You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1517 lines
52 KiB

/*
* © Copyright 2017-2018 Alyssa Rosenzweig
* © Copyright 2017-2018 Connor Abbott
* © Copyright 2017-2018 Lyude Paul
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
#ifndef __PANFROST_JOB_H__
#define __PANFROST_JOB_H__
#include <stdint.h>
#include <panfrost-misc.h>
#define MALI_SHORT_PTR_BITS (sizeof(uintptr_t)*8)
#define MALI_FBD_HIERARCHY_WEIGHTS 8
#define MALI_PAYLOAD_SIZE 256
typedef u32 mali_jd_core_req;
enum mali_job_type {
JOB_NOT_STARTED = 0,
JOB_TYPE_NULL = 1,
JOB_TYPE_SET_VALUE = 2,
JOB_TYPE_CACHE_FLUSH = 3,
JOB_TYPE_COMPUTE = 4,
JOB_TYPE_VERTEX = 5,
JOB_TYPE_GEOMETRY = 6,
JOB_TYPE_TILER = 7,
JOB_TYPE_FUSED = 8,
JOB_TYPE_FRAGMENT = 9,
};
enum mali_draw_mode {
MALI_DRAW_NONE = 0x0,
MALI_POINTS = 0x1,
MALI_LINES = 0x2,
MALI_LINE_STRIP = 0x4,
MALI_LINE_LOOP = 0x6,
MALI_TRIANGLES = 0x8,
MALI_TRIANGLE_STRIP = 0xA,
MALI_TRIANGLE_FAN = 0xC,
MALI_POLYGON = 0xD,
MALI_QUADS = 0xE,
MALI_QUAD_STRIP = 0xF,
/* All other modes invalid */
};
/* Applies to tiler_gl_enables */
#define MALI_OCCLUSION_QUERY (1 << 3)
#define MALI_OCCLUSION_PRECISE (1 << 4)
#define MALI_FRONT_FACE(v) (v << 5)
#define MALI_CCW (0)
#define MALI_CW (1)
#define MALI_CULL_FACE_FRONT (1 << 6)
#define MALI_CULL_FACE_BACK (1 << 7)
/* TODO: Might this actually be a finer bitfield? */
#define MALI_DEPTH_STENCIL_ENABLE 0x6400
#define DS_ENABLE(field) \
(field == MALI_DEPTH_STENCIL_ENABLE) \
? "MALI_DEPTH_STENCIL_ENABLE" \
: (field == 0) ? "0" \
: "0 /* XXX: Unknown, check hexdump */"
/* Used in stencil and depth tests */
enum mali_func {
MALI_FUNC_NEVER = 0,
MALI_FUNC_LESS = 1,
MALI_FUNC_EQUAL = 2,
MALI_FUNC_LEQUAL = 3,
MALI_FUNC_GREATER = 4,
MALI_FUNC_NOTEQUAL = 5,
MALI_FUNC_GEQUAL = 6,
MALI_FUNC_ALWAYS = 7
};
/* Same OpenGL, but mixed up. Why? Because forget me, that's why! */
enum mali_alt_func {
MALI_ALT_FUNC_NEVER = 0,
MALI_ALT_FUNC_GREATER = 1,
MALI_ALT_FUNC_EQUAL = 2,
MALI_ALT_FUNC_GEQUAL = 3,
MALI_ALT_FUNC_LESS = 4,
MALI_ALT_FUNC_NOTEQUAL = 5,
MALI_ALT_FUNC_LEQUAL = 6,
MALI_ALT_FUNC_ALWAYS = 7
};
/* Flags apply to unknown2_3? */
#define MALI_HAS_MSAA (1 << 0)
#define MALI_CAN_DISCARD (1 << 5)
/* Applies on SFBD systems, specifying that programmable blending is in use */
#define MALI_HAS_BLEND_SHADER (1 << 6)
/* func is mali_func */
#define MALI_DEPTH_FUNC(func) (func << 8)
#define MALI_GET_DEPTH_FUNC(flags) ((flags >> 8) & 0x7)
#define MALI_DEPTH_FUNC_MASK MALI_DEPTH_FUNC(0x7)
#define MALI_DEPTH_TEST (1 << 11)
/* Next flags to unknown2_4 */
#define MALI_STENCIL_TEST (1 << 0)
/* What?! */
#define MALI_SAMPLE_ALPHA_TO_COVERAGE_NO_BLEND_SHADER (1 << 1)
#define MALI_NO_DITHER (1 << 9)
#define MALI_DEPTH_RANGE_A (1 << 12)
#define MALI_DEPTH_RANGE_B (1 << 13)
#define MALI_NO_MSAA (1 << 14)
/* Stencil test state is all encoded in a single u32, just with a lot of
* enums... */
enum mali_stencil_op {
MALI_STENCIL_KEEP = 0,
MALI_STENCIL_REPLACE = 1,
MALI_STENCIL_ZERO = 2,
MALI_STENCIL_INVERT = 3,
MALI_STENCIL_INCR_WRAP = 4,
MALI_STENCIL_DECR_WRAP = 5,
MALI_STENCIL_INCR = 6,
MALI_STENCIL_DECR = 7
};
struct mali_stencil_test {
unsigned ref : 8;
unsigned mask : 8;
enum mali_func func : 3;
enum mali_stencil_op sfail : 3;
enum mali_stencil_op dpfail : 3;
enum mali_stencil_op dppass : 3;
unsigned zero : 4;
} __attribute__((packed));
/* Blending is a mess, since anything fancy triggers a blend shader, and
* -those- are not understood whatsover yet */
#define MALI_MASK_R (1 << 0)
#define MALI_MASK_G (1 << 1)
#define MALI_MASK_B (1 << 2)
#define MALI_MASK_A (1 << 3)
enum mali_nondominant_mode {
MALI_BLEND_NON_MIRROR = 0,
MALI_BLEND_NON_ZERO = 1
};
enum mali_dominant_blend {
MALI_BLEND_DOM_SOURCE = 0,
MALI_BLEND_DOM_DESTINATION = 1
};
enum mali_dominant_factor {
