You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

763 lines
19 KiB

/*
* Copyright © 2016 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#include "igt.h"
#include <unistd.h>
#include <stdlib.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <fcntl.h>
#include <inttypes.h>
#include <errno.h>
#include <sys/stat.h>
#include <sys/ioctl.h>
#include <sys/time.h>
#include <sys/signal.h>
#include <time.h>
#include <sched.h>
#include "drm.h"
#include "igt_sysfs.h"
#include "igt_vgem.h"
#include "igt_dummyload.h"
#include "igt_stats.h"
#include "i915/gem_ring.h"
#define LOCAL_I915_EXEC_NO_RELOC (1<<11)
#define LOCAL_I915_EXEC_HANDLE_LUT (1<<12)
#define LOCAL_I915_EXEC_BSD_SHIFT (13)
#define LOCAL_I915_EXEC_BSD_MASK (3 << LOCAL_I915_EXEC_BSD_SHIFT)
#define ENGINE_FLAGS (I915_EXEC_RING_MASK | LOCAL_I915_EXEC_BSD_MASK)
#define LIVE 0x1
#define CORK 0x2
#define PREEMPT 0x4
static unsigned int ring_size;
static double rcs_clock;
static void
poll_ring(int fd, unsigned ring, const char *name)
{
const struct igt_spin_factory opts = {
.engine = ring,
.flags = IGT_SPIN_POLL_RUN | IGT_SPIN_FAST,
};
struct timespec tv = {};
unsigned long cycles;
igt_spin_t *spin[2];
uint64_t elapsed;
gem_require_ring(fd, ring);
igt_require(gem_can_store_dword(fd, ring));
spin[0] = __igt_spin_factory(fd, &opts);
igt_assert(igt_spin_has_poll(spin[0]));
spin[1] = __igt_spin_factory(fd, &opts);
igt_assert(igt_spin_has_poll(spin[1]));
igt_spin_end(spin[0]);
igt_spin_busywait_until_started(spin[1]);
igt_assert(!gem_bo_busy(fd, spin[0]->handle));
cycles = 0;
while ((elapsed = igt_nsec_elapsed(&tv)) < 2ull << 30) {
const unsigned int idx = cycles++ & 1;
igt_spin_reset(spin[idx]);
gem_execbuf(fd, &spin[idx]->execbuf);
igt_spin_end(spin[!idx]);
igt_spin_busywait_until_started(spin[idx]);
}
igt_info("%s completed %ld cycles: %.3f us\n",
name, cycles, elapsed*1e-3/cycles);
igt_spin_free(fd, spin[1]);
igt_spin_free(fd, spin[0]);
}
#define RCS_TIMESTAMP (0x2000 + 0x358)
static void latency_on_ring(int fd,
unsigned ring, const char *name,
unsigned flags)
{
const int gen = intel_gen(intel_get_drm_devid(fd));
const int has_64bit_reloc = gen >= 8;
struct drm_i915_gem_exec_object2 obj[3];
struct drm_i915_gem_relocation_entry reloc;
struct drm_i915_gem_execbuffer2 execbuf;
igt_spin_t *spin = NULL;
IGT_CORK_HANDLE(c);
volatile uint32_t *reg;
unsigned repeats = ring_size;
uint32_t start, end, *map, *results;
uint64_t offset;
double gpu_latency;
int i, j;
reg = (volatile uint32_t *)((volatile char *)igt_global_mmio + RCS_TIMESTAMP);
memset(&execbuf, 0, sizeof(execbuf));
execbuf.buffers_ptr = to_user_pointer(&obj[1]);
execbuf.buffer_count = 2;
execbuf.flags = ring;
execbuf.flags |= LOCAL_I915_EXEC_NO_RELOC | LOCAL_I915_EXEC_HANDLE_LUT;
memset(obj, 0, sizeof(obj));
