given in Hz. samples_len is the number of elements in
* samples.
*/
bool audio_signal_detect(struct audio_signal *signal, int sampling_rate,
int channel, const double *samples, size_t samples_len)
{
double *data;
size_t data_len = samples_len;
size_t bin_power_len = data_len / 2 + 1;
double bin_power[bin_power_len];
bool detected[FREQS_MAX];
int ret, freq_accuracy, freq, local_max_freq;
double max, local_max, threshold;
size_t i, j;
bool above, success;
/* gsl will mutate the array in-place, so make a copy */
data = malloc(samples_len * sizeof(double));
memcpy(data, samples, samples_len * sizeof(double));
/* Apply a Hann window to the input signal, to reduce frequency leaks
* due to the endpoints of the signal being discontinuous.
*
* For more info:
* - https://download.ni.com/evaluation/pxi/Understanding%20FFTs%20and%20Windowing.pdf
* - https://en.wikipedia.org/wiki/Window_function
*/
for (i = 0; i < data_len; i++)
data[i] = hann_window(data[i], i, data_len);
/* Allowed error in Hz due to FFT step */
freq_accuracy = sampling_rate / data_len;
igt_debug("Allowed freq. error: %d Hz\n", freq_accuracy);
ret = gsl_fft_real_radix2_transform(data, 1, data_len);
if (ret != 0) {
free(data);
igt_assert(0);
}
/* Compute the power received by every bin of the FFT.
*
* For i < data_len / 2, the real part of the i-th term is stored at
* data[i] and its imaginary part is stored at data[data_len - i].
* i = 0 and i = data_len / 2 are special cases, they are purely real
* so their imaginary part isn't stored.
*
* The power is encoded as the magnitude of the complex number and the
* phase is encoded as its angle.
*/
bin_power[0] = data[0];
for (i = 1; i < bin_power_len - 1; i++) {
bin_power[i] = hypot(data[i], data[data_len - i]);
}
bin_power[bin_power_len - 1] = data[data_len / 2];
/* Normalize the power */
for (i = 0; i < bin_power_len; i++)
bin_power[i] = 2 * bin_power[i] / data_len;
/* Detect noise with a threshold on the power of low frequencies */
for (i = 0; i < bin_power_len; i++) {
freq = sampling_rate * i / data_len;
if (freq > MIN_FREQ - 100)
break;
if (bin_power[i] > NOISE_THRESHOLD) {
igt_debug("Noise level too high: freq=%d power=%f\n",
freq, bin_power[i]);
return false;
}
}
/* Record the maximum power received as a way to normalize all the
* others. */
max = NAN;
for (i = 0; i < bin_power_len; i++) {
if (isnan(max) || bin_power[i] > max)
max = bin_power[i];
}
for (i = 0; i < signal->freqs_count; i++)
detected[i] = false;
/* Do a linear search through the FFT bins' power to find the the local
* maximums that exceed half of the absolute maximum that we previously
* calculated.
*
* Since the frequencies might not be perfectly aligned with the bins of
* the FFT, we need to find the local maximum across some consecutive
* bins. Once the power returns under the power threshold, we compare
* the frequency of the bin that received the maximum power to the
* expected frequencies. If found, we mark this frequency as such,
* otherwise we warn that an unexpected frequency was found.
*/
threshold = max / 2;
success = true;
above = false;
local_max = 0;
local_max_freq = -1;
for (i = 0; i < bin_power_len; i++) {
freq = sampling_rate * i / data_len;
if (bin_power[i] > threshold)
above = true;
if (!above) {
continue;
}
/* If we were above the threshold and we're not anymore, it's
* time to decide whether the peak frequency is correct or
* invalid. */
if (bin_power[i] < threshold) {
for (j = 0; j < signal->freqs_count; j++) {
if (signal->freqs[j].channel >= 0 &&
signal->freqs[j].channel != channel)
continue;
if (signal->freqs[j].freq >
local_max_freq - freq_accuracy &&
signal->freqs[j].freq <
local_max_freq + freq_accuracy) {
detected[j] = true;
igt_debug("Frequency %d detected\n",
local_max_freq);
break;
}
}
/* We haven't generated this frequency, but we detected
* it. */
if (j == signal->freqs_count) {
igt_debug("Detected additional frequency: %d\n",
local_max_freq);
success = false;
}
above = false;
local_max = 0;
local_max_freq = -1;
}
if (bin_power[i] > local_max) {
local_max = bin_power[i];
local_max_freq = freq;
}
}
/* Check that all frequencies we generated have been detected. */
for (i = 0; i < signal->freqs_count; i++) {
if (signal->freqs[i].channel >= 0 &&
signal->freqs[i].channel != channel)
continue;
if (!detected[i]) {
igt_debug("Missing frequency: %d\n",
signal->freqs[i].freq);
success = false;
}
}
free(data);
return success;
}
/**
* audio_extract_channel_s32_le: extracts a single channel from a multi-channel
* S32_LE input buffer.
*
* If dst_cap is zero, no copy is performed. This can be used to compute the
* minimum required capacity.
*
* Returns: the number of samples extracted.