MALI_DOMINANT_UNK0 = 0,
MALI_DOMINANT_ZERO = 1,
MALI_DOMINANT_SRC_COLOR = 2,
MALI_DOMINANT_DST_COLOR = 3,
MALI_DOMINANT_UNK4 = 4,
MALI_DOMINANT_SRC_ALPHA = 5,
MALI_DOMINANT_DST_ALPHA = 6,
MALI_DOMINANT_CONSTANT = 7,
};
enum mali_blend_modifier {
MALI_BLEND_MOD_UNK0 = 0,
MALI_BLEND_MOD_NORMAL = 1,
MALI_BLEND_MOD_SOURCE_ONE = 2,
MALI_BLEND_MOD_DEST_ONE = 3,
};
struct mali_blend_mode {
enum mali_blend_modifier clip_modifier : 2;
unsigned unused_0 : 1;
unsigned negate_source : 1;
enum mali_dominant_blend dominant : 1;
enum mali_nondominant_mode nondominant_mode : 1;
unsigned unused_1 : 1;
unsigned negate_dest : 1;
enum mali_dominant_factor dominant_factor : 3;
unsigned complement_dominant : 1;
} __attribute__((packed));
struct mali_blend_equation {
/* Of type mali_blend_mode */
unsigned rgb_mode : 12;
unsigned alpha_mode : 12;
unsigned zero1 : 4;
/* Corresponds to MALI_MASK_* above and glColorMask arguments */
unsigned color_mask : 4;
/* Attached constant for CONSTANT_ALPHA, etc */
#ifndef BIFROST
float constant;
#endif
} __attribute__((packed));
/* Used with channel swizzling */
enum mali_channel {
MALI_CHANNEL_RED = 0,
MALI_CHANNEL_GREEN = 1,
MALI_CHANNEL_BLUE = 2,
MALI_CHANNEL_ALPHA = 3,
MALI_CHANNEL_ZERO = 4,
MALI_CHANNEL_ONE = 5,
MALI_CHANNEL_RESERVED_0 = 6,
MALI_CHANNEL_RESERVED_1 = 7,
};
struct mali_channel_swizzle {
enum mali_channel r : 3;
enum mali_channel g : 3;
enum mali_channel b : 3;
enum mali_channel a : 3;
} __attribute__((packed));
/* Compressed per-pixel formats. Each of these formats expands to one to four
* floating-point or integer numbers, as defined by the OpenGL specification.
* There are various places in OpenGL where the user can specify a compressed
* format in memory, which all use the same 8-bit enum in the various
* descriptors, although different hardware units support different formats.
*/
/* The top 3 bits specify how the bits of each component are interpreted. */
/* e.g. R11F_G11F_B10F */
#define MALI_FORMAT_SPECIAL (2 << 5)
/* signed normalized, e.g. RGBA8_SNORM */
#define MALI_FORMAT_SNORM (3 << 5)
/* e.g. RGBA8UI */
#define MALI_FORMAT_UINT (4 << 5)
/* e.g. RGBA8 and RGBA32F */
#define MALI_FORMAT_UNORM (5 << 5)
/* e.g. RGBA8I and RGBA16F */
#define MALI_FORMAT_SINT (6 << 5)
/* These formats seem to largely duplicate the others. They're used at least
* for Bifrost framebuffer output.
*/
#define MALI_FORMAT_SPECIAL2 (7 << 5)
/* If the high 3 bits are 3 to 6 these two bits say how many components
* there are.
*/
#define MALI_NR_CHANNELS(n) ((n - 1) << 3)
/* If the high 3 bits are 3 to 6, then the low 3 bits say how big each
* component is, except the special MALI_CHANNEL_FLOAT which overrides what the
* bits mean.
*/
#define MALI_CHANNEL_4 2
#define MALI_CHANNEL_8 3
#define MALI_CHANNEL_16 4
#define MALI_CHANNEL_32 5
/* For MALI_FORMAT_SINT it means a half-float (e.g. RG16F). For
* MALI_FORMAT_UNORM, it means a 32-bit float.
*/
#define MALI_CHANNEL_FLOAT 7
enum mali_format {
MALI_RGB565 = MALI_FORMAT_SPECIAL | 0x0,
MALI_RGB5_A1_UNORM = MALI_FORMAT_SPECIAL | 0x2,
MALI_RGB10_A2_UNORM = MALI_FORMAT_SPECIAL | 0x3,
MALI_RGB10_A2_SNORM = MALI_FORMAT_SPECIAL | 0x5,
MALI_RGB10_A2UI = MALI_FORMAT_SPECIAL | 0x7,
MALI_RGB10_A2I = MALI_FORMAT_SPECIAL | 0x9,
/* YUV formats */
MALI_NV12 = MALI_FORMAT_SPECIAL | 0xc,
MALI_Z32_UNORM = MALI_FORMAT_SPECIAL | 0xD,
MALI_R32_FIXED = MALI_FORMAT_SPECIAL | 0x11,
MALI_RG32_FIXED = MALI_FORMAT_SPECIAL | 0x12,
MALI_RGB32_FIXED = MALI_FORMAT_SPECIAL | 0x13,
MALI_RGBA32_FIXED = MALI_FORMAT_SPECIAL | 0x14,
MALI_R11F_G11F_B10F = MALI_FORMAT_SPECIAL | 0x19,
/* Only used for varyings, to indicate the transformed gl_Position */
MALI_VARYING_POS = MALI_FORMAT_SPECIAL | 0x1e,
/* Only used for varyings, to indicate that the write should be
* discarded.
