You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2017 lines
57 KiB

/*
* Copyright © 2006 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
*
*/
#include <ctype.h>
#include <errno.h>
#include <fcntl.h>
#include <getopt.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/types.h>
#include "igt_aux.h"
#include "intel_io.h"
#include "intel_chipset.h"
#include "drmtest.h"
/* kernel types for intel_vbt_defs.h */
typedef uint8_t u8;
typedef uint16_t u16;
typedef uint32_t u32;
typedef uint64_t u64;
#define __packed __attribute__ ((packed))
#define _INTEL_BIOS_PRIVATE
#include "intel_vbt_defs.h"
/* no bother to include "edid.h" */
#define _H_ACTIVE(x) (x[2] + ((x[4] & 0xF0) << 4))
#define _H_SYNC_OFF(x) (x[8] + ((x[11] & 0xC0) << 2))
#define _H_SYNC_WIDTH(x) (x[9] + ((x[11] & 0x30) << 4))
#define _H_BLANK(x) (x[3] + ((x[4] & 0x0F) << 8))
#define _V_ACTIVE(x) (x[5] + ((x[7] & 0xF0) << 4))
#define _V_SYNC_OFF(x) ((x[10] >> 4) + ((x[11] & 0x0C) << 2))
#define _V_SYNC_WIDTH(x) ((x[10] & 0x0F) + ((x[11] & 0x03) << 4))
#define _V_BLANK(x) (x[6] + ((x[7] & 0x0F) << 8))
#define _PIXEL_CLOCK(x) (x[0] + (x[1] << 8)) * 10000
#define YESNO(val) ((val) ? "yes" : "no")
/* This is not for mapping to memory layout. */
struct bdb_block {
uint8_t id;
uint32_t size;
const void *data;
};
struct context {
const struct vbt_header *vbt;
const struct bdb_header *bdb;
int size;
uint32_t devid;
int panel_type;
bool dump_all_panel_types;
bool hexdump;
};
/* Get BDB block size given a pointer to Block ID. */
static uint32_t _get_blocksize(const uint8_t *block_base)
{
/* The MIPI Sequence Block v3+ has a separate size field. */
if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3)
return *((const uint32_t *)(block_base + 4));
else
return *((const uint16_t *)(block_base + 1));
}
static struct bdb_block *find_section(struct context *context, int section_id)
{
const struct bdb_header *bdb = context->bdb;
int length = context->size;
struct bdb_block *block;
const uint8_t *base = (const uint8_t *)bdb;
int index = 0;
uint32_t total, current_size;
unsigned char current_id;
/* skip to first section */
index += bdb->header_size;
total = bdb->bdb_size;
if (total > length)
total = length;
block = malloc(sizeof(*block));
if (!block) {
fprintf(stderr, "out of memory\n");
exit(EXIT_FAILURE);
}
/* walk the sections looking for section_id */
while (index + 3 < total) {
current_id = *(base + index);
current_size = _get_blocksize(base + index);
index += 3;
if (index + current_size > total)
return NULL;
if (current_id == section_id) {
block->id = current_id;
block->size = current_size;
block->data = base + index;
return block;
}
index += current_size;
}
free(block);
return NULL;
}
static void dump_general_features(struct context *context,
const struct bdb_block *block)
{
const struct bdb_general_features *features = block->data;
printf("\tPanel fitting: ");
switch (features->panel_fitting) {
case 0:
printf("disabled\n");
break;
case 1:
printf("text only\n");
break;
case 2:
printf("graphics only\n");
break;
case 3:
printf("text & graphics\n");
break;
}
printf("\tFlexaim: %s\n", YESNO(features->flexaim));
printf("\tMessage: %s\n", YESNO(features->msg_enable));
printf("\tClear screen: %d\n", features->clear_screen);
printf("\tDVO color flip required: %s\n", YESNO(features->color_flip));
printf("\tExternal VBT: %s\n", YESNO(features->download_ext_vbt));
printf("\tEnable SSC: %s\n", YESNO(features->enable_ssc));
if (features->enable_ssc) {
if (!context->devid)
printf("\tSSC frequency: <unknown platform>\n");
else if (IS_VALLEYVIEW(context->devid) ||
IS_CHERRYVIEW(context->devid) ||
IS_BROXTON(context->devid))
printf("\tSSC frequency: 100 MHz\n");
else if (HAS_PCH_SPLIT(context->devid))
printf("\tSSC frequency: %s\n", features->ssc_freq ?
"100 MHz" : "120 MHz");
else
printf("\tSSC frequency: %s\n", features->ssc_freq ?