obj[1].handle = gem_create(fd, 4096);
obj[1].flags = EXEC_OBJECT_WRITE;
results = gem_mmap__wc(fd, obj[1].handle, 0, 4096, PROT_READ);
obj[2].handle = gem_create(fd, 64*1024);
map = gem_mmap__wc(fd, obj[2].handle, 0, 64*1024, PROT_WRITE);
gem_set_domain(fd, obj[2].handle,
I915_GEM_DOMAIN_GTT,
I915_GEM_DOMAIN_GTT);
map[0] = MI_BATCH_BUFFER_END;
gem_execbuf(fd, &execbuf);
memset(&reloc,0, sizeof(reloc));
obj[2].relocation_count = 1;
obj[2].relocs_ptr = to_user_pointer(&reloc);
gem_set_domain(fd, obj[2].handle,
I915_GEM_DOMAIN_GTT,
I915_GEM_DOMAIN_GTT);
reloc.target_handle = flags & CORK ? 1 : 0;
reloc.read_domains = I915_GEM_DOMAIN_INSTRUCTION;
reloc.write_domain = I915_GEM_DOMAIN_INSTRUCTION;
reloc.presumed_offset = obj[1].offset;
for (j = 0; j < repeats; j++) {
execbuf.batch_start_offset = 64 * j;
reloc.offset =
execbuf.batch_start_offset + sizeof(uint32_t);
reloc.delta = sizeof(uint32_t) * j;
offset = reloc.presumed_offset;
offset += reloc.delta;
i = 16 * j;
/* MI_STORE_REG_MEM */
map[i++] = 0x24 << 23 | 1;
if (has_64bit_reloc)
map[i-1]++;
map[i++] = RCS_TIMESTAMP; /* ring local! */
map[i++] = offset;
if (has_64bit_reloc)
map[i++] = offset >> 32;
map[i++] = MI_BATCH_BUFFER_END;
}
if (flags & CORK) {
obj[0].handle = igt_cork_plug(&c, fd);
execbuf.buffers_ptr = to_user_pointer(&obj[0]);
execbuf.buffer_count = 3;
}
if (flags & LIVE)
spin = igt_spin_new(fd, .engine = ring);
start = *reg;
for (j = 0; j < repeats; j++) {
uint64_t presumed_offset = reloc.presumed_offset;
execbuf.batch_start_offset = 64 * j;
reloc.offset =
execbuf.batch_start_offset + sizeof(uint32_t);
reloc.delta = sizeof(uint32_t) * j;
gem_execbuf(fd, &execbuf);
igt_assert(reloc.presumed_offset == presumed_offset);
}
end = *reg;
igt_assert(reloc.presumed_offset == obj[1].offset);
igt_spin_free(fd, spin);
if (flags & CORK)
igt_cork_unplug(&c);
gem_set_domain(fd, obj[1].handle, I915_GEM_DOMAIN_GTT, 0);
gpu_latency = (results[repeats-1] - results[0]) / (double)(repeats-1);
gem_set_domain(fd, obj[2].handle,
I915_GEM_DOMAIN_GTT, I915_GEM_DOMAIN_GTT);
execbuf.batch_start_offset = 0;
for (j = 0; j < repeats - 1; j++) {
offset = obj[2].offset;
offset += 64 * (j + 1);
i = 16 * j + (has_64bit_reloc ? 4 : 3);
map[i] = MI_BATCH_BUFFER_START;
if (gen >= 8) {
map[i] |= 1 << 8 | 1;
map[i + 1] = offset;
map[i + 2] = offset >> 32;
} else if (gen >= 6) {
map[i] |= 1 << 8;
map[i + 1] = offset;
} else {
map[i] |= 2 << 6;
map[i + 1] = offset;
if (gen < 4)
map[i] |= 1;
}
}
offset = obj[2].offset;
gem_execbuf(fd, &execbuf);
igt_assert(offset == obj[2].offset);
gem_set_domain(fd, obj[1].handle, I915_GEM_DOMAIN_GTT, 0);
igt_info("%s: dispatch latency: %.1fns, execution latency: %.1fns (target %.1fns)\n",
name,
(end - start) / (double)repeats * rcs_clock,
gpu_latency * rcs_clock,