*/
MALI_VARYING_DISCARD = MALI_FORMAT_SPECIAL | 0x1f,
MALI_R8_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_8,
MALI_R16_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_16,
MALI_R32_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_32,
MALI_RG8_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_8,
MALI_RG16_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_16,
MALI_RG32_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_32,
MALI_RGB8_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_8,
MALI_RGB16_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_16,
MALI_RGB32_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_32,
MALI_RGBA8_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_8,
MALI_RGBA16_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_16,
MALI_RGBA32_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_32,
MALI_R8UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_8,
MALI_R16UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_16,
MALI_R32UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_32,
MALI_RG8UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_8,
MALI_RG16UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_16,
MALI_RG32UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_32,
MALI_RGB8UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_8,
MALI_RGB16UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_16,
MALI_RGB32UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_32,
MALI_RGBA8UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_8,
MALI_RGBA16UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_16,
MALI_RGBA32UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_32,
MALI_R8_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_8,
MALI_R16_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_16,
MALI_R32_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_32,
MALI_R32F = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_FLOAT,
MALI_RG8_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_8,
MALI_RG16_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_16,
MALI_RG32_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_32,
MALI_RG32F = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_FLOAT,
MALI_RGB8_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_8,
MALI_RGB16_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_16,
MALI_RGB32_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_32,
MALI_RGB32F = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_FLOAT,
MALI_RGBA4_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_4,
MALI_RGBA8_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_8,
MALI_RGBA16_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_16,
MALI_RGBA32_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_32,
MALI_RGBA32F = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_FLOAT,
MALI_R8I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_8,
MALI_R16I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_16,
MALI_R32I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_32,
MALI_R16F = MALI_FORMAT_SINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_FLOAT,
MALI_RG8I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_8,
MALI_RG16I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_16,
MALI_RG32I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_32,
MALI_RG16F = MALI_FORMAT_SINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_FLOAT,
MALI_RGB8I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_8,
MALI_RGB16I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_16,
MALI_RGB32I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_32,
MALI_RGB16F = MALI_FORMAT_SINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_FLOAT,
MALI_RGBA8I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_8,
MALI_RGBA16I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_16,
MALI_RGBA32I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_32,
MALI_RGBA16F = MALI_FORMAT_SINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_FLOAT,
MALI_RGBA4 = MALI_FORMAT_SPECIAL2 | 0x8,
MALI_RGBA8_2 = MALI_FORMAT_SPECIAL2 | 0xd,
MALI_RGB10_A2_2 = MALI_FORMAT_SPECIAL2 | 0xe,
};
/* Alpha coverage is encoded as 4-bits (from a clampf), with inversion
* literally performing a bitwise invert. This function produces slightly wrong
* results and I'm not sure why; some rounding issue I suppose... */
#define MALI_ALPHA_COVERAGE(clampf) ((uint16_t) (int) (clampf * 15.0f))
#define MALI_GET_ALPHA_COVERAGE(nibble) ((float) nibble / 15.0f)
/* Applies to unknown1 */
#define MALI_NO_ALPHA_TO_COVERAGE (1 << 10)
struct mali_blend_meta {
#ifndef BIFROST
/* Base value of 0x200.
* OR with 0x1 for blending (anything other than REPLACE).
* OR with 0x2 for programmable blending
*/
u64 unk1;
/* For programmable blending, these turn into the blend_shader address */
struct mali_blend_equation blend_equation_1;
u64 zero2;
struct mali_blend_equation blend_equation_2;
#else
u32 unk1; // = 0x200
struct mali_blend_equation blend_equation;
/*
* - 0x19 normally
* - 0x3 when this slot is unused (everything else is 0 except the index)
* - 0x11 when this is the fourth slot (and it's used)
+ * - 0 when there is a blend shader
*/
u16 unk2;
/* increments from 0 to 3 */
u16 index;
union {
struct {
/* So far, I've only seen:
* - R001 for 1-component formats
* - RG01 for 2-component formats
* - RGB1 for 3-component formats
* - RGBA for 4-component formats
*/
u32 swizzle : 12;
enum mali_format format : 8;
/* Type of the shader output variable. Note, this can
* be different from the format.
*
* 0: f16 (mediump float)
* 1: f32 (highp float)
* 2: i32 (highp int)
* 3: u32 (highp uint)
* 4: i16 (mediump int)
* 5: u16 (mediump uint)
*/
u32 shader_type : 3;
u32 zero : 9;
};
/* Only the low 32 bits of the blend shader are stored, the
* high 32 bits are implicitly the same as the original shader.
* According to the kernel driver, the program counter for
* shaders is actually only 24 bits, so shaders cannot cross
* the 2^24-byte boundary, and neither can the blend shader.
* The blob handles this by allocating a 2^24 byte pool for
* shaders, and making sure that any blend shaders are stored
* in the same pool as the original shader. The kernel will
* make sure this allocation is aligned to 2^24 bytes.
*/
u32 blend_shader;
};
#endif
} __attribute__((packed));
struct mali_shader_meta {
mali_ptr shader;
u16 texture_count;
u16 sampler_count;
u16 attribute_count;
u16 varying_count;
union {
struct {
u32 uniform_buffer_count : 4;
u32 unk1 : 28; // = 0x800000 for vertex, 0x958020 for tiler
} bifrost1;
struct {
/* 0x200 except MALI_NO_ALPHA_TO_COVERAGE. Mysterious 1
* other times. Who knows really? */
u16 unknown1;
/* Whole number of uniform registers used, times two;
* whole number of work registers used (no scale).
*/
unsigned work_count : 5;
unsigned uniform_count : 5;
unsigned unknown2 : 6;
} midgard1;
};
/* On bifrost: Exactly the same as glPolygonOffset() for both.
* On midgard: Depth factor is exactly as passed to glPolygonOffset.
* Depth units is equal to the value passed to glDeptOhffset + 1.0f
* (use MALI_NEGATIVE)
*/
float depth_units;
float depth_factor;
u32 unknown2_2;
u16 alpha_coverage;
u16 unknown2_3;
u8 stencil_mask_front;
u8 stencil_mask_back;
u16 unknown2_4;
struct mali_stencil_test stencil_front;
struct mali_stencil_test stencil_back;
union {
struct {
u32 unk3 : 7;
/* On Bifrost, some system values are preloaded in
* registers R55-R62 by the thread dispatcher prior to
* the start of shader execution. This is a bitfield
* with one entry for each register saying which
* registers need to be preloaded. Right now, the known
* values are:
*
* Vertex/compute:
* - R55 : gl_LocalInvocationID.xy
* - R56 : gl_LocalInvocationID.z + unknown in high 16 bits
* - R57 : gl_WorkGroupID.x
* - R58 : gl_WorkGroupID.y
* - R59 : gl_WorkGroupID.z
* - R60 : gl_GlobalInvocationID.x
* - R61 : gl_GlobalInvocationID.y/gl_VertexID (without base)
* - R62 : gl_GlobalInvocationID.z/gl_InstanceID (without base)
*
* Fragment:
* - R55 : unknown, never seen (but the bit for this is
* always set?)
* - R56 : unknown (bit always unset)
* - R57 : gl_PrimitiveID
* - R58 : gl_FrontFacing in low bit, potentially other stuff
* - R59 : u16 fragment coordinates (used to compute
* gl_FragCoord.xy, together with sample positions)
* - R60 : gl_SampleMask (used in epilog, so pretty
* much always used, but the bit is always 0 -- is
* this just always pushed?)
* - R61 : gl_SampleMaskIn and gl_SampleID, used by
* varying interpolation.
* - R62 : unknown (bit always unset).
*/
u32 preload_regs : 8;
/* In units of 8 bytes or 64 bits, since the
* uniform/const port loads 64 bits at a time.