*/
size_t audio_extract_channel_s32_le(double *dst, size_t dst_cap,
int32_t *src, size_t src_len,
int n_channels, int channel)
{
size_t dst_len, i;
igt_assert(channel < n_channels);
igt_assert(src_len % n_channels == 0);
dst_len = src_len / n_channels;
if (dst_cap == 0)
return dst_len;
igt_assert(dst_len <= dst_cap);
for (i = 0; i < dst_len; i++)
dst[i] = (double) src[i * n_channels + channel] / INT32_MAX;
return dst_len;
}
static void audio_convert_to_s16_le(int16_t *dst, double *src, size_t len)
{
size_t i;
for (i = 0; i < len; ++i)
dst[i] = INT16_MAX * src[i];
}
static void audio_convert_to_s24_le(int32_t *dst, double *src, size_t len)
{
size_t i;
for (i = 0; i < len; ++i)
dst[i] = 0x7FFFFF * src[i];
}
static void audio_convert_to_s32_le(int32_t *dst, double *src, size_t len)
{
size_t i;
for (i = 0; i < len; ++i)
dst[i] = INT32_MAX * src[i];
}
void audio_convert_to(void *dst, double *src, size_t len,
snd_pcm_format_t format)
{
switch (format) {
case SND_PCM_FORMAT_S16_LE:
audio_convert_to_s16_le(dst, src, len);
break;
case SND_PCM_FORMAT_S24_LE:
audio_convert_to_s24_le(dst, src, len);
break;
case SND_PCM_FORMAT_S32_LE:
audio_convert_to_s32_le(dst, src, len);
break;
default:
assert(false); /* unreachable */
}
}
#define RIFF_TAG "RIFF"
#define WAVE_TAG "WAVE"
#define FMT_TAG "fmt "
#define DATA_TAG "data"
static void
append_to_buffer(char *dst, size_t *i, const void *src, size_t src_size)
{
memcpy(&dst[*i], src, src_size);
*i += src_size;
}
/**
* audio_create_wav_file_s32_le:
* @qualifier: the basename of the file (the test name will be prepended, and
* the file extension will be appended)
* @sample_rate: the sample rate in Hz
* @channels: the number of channels
* @path: if non-NULL, will be set to a pointer to the new file path (the
* caller is responsible for free-ing it)
*
* Creates a new WAV file.
*
* After calling this function, the caller is expected to write S32_LE PCM data
* to the returned file descriptor.
*
* See http://www-mmsp.ece.mcgill.ca/Documents/AudioFormats/WAVE/WAVE.html for
* a WAV file format specification.
*
* Returns: a file descriptor to the newly created file, or -1 on error.
*/
int audio_create_wav_file_s32_le(const char *qualifier, uint32_t sample_rate,
uint16_t channels, char **path)
{
char _path[PATH_MAX];
const char *test_name, *subtest_name;
int fd;
char header[44];
size_t i = 0;
uint32_t file_size, chunk_size, byte_rate;
uint16_t format, block_align, bits_per_sample;
test_name = igt_test_name();
subtest_name = igt_subtest_name();
igt_assert(igt_frame_dump_path);
snprintf(_path, sizeof(_path), "%s/audio-%s-%s-%s.wav",
igt_frame_dump_path, test_name, subtest_name, qualifier);
if (path)
*path = strdup(_path);
igt_debug("Dumping %s audio to %s\n", qualifier, _path);
fd = open(_path, O_WRONLY | O_CREAT | O_TRUNC, 0644);
if (fd < 0) {
igt_warn("open failed: %s\n", strerror(errno));
return -1;
}
/* File header */
file_size = UINT32_MAX; /* unknown file size */
append_to_buffer(header, &i, RIFF_TAG, strlen(RIFF_TAG));
append_to_buffer(header, &i, &file_size, sizeof(file_size));
append_to_buffer(header, &i, WAVE_TAG, strlen(WAVE_TAG));
/* Format chunk */
chunk_size = 16;
format = 1; /* PCM */
bits_per_sample = 32; /* S32_LE */
byte_rate = sample_rate * channels * bits_per_sample / 8;
block_align = channels * bits_per_sample / 8;
append_to_buffer(header, &i, FMT_TAG, strlen(FMT_TAG));
append_to_buffer(header, &i, &chunk_size, sizeof(chunk_size));
append_to_buffer(header, &i, &format, sizeof(format));
append_to_buffer(header, &i, &channels, sizeof(channels));
append_to_buffer(header, &i, &sample_rate, sizeof(sample_rate));
append_to_buffer(header, &i, &byte_rate, sizeof(byte_rate));
append_to_buffer(header, &i, &block_align, sizeof(block_align));
append_to_buffer(header, &i, &bits_per_sample, sizeof(bits_per_sample));
/* Data chunk */
chunk_size = UINT32_MAX; /* unknown chunk size */
append_to_buffer(header, &i, DATA_TAG, strlen(DATA_TAG));
append_to_buffer(header, &i, &chunk_size, sizeof(chunk_size));
igt_assert(i == sizeof(header));
if (write(fd, header, sizeof(header)) != sizeof(header)) {
igt_warn("write failed: %s'n", strerror(errno));
close(fd);
return -1;
}
return fd;
}