(results[repeats - 1] - results[0]) / (double)(repeats - 1) * rcs_clock);
munmap(map, 64*1024);
munmap(results, 4096);
if (flags & CORK)
gem_close(fd, obj[0].handle);
gem_close(fd, obj[1].handle);
gem_close(fd, obj[2].handle);
}
static void latency_from_ring(int fd,
unsigned ring, const char *name,
unsigned flags)
{
const int gen = intel_gen(intel_get_drm_devid(fd));
const int has_64bit_reloc = gen >= 8;
struct drm_i915_gem_exec_object2 obj[3];
struct drm_i915_gem_relocation_entry reloc;
struct drm_i915_gem_execbuffer2 execbuf;
const unsigned int repeats = ring_size / 2;
unsigned int other;
uint32_t *map, *results;
uint32_t ctx[2] = {};
int i, j;
if (flags & PREEMPT) {
ctx[0] = gem_context_create(fd);
gem_context_set_priority(fd, ctx[0], -1023);
ctx[1] = gem_context_create(fd);
gem_context_set_priority(fd, ctx[1], 1023);
}
memset(&execbuf, 0, sizeof(execbuf));
execbuf.buffers_ptr = to_user_pointer(&obj[1]);
execbuf.buffer_count = 2;
execbuf.flags = ring;
execbuf.flags |= LOCAL_I915_EXEC_NO_RELOC | LOCAL_I915_EXEC_HANDLE_LUT;
execbuf.rsvd1 = ctx[1];
memset(obj, 0, sizeof(obj));
obj[1].handle = gem_create(fd, 4096);
obj[1].flags = EXEC_OBJECT_WRITE;
results = gem_mmap__wc(fd, obj[1].handle, 0, 4096, PROT_READ);
obj[2].handle = gem_create(fd, 64*1024);
map = gem_mmap__wc(fd, obj[2].handle, 0, 64*1024, PROT_WRITE);
gem_set_domain(fd, obj[2].handle,
I915_GEM_DOMAIN_GTT,
I915_GEM_DOMAIN_GTT);
map[0] = MI_BATCH_BUFFER_END;
gem_execbuf(fd, &execbuf);
memset(&reloc,0, sizeof(reloc));
obj[2].relocation_count = 1;
obj[2].relocs_ptr = to_user_pointer(&reloc);
gem_set_domain(fd, obj[2].handle,
I915_GEM_DOMAIN_GTT,
I915_GEM_DOMAIN_GTT);
reloc.read_domains = I915_GEM_DOMAIN_INSTRUCTION;
reloc.write_domain = I915_GEM_DOMAIN_INSTRUCTION;
reloc.presumed_offset = obj[1].offset;
reloc.target_handle = flags & CORK ? 1 : 0;
for_each_physical_engine(fd, other) {
igt_spin_t *spin = NULL;
IGT_CORK_HANDLE(c);
gem_set_domain(fd, obj[2].handle,
I915_GEM_DOMAIN_GTT,
I915_GEM_DOMAIN_GTT);
if (flags & PREEMPT)
spin = __igt_spin_new(fd,
.ctx = ctx[0],
.engine = ring);
if (flags & CORK) {
obj[0].handle = igt_cork_plug(&c, fd);
execbuf.buffers_ptr = to_user_pointer(&obj[0]);
execbuf.buffer_count = 3;
}
for (j = 0; j < repeats; j++) {
uint64_t offset;
execbuf.flags &= ~ENGINE_FLAGS;
execbuf.flags |= ring;
execbuf.batch_start_offset = 64 * j;
reloc.offset =
execbuf.batch_start_offset + sizeof(uint32_t);
reloc.delta = sizeof(uint32_t) * j;
reloc.presumed_offset = obj[1].offset;
offset = reloc.presumed_offset;
offset += reloc.delta;
i = 16 * j;
/* MI_STORE_REG_MEM */
map[i++] = 0x24 << 23 | 1;
if (has_64bit_reloc)
map[i-1]++;
map[i++] = RCS_TIMESTAMP; /* ring local! */
map[i++] = offset;
if (has_64bit_reloc)
map[i++] = offset >> 32;
map[i++] = MI_BATCH_BUFFER_END;
gem_execbuf(fd, &execbuf);