*/
u32 uniform_count : 7;
u32 unk4 : 10; // = 2
} bifrost2;
struct {
u32 unknown2_7;
} midgard2;
};
/* zero on bifrost */
u32 unknown2_8;
/* Blending information for the older non-MRT Midgard HW. Check for
* MALI_HAS_BLEND_SHADER to decide how to interpret.
*/
union {
mali_ptr blend_shader;
struct mali_blend_equation blend_equation;
};
/* There can be up to 4 blend_meta's. None of them are required for
* vertex shaders or the non-MRT case for Midgard (so the blob doesn't
* allocate any space).
*/
struct mali_blend_meta blend_meta[];
} __attribute__((packed));
/* This only concerns hardware jobs */
/* Possible values for job_descriptor_size */
#define MALI_JOB_32 0
#define MALI_JOB_64 1
struct mali_job_descriptor_header {
u32 exception_status;
u32 first_incomplete_task;
u64 fault_pointer;
u8 job_descriptor_size : 1;
enum mali_job_type job_type : 7;
u8 job_barrier : 1;
u8 unknown_flags : 7;
u16 job_index;
u16 job_dependency_index_1;
u16 job_dependency_index_2;
union {
u64 next_job_64;
u32 next_job_32;
};
} __attribute__((packed));
struct mali_payload_set_value {
u64 out;
u64 unknown;
} __attribute__((packed));
/* Special attributes have a fixed index */
#define MALI_SPECIAL_ATTRIBUTE_BASE 16
#define MALI_VERTEX_ID (MALI_SPECIAL_ATTRIBUTE_BASE + 0)
#define MALI_INSTANCE_ID (MALI_SPECIAL_ATTRIBUTE_BASE + 1)
/*
* Mali Attributes
*
* This structure lets the attribute unit compute the address of an attribute
* given the vertex and instance ID. Unfortunately, the way this works is
* rather complicated when instancing is enabled.
*
* To explain this, first we need to explain how compute and vertex threads are
* dispatched. This is a guess (although a pretty firm guess!) since the
* details are mostly hidden from the driver, except for attribute instancing.
* When a quad is dispatched, it receives a single, linear index. However, we
* need to translate that index into a (vertex id, instance id) pair, or a
* (local id x, local id y, local id z) triple for compute shaders (although
* vertex shaders and compute shaders are handled almost identically).
* Focusing on vertex shaders, one option would be to do:
*
* vertex_id = linear_id % num_vertices
* instance_id = linear_id / num_vertices
*
* but this involves a costly division and modulus by an arbitrary number.
* Instead, we could pad num_vertices. We dispatch padded_num_vertices *
* num_instances threads instead of num_vertices * num_instances, which results
* in some "extra" threads with vertex_id >= num_vertices, which we have to
* discard. The more we pad num_vertices, the more "wasted" threads we
* dispatch, but the division is potentially easier.
*
* One straightforward choice is to pad num_vertices to the next power of two,
* which means that the division and modulus are just simple bit shifts and
* masking. But the actual algorithm is a bit more complicated. The thread
* dispatcher has special support for dividing by 3, 5, 7, and 9, in addition
* to dividing by a power of two. This is possibly using the technique
* described in patent US20170010862A1. As a result, padded_num_vertices can be
* 1, 3, 5, 7, or 9 times a power of two. This results in less wasted threads,
* since we need less padding.
*
* padded_num_vertices is picked by the hardware. The driver just specifies the
* actual number of vertices. At least for Mali G71, the first few cases are
* given by:
*
* num_vertices | padded_num_vertices
* 3 | 4
* 4-7 | 8
* 8-11 | 12 (3 * 4)
* 12-15 | 16
* 16-19 | 20 (5 * 4)
*
* Note that padded_num_vertices is a multiple of four (presumably because
* threads are dispatched in groups of 4). Also, padded_num_vertices is always
* at least one more than num_vertices, which seems like a quirk of the
* hardware. For larger num_vertices, the hardware uses the following
* algorithm: using the binary representation of num_vertices, we look at the
* most significant set bit as well as the following 3 bits. Let n be the
* number of bits after those 4 bits. Then we set padded_num_vertices according
* to the following table:
*
* high bits | padded_num_vertices
* 1000 | 9 * 2^n
* 1001 | 5 * 2^(n+1)
* 101x | 3 * 2^(n+2)
* 110x | 7 * 2^(n+1)
* 111x | 2^(n+4)
*
* For example, if num_vertices = 70 is passed to glDraw(), its binary
* representation is 1000110, so n = 3 and the high bits are 1000, and
* therefore padded_num_vertices = 9 * 2^3 = 72.
*
* The attribute unit works in terms of the original linear_id. if
* num_instances = 1, then they are the same, and everything is simple.
* However, with instancing things get more complicated. There are four
* possible modes, two of them we can group together:
*
* 1. Use the linear_id directly. Only used when there is no instancing.
*
* 2. Use the linear_id modulo a constant. This is used for per-vertex
* attributes with instancing enabled by making the constant equal
* padded_num_vertices. Because the modulus is always padded_num_vertices, this
* mode only supports a modulus that is a power of 2 times 1, 3, 5, 7, or 9.
* The shift field specifies the power of two, while the extra_flags field
* specifies the odd number. If shift = n and extra_flags = m, then the modulus
* is (2m + 1) * 2^n. As an example, if num_vertices = 70, then as computed
* above, padded_num_vertices = 9 * 2^3, so we should set extra_flags = 4 and
* shift = 3. Note that we must exactly follow the hardware algorithm used to
* get padded_num_vertices in order to correctly implement per-vertex
* attributes.
*
* 3. Divide the linear_id by a constant. In order to correctly implement
* instance divisors, we have to divide linear_id by padded_num_vertices times
* to user-specified divisor. So first we compute padded_num_vertices, again
* following the exact same algorithm that the hardware uses, then multiply it
* by the GL-level divisor to get the hardware-level divisor. This case is
* further divided into two more cases. If the hardware-level divisor is a
* power of two, then we just need to shift. The shift amount is specified by
* the shift field, so that the hardware-level divisor is just 2^shift.
*
* If it isn't a power of two, then we have to divide by an arbitrary integer.
* For that, we use the well-known technique of multiplying by an approximation
* of the inverse. The driver must compute the magic multiplier and shift
* amount, and then the hardware does the multiplication and shift. The
* hardware and driver also use the "round-down" optimization as described in
* http://ridiculousfish.com/files/faster_unsigned_division_by_constants.pdf.