execbuf.flags &= ~ENGINE_FLAGS;
execbuf.flags |= other;
execbuf.batch_start_offset = 64 * (j + repeats);
reloc.offset =
execbuf.batch_start_offset + sizeof(uint32_t);
reloc.delta = sizeof(uint32_t) * (j + repeats);
reloc.presumed_offset = obj[1].offset;
offset = reloc.presumed_offset;
offset += reloc.delta;
i = 16 * (j + repeats);
/* MI_STORE_REG_MEM */
map[i++] = 0x24 << 23 | 1;
if (has_64bit_reloc)
map[i-1]++;
map[i++] = RCS_TIMESTAMP; /* ring local! */
map[i++] = offset;
if (has_64bit_reloc)
map[i++] = offset >> 32;
map[i++] = MI_BATCH_BUFFER_END;
gem_execbuf(fd, &execbuf);
}
if (flags & CORK)
igt_cork_unplug(&c);
gem_set_domain(fd, obj[1].handle,
I915_GEM_DOMAIN_GTT,
I915_GEM_DOMAIN_GTT);
igt_spin_free(fd, spin);
igt_info("%s-%s delay: %.2fns\n",
name, e__->name,
(results[2*repeats-1] - results[0]) / (double)repeats * rcs_clock);
}
munmap(map, 64*1024);
munmap(results, 4096);
if (flags & CORK)
gem_close(fd, obj[0].handle);
gem_close(fd, obj[1].handle);
gem_close(fd, obj[2].handle);
if (flags & PREEMPT) {
gem_context_destroy(fd, ctx[1]);
gem_context_destroy(fd, ctx[0]);
}
}
static void
__submit_spin(int fd, igt_spin_t *spin, unsigned int flags)
{
struct drm_i915_gem_execbuffer2 eb = spin->execbuf;
eb.flags &= ~(0x3f | I915_EXEC_BSD_MASK);
eb.flags |= flags | I915_EXEC_NO_RELOC;
gem_execbuf(fd, &eb);
}
struct rt_pkt {
struct igt_mean mean;
double min, max;
};
static bool __spin_wait(int fd, igt_spin_t *spin)
{
while (!igt_spin_has_started(spin)) {
if (!gem_bo_busy(fd, spin->handle))
return false;
}
return true;
}
/*
* Test whether RT thread which hogs the CPU a lot can submit work with
* reasonable latency.
*/
static void
rthog_latency_on_ring(int fd, unsigned int engine, const char *name, unsigned int flags)
#define RTIDLE 0x1
{
const char *passname[] = {
"warmup",
"normal",
"rt[0]",
"rt[1]",
"rt[2]",
"rt[3]",
"rt[4]",
"rt[5]",
"rt[6]",
};
#define NPASS ARRAY_SIZE(passname)
#define MMAP_SZ (64 << 10)
const struct igt_spin_factory opts = {
.engine = engine,
.flags = IGT_SPIN_POLL_RUN | IGT_SPIN_FAST,
};
struct rt_pkt *results;
unsigned int engines[16];
const char *names[16];
unsigned int nengine;
int ret;
igt_assert(ARRAY_SIZE(engines) * NPASS * sizeof(*results) <= MMAP_SZ);
results = mmap(NULL, MMAP_SZ, PROT_WRITE, MAP_SHARED | MAP_ANON, -1, 0);
igt_assert(results != MAP_FAILED);
nengine = 0;
if (engine == ALL_ENGINES) {
for_each_physical_engine(fd, engine) {
if (!gem_can_store_dword(fd, engine))
continue;
engines[nengine] = engine;
names[nengine] = e__->name;
nengine++;
}
igt_require(nengine > 1);
} else {
igt_require(gem_can_store_dword(fd, engine));
engines[nengine] = engine;
names[nengine] = name;
nengine++;
}
gem_quiescent_gpu(fd);
igt_fork(child, nengine) {
unsigned int pass = 0; /* Three phases: warmup, normal, rt. */