* The hardware further assumes the multiplier is between 2^31 and 2^32, so the
* high bit is implicitly set to 1 even though it is set to 0 by the driver --
* presumably this simplifies the hardware multiplier a little. The hardware
* first multiplies linear_id by the multiplier and takes the high 32 bits,
* then applies the round-down correction if extra_flags = 1, then finally
* shifts right by the shift field.
*
* There are some differences between ridiculousfish's algorithm and the Mali
* hardware algorithm, which means that the reference code from ridiculousfish
* doesn't always produce the right constants. Mali does not use the pre-shift
* optimization, since that would make a hardware implementation slower (it
* would have to always do the pre-shift, multiply, and post-shift operations).
* It also forces the multplier to be at least 2^31, which means that the
* exponent is entirely fixed, so there is no trial-and-error. Altogether,
* given the divisor d, the algorithm the driver must follow is:
*
* 1. Set shift = floor(log2(d)).
* 2. Compute m = ceil(2^(shift + 32) / d) and e = 2^(shift + 32) % d.
* 3. If e <= 2^shift, then we need to use the round-down algorithm. Set
* magic_divisor = m - 1 and extra_flags = 1.
* 4. Otherwise, set magic_divisor = m and extra_flags = 0.
*/
enum mali_attr_mode {
MALI_ATTR_UNUSED = 0,
MALI_ATTR_LINEAR = 1,
MALI_ATTR_POT_DIVIDE = 2,
MALI_ATTR_MODULO = 3,
MALI_ATTR_NPOT_DIVIDE = 4,
};
union mali_attr {
/* This is used for actual attributes. */
struct {
/* The bottom 3 bits are the mode */
mali_ptr elements : 64 - 8;
u32 shift : 5;
u32 extra_flags : 3;
u32 stride;
u32 size;
};
/* The entry after an NPOT_DIVIDE entry has this format. It stores
* extra information that wouldn't fit in a normal entry.
*/
struct {
u32 unk; /* = 0x20 */
u32 magic_divisor;
u32 zero;
/* This is the original, GL-level divisor. */
u32 divisor;
};
} __attribute__((packed));
struct mali_attr_meta {
/* Vertex buffer index */
u8 index;
unsigned unknown1 : 2;
unsigned swizzle : 12;
enum mali_format format : 8;
/* Always observed to be zero at the moment */
unsigned unknown3 : 2;
/* When packing multiple attributes in a buffer, offset addresses by this value */
uint32_t src_offset;
} __attribute__((packed));
enum mali_fbd_type {
MALI_SFBD = 0,
MALI_MFBD = 1,
};
#define FBD_TYPE (1)
#define FBD_MASK (~0x3f)
struct mali_uniform_buffer_meta {
/* This is actually the size minus 1 (MALI_POSITIVE), in units of 16
* bytes. This gives a maximum of 2^14 bytes, which just so happens to
* be the GL minimum-maximum for GL_MAX_UNIFORM_BLOCK_SIZE.
*/
u64 size : 10;
/* This is missing the bottom 2 bits and top 8 bits. The top 8 bits
* should be 0 for userspace pointers, according to
* https://lwn.net/Articles/718895/. By reusing these bits, we can make
* each entry in the table only 64 bits.
*/
mali_ptr ptr : 64 - 10;
};
/* On Bifrost, these fields are the same between the vertex and tiler payloads.
* They also seem to be the same between Bifrost and Midgard. They're shared in
* fused payloads.
*/
/* Applies to unknown_draw */
#define MALI_DRAW_INDEXED_UINT8 (0x10)
#define MALI_DRAW_INDEXED_UINT16 (0x20)
#define MALI_DRAW_INDEXED_UINT32 (0x30)
#define MALI_DRAW_VARYING_SIZE (0x100)
#define MALI_DRAW_PRIMITIVE_RESTART_FIXED_INDEX (0x10000)
struct mali_vertex_tiler_prefix {
/* This is a dynamic bitfield containing the following things in this order:
*
* - gl_WorkGroupSize.x
* - gl_WorkGroupSize.y
* - gl_WorkGroupSize.z
* - gl_NumWorkGroups.x
* - gl_NumWorkGroups.y
* - gl_NumWorkGroups.z
*
* The number of bits allocated for each number is based on the *_shift
* fields below. For example, workgroups_y_shift gives the bit that
* gl_NumWorkGroups.y starts at, and workgroups_z_shift gives the bit
* that gl_NumWorkGroups.z starts at (and therefore one after the bit
* that gl_NumWorkGroups.y ends at). The actual value for each gl_*
* value is one more than the stored value, since if any of the values
* are zero, then there would be no invocations (and hence no job). If
* there were 0 bits allocated to a given field, then it must be zero,
* and hence the real value is one.
*
* Vertex jobs reuse the same job dispatch mechanism as compute jobs,
* effectively doing glDispatchCompute(1, vertex_count, instance_count)
* where vertex count is the number of vertices.
*/
u32 invocation_count;
u32 size_y_shift : 5;
u32 size_z_shift : 5;
u32 workgroups_x_shift : 6;
u32 workgroups_y_shift : 6;
u32 workgroups_z_shift : 6;
/* This is max(workgroups_x_shift, 2) in all the cases I've seen. */
u32 workgroups_x_shift_2 : 4;
u32 draw_mode : 4;
u32 unknown_draw : 22;
/* This is the the same as workgroups_x_shift_2 in compute shaders, but
* always 5 for vertex jobs and 6 for tiler jobs. I suspect this has
* something to do with how many quads get put in the same execution
* engine, which is a balance (you don't want to starve the engine, but
* you also want to distribute work evenly).
*/
u32 workgroups_x_shift_3 : 6;
/* Negative of draw_start for TILER jobs from what I've seen */
int32_t negative_start;
u32 zero1;
/* Like many other strictly nonzero quantities, index_count is
* subtracted by one. For an indexed cube, this is equal to 35 = 6
* faces * 2 triangles/per face * 3 vertices/per triangle - 1. That is,
* for an indexed draw, index_count is the number of actual vertices
* rendered whereas invocation_count is the number of unique vertices
* rendered (the number of times the vertex shader must be invoked).