engine = engines[child];
do {
struct igt_mean mean;
double min = HUGE_VAL;
double max = -HUGE_VAL;
igt_spin_t *spin;
igt_mean_init(&mean);
if (pass == 2) {
struct sched_param rt =
{ .sched_priority = 99 };
ret = sched_setscheduler(0,
SCHED_FIFO | SCHED_RESET_ON_FORK,
&rt);
if (ret) {
igt_warn("Failed to set scheduling policy!\n");
break;
}
}
usleep(250);
spin = __igt_spin_factory(fd, &opts);
if (!spin) {
igt_warn("Failed to create spinner! (%s)\n",
passname[pass]);
break;
}
igt_spin_busywait_until_started(spin);
igt_until_timeout(pass > 0 ? 5 : 2) {
struct timespec ts = { };
double t;
igt_spin_end(spin);
gem_sync(fd, spin->handle);
if (flags & RTIDLE)
igt_drop_caches_set(fd, DROP_IDLE);
/*
* If we are oversubscribed (more RT hogs than
* cpus) give the others a change to run;
* otherwise, they will interrupt us in the
* middle of the measurement.
*/
if (nengine > 1)
usleep(10*nengine);
igt_spin_reset(spin);
igt_nsec_elapsed(&ts);
__submit_spin(fd, spin, engine);
if (!__spin_wait(fd, spin)) {
igt_warn("Wait timeout! (%s)\n",
passname[pass]);
break;
}
t = igt_nsec_elapsed(&ts) * 1e-9;
if (t > max)
max = t;
if (t < min)
min = t;
igt_mean_add(&mean, t);
}
igt_spin_free(fd, spin);
igt_info("%8s %10s: mean=%.2fus stddev=%.3fus [%.2fus, %.2fus] (n=%lu)\n",
names[child],
passname[pass],
igt_mean_get(&mean) * 1e6,
sqrt(igt_mean_get_variance(&mean)) * 1e6,
min * 1e6, max * 1e6,
mean.count);
results[NPASS * child + pass].mean = mean;
results[NPASS * child + pass].min = min;
results[NPASS * child + pass].max = max;
} while (++pass < NPASS);
}
igt_waitchildren();
for (unsigned int child = 0; child < nengine; child++) {
struct rt_pkt normal = results[NPASS * child + 1];
igt_stats_t stats;
double variance;
igt_stats_init_with_size(&stats, NPASS);
variance = 0;
for (unsigned int pass = 2; pass < NPASS; pass++) {
struct rt_pkt *rt = &results[NPASS * child + pass];
igt_assert(rt->max);
igt_stats_push_float(&stats, igt_mean_get(&rt->mean));
variance += igt_mean_get_variance(&rt->mean);
}
variance /= NPASS - 2;
igt_info("%8s: normal latency=%.2f±%.3fus, rt latency=%.2f±%.3fus\n",
names[child],
igt_mean_get(&normal.mean) * 1e6,
sqrt(igt_mean_get_variance(&normal.mean)) * 1e6,
igt_stats_get_median(&stats) * 1e6,
sqrt(variance) * 1e6);
igt_assert(igt_stats_get_median(&stats) <
igt_mean_get(&normal.mean) * 2);
/* The system is noisy; be conservative when declaring fail. */
igt_assert(variance < igt_mean_get_variance(&normal.mean) * 10);
}
munmap(results, MMAP_SZ);
}
static double clockrate(int i915, int reg)
{
volatile uint32_t *mmio;
uint32_t r_start, r_end;
struct timespec tv;
uint64_t t_start, t_end;
uint64_t elapsed;
int cs_timestamp_freq;
drm_i915_getparam_t gp = {
.value = &cs_timestamp_freq,
.param = I915_PARAM_CS_TIMESTAMP_FREQUENCY,
};