* For non-indexed draws, this is just equal to invocation_count. */
u32 index_count;
/* No hidden structure; literally just a pointer to an array of uint
* indices (width depends on flags). Thanks, guys, for not making my
* life insane for once! NULL for non-indexed draws. */
uintptr_t indices;
} __attribute__((packed));
/* Point size / line width can either be specified as a 32-bit float (for
* constant size) or as a [machine word size]-bit GPU pointer (for varying size). If a pointer
* is selected, by setting the appropriate MALI_DRAW_VARYING_SIZE bit in the tiler
* payload, the contents of varying_pointer will be intepreted as an array of
* fp16 sizes, one for each vertex. gl_PointSize is therefore implemented by
* creating a special MALI_R16F varying writing to varying_pointer. */
union midgard_primitive_size {
float constant;
uintptr_t pointer;
};
struct bifrost_vertex_only {
u32 unk2; /* =0x2 */
u32 zero0;
u64 zero1;
} __attribute__((packed));
struct bifrost_tiler_heap_meta {
u32 zero;
u32 heap_size;
/* note: these are just guesses! */
mali_ptr tiler_heap_start;
mali_ptr tiler_heap_free;
mali_ptr tiler_heap_end;
/* hierarchy weights? but they're still 0 after the job has run... */
u32 zeros[12];
} __attribute__((packed));
struct bifrost_tiler_meta {
u64 zero0;
u32 unk; // = 0xf0
u16 width;
u16 height;
u64 zero1;
mali_ptr tiler_heap_meta;
/* TODO what is this used for? */
u64 zeros[20];
} __attribute__((packed));
struct bifrost_tiler_only {
/* 0x20 */
union midgard_primitive_size primitive_size;
mali_ptr tiler_meta;
u64 zero1, zero2, zero3, zero4, zero5, zero6;
u32 gl_enables;
u32 zero7;
u64 zero8;
} __attribute__((packed));
struct bifrost_scratchpad {
u32 zero;
u32 flags; // = 0x1f
/* This is a pointer to a CPU-inaccessible buffer, 16 pages, allocated
* during startup. It seems to serve the same purpose as the
* gpu_scratchpad in the SFBD for Midgard, although it's slightly
* larger.
*/
mali_ptr gpu_scratchpad;
} __attribute__((packed));
struct mali_vertex_tiler_postfix {
/* Zero for vertex jobs. Pointer to the position (gl_Position) varying
* output from the vertex shader for tiler jobs.
*/
uintptr_t position_varying;
/* An array of mali_uniform_buffer_meta's. The size is given by the
* shader_meta.
*/
uintptr_t uniform_buffers;
/* This is a pointer to an array of pointers to the texture
* descriptors, number of pointers bounded by number of textures. The
* indirection is needed to accomodate varying numbers and sizes of
* texture descriptors */
uintptr_t texture_trampoline;
/* For OpenGL, from what I've seen, this is intimately connected to
* texture_meta. cwabbott says this is not the case under Vulkan, hence
* why this field is seperate (Midgard is Vulkan capable). Pointer to
* array of sampler descriptors (which are uniform in size) */
uintptr_t sampler_descriptor;
uintptr_t uniforms;
u8 flags : 4;
uintptr_t _shader_upper : MALI_SHORT_PTR_BITS - 4; /* struct shader_meta */
uintptr_t attributes; /* struct attribute_buffer[] */
uintptr_t attribute_meta; /* attribute_meta[] */
uintptr_t varyings; /* struct attr */
uintptr_t varying_meta; /* pointer */
uintptr_t viewport;
uintptr_t occlusion_counter; /* A single bit as far as I can tell */
/* Note: on Bifrost, this isn't actually the FBD. It points to
* bifrost_scratchpad instead. However, it does point to the same thing
* in vertex and tiler jobs.
*/
mali_ptr framebuffer;
#ifdef __LP64__
#ifdef BIFROST
/* most likely padding to make this a multiple of 64 bytes */
u64 zero7;
#endif
#endif
} __attribute__((packed));
struct midgard_payload_vertex_tiler {
#ifndef __LP64__
union midgard_primitive_size primitive_size;
#endif
struct mali_vertex_tiler_prefix prefix;
#ifndef __LP64__
u32 zero3;
#endif
u32 gl_enables; // 0x5
/* Offset for first vertex in buffer */
u32 draw_start;
uintptr_t zero5;
struct mali_vertex_tiler_postfix postfix;
#ifdef __LP64__
union midgard_primitive_size primitive_size;
#endif
} __attribute__((packed));
struct bifrost_payload_vertex {
struct mali_vertex_tiler_prefix prefix;
struct bifrost_vertex_only vertex;
struct mali_vertex_tiler_postfix postfix;
} __attribute__((packed));
struct bifrost_payload_tiler {
struct mali_vertex_tiler_prefix prefix;
struct bifrost_tiler_only tiler;
struct mali_vertex_tiler_postfix postfix;
} __attribute__((packed));
struct bifrost_payload_fused {
struct mali_vertex_tiler_prefix prefix;
struct bifrost_tiler_only tiler;
struct mali_vertex_tiler_postfix tiler_postfix;
struct bifrost_vertex_only vertex;
struct mali_vertex_tiler_postfix vertex_postfix;
} __attribute__((packed));
/* Pointed to from texture_trampoline, mostly unknown still, haven't
* managed to replay successfully */
/* Purposeful off-by-one in width, height fields. For example, a (64, 64)
* texture is stored as (63, 63) in these fields. This adjusts for that.
* There's an identical pattern in the framebuffer descriptor. Even vertex
* count fields work this way, hence the generic name -- integral fields that
* are strictly positive generally need this adjustment. */
#define MALI_POSITIVE(dim) (dim - 1)
/* Opposite of MALI_POSITIVE, found in the depth_units field */
#define MALI_NEGATIVE(dim) (dim + 1)
/* Used with wrapping. Incomplete (this is a 4-bit field...) */
enum mali_wrap_mode {
MALI_WRAP_REPEAT = 0x8,
MALI_WRAP_CLAMP_TO_EDGE = 0x9,
MALI_WRAP_CLAMP_TO_BORDER = 0xB,
MALI_WRAP_MIRRORED_REPEAT = 0xC
};
/* 8192x8192 */
#define MAX_MIP_LEVELS (13)
/* Cubemap bloats everything up */
#define MAX_FACES (6)
/* Corresponds to the type passed to glTexImage2D and so forth */
struct mali_texture_format {
unsigned swizzle : 12;
enum mali_format format : 8;
unsigned usage1 : 3;
unsigned is_not_cubemap : 1;
unsigned usage2 : 8;
} __attribute__((packed));
struct mali_texture_descriptor {
uint16_t width;
uint16_t height;
uint16_t depth;
uint16_t unknown1;
struct mali_texture_format format;
uint16_t unknown3;
/* One for non-mipmapped, zero for mipmapped */
uint8_t unknown3A;
/* Zero for non-mipmapped, (number of levels - 1) for mipmapped */
uint8_t nr_mipmap_levels;
/* Swizzling is a single 32-bit word, broken up here for convenience.