if (igt_ioctl(i915, DRM_IOCTL_I915_GETPARAM, &gp) == 0)
return cs_timestamp_freq;
mmio = (volatile uint32_t *)((volatile char *)igt_global_mmio + reg);
t_start = igt_nsec_elapsed(&tv);
r_start = *mmio;
elapsed = igt_nsec_elapsed(&tv) - t_start;
usleep(1000);
t_end = igt_nsec_elapsed(&tv);
r_end = *mmio;
elapsed += igt_nsec_elapsed(&tv) - t_end;
elapsed = (t_end - t_start) + elapsed / 2;
return (r_end - r_start) * 1e9 / elapsed;
}
igt_main
{
const struct intel_execution_engine *e;
int device = -1;
igt_fixture {
device = drm_open_driver(DRIVER_INTEL);
igt_require_gem(device);
gem_require_mmap_wc(device);
gem_submission_print_method(device);
ring_size = gem_measure_ring_inflight(device, ALL_ENGINES, 0);
igt_info("Ring size: %d batches\n", ring_size);
igt_require(ring_size > 8);
ring_size -= 8; /* leave some spare */
if (ring_size > 1024)
ring_size = 1024;
intel_register_access_init(intel_get_pci_device(), false, device);
rcs_clock = clockrate(device, RCS_TIMESTAMP);
igt_info("RCS timestamp clock: %.0fKHz, %.1fns\n",
rcs_clock / 1e3, 1e9 / rcs_clock);
rcs_clock = 1e9 / rcs_clock;
}
igt_subtest("all-rtidle-submit")
rthog_latency_on_ring(device, ALL_ENGINES, "all", RTIDLE);
igt_subtest("all-rthog-submit")
rthog_latency_on_ring(device, ALL_ENGINES, "all", 0);
igt_subtest_group {
igt_fixture
igt_require(intel_gen(intel_get_drm_devid(device)) >= 7);
for (e = intel_execution_engines; e->name; e++) {
if (e->exec_id == 0)
continue;
igt_subtest_group {
igt_fixture {
igt_require(gem_ring_has_physical_engine(device, e->exec_id | e->flags));
}
igt_subtest_f("%s-dispatch", e->name)
latency_on_ring(device,
e->exec_id | e->flags,
e->name, 0);
igt_subtest_f("%s-live-dispatch", e->name)
latency_on_ring(device,
e->exec_id | e->flags,
e->name, LIVE);
igt_subtest_f("%s-poll", e->name)
poll_ring(device,
e->exec_id | e->flags,
e->name);
igt_subtest_f("%s-rtidle-submit", e->name)
rthog_latency_on_ring(device,
e->exec_id |
e->flags,
e->name,
RTIDLE);
igt_subtest_f("%s-rthog-submit", e->name)
rthog_latency_on_ring(device,
e->exec_id |
e->flags,
e->name,
0);
igt_subtest_f("%s-live-dispatch-queued", e->name)
latency_on_ring(device,
e->exec_id | e->flags,
e->name, LIVE | CORK);
igt_subtest_f("%s-dispatch-queued", e->name)
latency_on_ring(device,
e->exec_id | e->flags,
e->name, CORK);
igt_subtest_f("%s-synchronisation", e->name)
latency_from_ring(device,
e->exec_id | e->flags,
e->name, 0);
igt_subtest_f("%s-synchronisation-queued", e->name)
latency_from_ring(device,
e->exec_id | e->flags,
e->name, CORK);
igt_subtest_group {
igt_fixture {
gem_require_contexts(device);
igt_require(gem_scheduler_has_preemption(device));
}
igt_subtest_f("%s-preemption", e->name)
latency_from_ring(device,
e->exec_id | e->flags,
e->name, PREEMPT);
}
}
}
}
igt_fixture {
close(device);
}
}