* Here, swizzling refers to the ES 3.0 texture parameters for channel
* level swizzling, not the internal pixel-level swizzling which is
* below OpenGL's reach */
unsigned swizzle : 12;
unsigned swizzle_zero : 20;
uint32_t unknown5;
uint32_t unknown6;
uint32_t unknown7;
mali_ptr swizzled_bitmaps[MAX_MIP_LEVELS * MAX_FACES];
} __attribute__((packed));
/* Used as part of filter_mode */
#define MALI_LINEAR 0
#define MALI_NEAREST 1
#define MALI_MIP_LINEAR (0x18)
/* Used to construct low bits of filter_mode */
#define MALI_TEX_MAG(mode) (((mode) & 1) << 0)
#define MALI_TEX_MIN(mode) (((mode) & 1) << 1)
#define MALI_TEX_MAG_MASK (1)
#define MALI_TEX_MIN_MASK (2)
#define MALI_FILTER_NAME(filter) (filter ? "MALI_NEAREST" : "MALI_LINEAR")
/* Used for lod encoding. Thanks @urjaman for pointing out these routines can
* be cleaned up a lot. */
#define DECODE_FIXED_16(x) ((float) (x / 256.0))
static inline uint16_t
FIXED_16(float x)
{
/* Clamp inputs, accounting for float error */
float max_lod = (32.0 - (1.0 / 512.0));
x = ((x > max_lod) ? max_lod : ((x < 0.0) ? 0.0 : x));
return (int) (x * 256.0);
}
struct mali_sampler_descriptor {
uint32_t filter_mode;
/* Fixed point. Upper 8-bits is before the decimal point, although it
* caps [0-31]. Lower 8-bits is after the decimal point: int(round(x *
* 256)) */
uint16_t min_lod;
uint16_t max_lod;
/* All one word in reality, but packed a bit */
enum mali_wrap_mode wrap_s : 4;
enum mali_wrap_mode wrap_t : 4;
enum mali_wrap_mode wrap_r : 4;
enum mali_alt_func compare_func : 3;
/* A single set bit of unknown, ha! */
unsigned unknown2 : 1;
unsigned zero : 16;
uint32_t zero2;
float border_color[4];
} __attribute__((packed));
/* TODO: What are the floats? Apparently always { -inf, -inf, inf, inf },
* unless the scissor test is enabled.
*
* viewport0/viewport1 form the arguments to glViewport. viewport1 is modified
* by MALI_POSITIVE; viewport0 is as-is.
*/
struct mali_viewport {
/* XY clipping planes */
float clip_minx;
float clip_miny;
float clip_maxx;
float clip_maxy;
/* Depth clipping planes */
float clip_minz;
float clip_maxz;
u16 viewport0[2];
u16 viewport1[2];
} __attribute__((packed));
/* TODO: Varying meta is symmetrical with attr_meta, but there is some
* weirdness associated. Figure it out. */
struct mali_unknown6 {
u64 unknown0;
u64 unknown1;
};
/* From presentations, 16x16 tiles externally. Use shift for fast computation
* of tile numbers. */
#define MALI_TILE_SHIFT 4
#define MALI_TILE_LENGTH (1 << MALI_TILE_SHIFT)
/* Tile coordinates are stored as a compact u32, as only 12 bits are needed to
* each component. Notice that this provides a theoretical upper bound of (1 <<
* 12) = 4096 tiles in each direction, addressing a maximum framebuffer of size
* 65536x65536. Multiplying that together, times another four given that Mali
* framebuffers are 32-bit ARGB8888, means that this upper bound would take 16
* gigabytes of RAM just to store the uncompressed framebuffer itself, let
* alone rendering in real-time to such a buffer.
*
* Nice job, guys.*/
/* From mali_kbase_10969_workaround.c */
#define MALI_X_COORD_MASK 0x00000FFF
#define MALI_Y_COORD_MASK 0x0FFF0000
/* Extract parts of a tile coordinate */
#define MALI_TILE_COORD_X(coord) ((coord) & MALI_X_COORD_MASK)
#define MALI_TILE_COORD_Y(coord) (((coord) & MALI_Y_COORD_MASK) >> 16)
#define MALI_TILE_COORD_FLAGS(coord) ((coord) & ~(MALI_X_COORD_MASK | MALI_Y_COORD_MASK))
/* No known flags yet, but just in case...? */
#define MALI_TILE_NO_FLAG (0)
/* Helpers to generate tile coordinates based on the boundary coordinates in
* screen space. So, with the bounds (0, 0) to (128, 128) for the screen, these
* functions would convert it to the bounding tiles (0, 0) to (7, 7).
* Intentional "off-by-one"; finding the tile number is a form of fencepost
* problem. */
#define MALI_MAKE_TILE_COORDS(X, Y) ((X) | ((Y) << 16))
#define MALI_BOUND_TO_TILE(B, bias) ((B - bias) >> MALI_TILE_SHIFT)
#define MALI_COORDINATE_TO_TILE(W, H, bias) MALI_MAKE_TILE_COORDS(MALI_BOUND_TO_TILE(W, bias), MALI_BOUND_TO_TILE(H, bias))
#define MALI_COORDINATE_TO_TILE_MIN(W, H) MALI_COORDINATE_TO_TILE(W, H, 0)
#define MALI_COORDINATE_TO_TILE_MAX(W, H) MALI_COORDINATE_TO_TILE(W, H, 1)
struct mali_payload_fragment {
u32 min_tile_coord;
u32 max_tile_coord;
mali_ptr framebuffer;
} __attribute__((packed));
/* (Single?) Framebuffer Descriptor */
/* Flags apply to format. With just MSAA_A and MSAA_B, the framebuffer is
* configured for 4x. With MSAA_8, it is configured for 8x. */
#define MALI_FRAMEBUFFER_MSAA_8 (1 << 3)
#define MALI_FRAMEBUFFER_MSAA_A (1 << 4)
#define MALI_FRAMEBUFFER_MSAA_B (1 << 23)
/* Fast/slow based on whether all three buffers are cleared at once */
#define MALI_CLEAR_FAST (1 << 18)
#define MALI_CLEAR_SLOW (1 << 28)
#define MALI_CLEAR_SLOW_STENCIL (1 << 31)
struct mali_single_framebuffer {
u32 unknown1;
u32 unknown2;
u64 unknown_address_0;
u64 zero1;
u64 zero0;
/* Exact format is ironically not known, since EGL is finnicky with the
* blob. MSAA, colourspace, etc are configured here. */
u32 format;
u32 clear_flags;
u32 zero2;
/* Purposeful off-by-one in these fields should be accounted for by the
* MALI_DIMENSION macro */
u16 width;
u16 height;
u32 zero3[8];
/* By default, the framebuffer is upside down from OpenGL's
* perspective. Set framebuffer to the end and negate the stride to
* flip in the Y direction */
mali_ptr framebuffer;
int32_t stride;
u32 zero4;
/* Depth and stencil buffers are interleaved, it appears, as they are
* set to the same address in captures. Both fields set to zero if the
* buffer is not being cleared. Depending on GL_ENABLE magic, you might
* get a zero enable despite the buffer being present; that still is
* disabled. */
mali_ptr depth_buffer; // not SAME_VA
u64 depth_buffer_enable;
mali_ptr stencil_buffer; // not SAME_VA
u64 stencil_buffer_enable;
u32 clear_color_1; // RGBA8888 from glClear, actually used by hardware
u32 clear_color_2; // always equal, but unclear function?
u32 clear_color_3; // always equal, but unclear function?
u32 clear_color_4; // always equal, but unclear function?
/* Set to zero if not cleared */
float clear_depth_1; // float32, ditto
float clear_depth_2; // float32, ditto
float clear_depth_3; // float32, ditto
float clear_depth_4; // float32, ditto
u32 clear_stencil; // Exactly as it appears in OpenGL
u32 zero6[7];
/* Very weird format, see generation code in trans_builder.c */
u32 resolution_check;
u32 tiler_flags;
u64 unknown_address_1; /* Pointing towards... a zero buffer? */
u64 unknown_address_2;
/* See mali_kbase_replay.c */
u64 tiler_heap_free;
u64 tiler_heap_end;
/* More below this, maybe */
} __attribute__((packed));
/* Format bits for the render target flags */
#define MALI_MFBD_FORMAT_AFBC (1 << 5)
#define MALI_MFBD_FORMAT_MSAA (1 << 7)
struct mali_rt_format {
unsigned unk1 : 32;
unsigned unk2 : 3;
unsigned nr_channels : 2; /* MALI_POSITIVE */
unsigned flags : 11;
unsigned swizzle : 12;
unsigned unk4 : 4;
} __attribute__((packed));
struct bifrost_render_target {
struct mali_rt_format format;
u64 zero1;
union {
struct {
/* Stuff related to ARM Framebuffer Compression. When AFBC is enabled,
* there is an extra metadata buffer that contains 16 bytes per tile.
* The framebuffer needs to be the same size as before, since we don't
* know ahead of time how much space it will take up. The
* framebuffer_stride is set to 0, since the data isn't stored linearly
* anymore.
*/
mali_ptr metadata;
u32 stride; // stride in units of tiles
u32 unk; // = 0x20000
} afbc;
struct {
/* Heck if I know */
u64 unk;
mali_ptr pointer;
} chunknown;
};
mali_ptr framebuffer;
u32 zero2 : 4;
u32 framebuffer_stride : 28; // in units of bytes
u32 zero3;
u32 clear_color_1; // RGBA8888 from glClear, actually used by hardware
u32 clear_color_2; // always equal, but unclear function?
u32 clear_color_3; // always equal, but unclear function?
u32 clear_color_4; // always equal, but unclear function?
} __attribute__((packed));
/* An optional part of bifrost_framebuffer. It comes between the main structure
* and the array of render targets. It must be included if any of these are
* enabled:
*
* - Transaction Elimination
* - Depth/stencil
* - TODO: Anything else?
*/
/* Flags field: note, these are guesses */
#define MALI_EXTRA_PRESENT (0x400)
#define MALI_EXTRA_AFBC (0x20)
#define MALI_EXTRA_AFBC_ZS (0x10)
#define MALI_EXTRA_ZS (0x4)
struct bifrost_fb_extra {
mali_ptr checksum;
/* Each tile has an 8 byte checksum, so the stride is "width in tiles * 8" */
u32 checksum_stride;
u32 flags;
union {
/* Note: AFBC is only allowed for 24/8 combined depth/stencil. */
struct {
mali_ptr depth_stencil_afbc_metadata;
u32 depth_stencil_afbc_stride; // in units of tiles
u32 zero1;
mali_ptr depth_stencil;
u64 padding;
} ds_afbc;
struct {
/* Depth becomes depth/stencil in case of combined D/S */
mali_ptr depth;
u32 depth_stride_zero : 4;
u32 depth_stride : 28;
u32 zero1;
mali_ptr stencil;
u32 stencil_stride_zero : 4;
u32 stencil_stride : 28;
u32 zero2;
} ds_linear;
};
u64 zero3, zero4;
} __attribute__((packed));
/* flags for unk3 */
/* Enables writing depth results back to main memory (rather than keeping them
* on-chip in the tile buffer and then discarding) */
#define MALI_MFBD_DEPTH_WRITE (1 << 10)
/* The MFBD contains the extra bifrost_fb_extra section */
#define MALI_MFBD_EXTRA (1 << 13)
struct bifrost_framebuffer {
u32 unk0; // = 0x10
u32 unknown2; // = 0x1f, same as SFBD
mali_ptr scratchpad;
/* 0x10 */
mali_ptr sample_locations;
mali_ptr unknown1;
/* 0x20 */
u16 width1, height1;
u32 zero3;
u16 width2, height2;
u32 unk1 : 19; // = 0x01000
u32 rt_count_1 : 2; // off-by-one (use MALI_POSITIVE)
u32 unk2 : 3; // = 0
u32 rt_count_2 : 3; // no off-by-one
u32 zero4 : 5;
/* 0x30 */
u32 clear_stencil : 8;
u32 unk3 : 24; // = 0x100
float clear_depth;
mali_ptr tiler_meta;
/* 0x40 */
/* Note: these are guesses! */
mali_ptr tiler_scratch_start;
mali_ptr tiler_scratch_middle;
/* These are not, since we see symmetry with replay jobs which name these explicitly */
mali_ptr tiler_heap_start;
mali_ptr tiler_heap_end;
u64 zero9, zero10, zero11, zero12;
/* optional: struct bifrost_fb_extra extra */
/* struct bifrost_render_target rts[] */
} __attribute__((packed));
#endif /* __PANFROST_JOB_H__ */