"100 MHz (66 MHz on 855)" : "96 MHz (48 MHz on 855)");
}
printf("\tLFP on override: %s\n",
YESNO(features->enable_lfp_on_override));
printf("\tDisable SSC on clone: %s\n",
YESNO(features->disable_ssc_ddt));
printf("\tUnderscan support for VGA timings: %s\n",
YESNO(features->underscan_vga_timings));
if (context->bdb->version >= 183)
printf("\tDynamic CD clock: %s\n", YESNO(features->display_clock_mode));
printf("\tHotplug support in VBIOS: %s\n",
YESNO(features->vbios_hotplug_support));
printf("\tDisable smooth vision: %s\n",
YESNO(features->disable_smooth_vision));
printf("\tSingle DVI for CRT/DVI: %s\n", YESNO(features->single_dvi));
if (context->bdb->version >= 181)
printf("\tEnable 180 degree rotation: %s\n", YESNO(features->rotate_180));
printf("\tInverted FDI Rx polarity: %s\n", YESNO(features->fdi_rx_polarity_inverted));
if (context->bdb->version >= 160) {
printf("\tExtended VBIOS mode: %s\n", YESNO(features->vbios_extended_mode));
printf("\tCopy iLFP DTD to SDVO LVDS DTD: %s\n", YESNO(features->copy_ilfp_dtd_to_sdvo_lvds_dtd));
printf("\tBest fit panel timing algorithm: %s\n", YESNO(features->panel_best_fit_timing));
printf("\tIgnore strap state: %s\n", YESNO(features->ignore_strap_state));
}
printf("\tLegacy monitor detect: %s\n",
YESNO(features->legacy_monitor_detect));
printf("\tIntegrated CRT: %s\n", YESNO(features->int_crt_support));
printf("\tIntegrated TV: %s\n", YESNO(features->int_tv_support));
printf("\tIntegrated EFP: %s\n", YESNO(features->int_efp_support));
printf("\tDP SSC enable: %s\n", YESNO(features->dp_ssc_enable));
if (features->dp_ssc_enable) {
if (IS_VALLEYVIEW(context->devid) || IS_CHERRYVIEW(context->devid) ||
IS_BROXTON(context->devid))
printf("\tSSC frequency: 100 MHz\n");
else if (HAS_PCH_SPLIT(context->devid))
printf("\tSSC frequency: %s\n", features->dp_ssc_freq ?
"100 MHz" : "120 MHz");
else
printf("\tSSC frequency: %s\n", features->dp_ssc_freq ?
"100 MHz" : "96 MHz");
}
printf("\tDP SSC dongle supported: %s\n", YESNO(features->dp_ssc_dongle_supported));
}
static void dump_backlight_info(struct context *context,
const struct bdb_block *block)
{
const struct bdb_lfp_backlight_data *backlight = block->data;
const struct lfp_backlight_data_entry *blc;
if (sizeof(*blc) != backlight->entry_size) {
printf("\tBacklight struct sizes don't match (expected %zu, got %u), skipping\n",
sizeof(*blc), backlight->entry_size);
return;
}
blc = &backlight->data[context->panel_type];
printf("\tInverter type: %d\n", blc->type);
printf("\t polarity: %d\n", blc->active_low_pwm);
printf("\t PWM freq: %d\n", blc->pwm_freq_hz);
printf("\tMinimum brightness: %d\n", blc->min_brightness);
}
static const struct {
unsigned short type;
const char *name;
} child_device_types[] = {
{ DEVICE_TYPE_NONE, "none" },
{ DEVICE_TYPE_CRT, "CRT" },
{ DEVICE_TYPE_TV, "TV" },
{ DEVICE_TYPE_EFP, "EFP" },
{ DEVICE_TYPE_LFP, "LFP" },
{ DEVICE_TYPE_CRT_DPMS, "CRT" },
{ DEVICE_TYPE_CRT_DPMS_HOTPLUG, "CRT" },
{ DEVICE_TYPE_TV_COMPOSITE, "TV composite" },
{ DEVICE_TYPE_TV_MACROVISION, "TV" },
{ DEVICE_TYPE_TV_RF_COMPOSITE, "TV" },
{ DEVICE_TYPE_TV_SVIDEO_COMPOSITE, "TV S-Video" },
{ DEVICE_TYPE_TV_SCART, "TV SCART" },
{ DEVICE_TYPE_TV_CODEC_HOTPLUG_PWR, "TV" },
{ DEVICE_TYPE_EFP_HOTPLUG_PWR, "EFP" },
{ DEVICE_TYPE_EFP_DVI_HOTPLUG_PWR, "DVI" },
{ DEVICE_TYPE_EFP_DVI_I, "DVI-I" },
{ DEVICE_TYPE_EFP_DVI_D_DUAL, "DL-DVI-D" },
{ DEVICE_TYPE_EFP_DVI_D_HDCP, "DVI-D" },
{ DEVICE_TYPE_OPENLDI_HOTPLUG_PWR, "OpenLDI" },
{ DEVICE_TYPE_OPENLDI_DUALPIX, "OpenLDI" },
{ DEVICE_TYPE_LFP_PANELLINK, "PanelLink" },
{ DEVICE_TYPE_LFP_CMOS_PWR, "CMOS LFP" },
{ DEVICE_TYPE_LFP_LVDS_PWR, "LVDS" },
{ DEVICE_TYPE_LFP_LVDS_DUAL, "LVDS" },
{ DEVICE_TYPE_LFP_LVDS_DUAL_HDCP, "LVDS" },
{ DEVICE_TYPE_INT_LFP, "LFP" },
{ DEVICE_TYPE_INT_TV, "TV" },
{ DEVICE_TYPE_DP, "DisplayPort" },
{ DEVICE_TYPE_DP_DUAL_MODE, "DisplayPort/HDMI/DVI" },
{ DEVICE_TYPE_DP_DVI, "DisplayPort/DVI" },
{ DEVICE_TYPE_HDMI, "HDMI/DVI" },
{ DEVICE_TYPE_DVI, "DVI" },
{ DEVICE_TYPE_eDP, "eDP" },
{ DEVICE_TYPE_MIPI, "MIPI" },
};
static const int num_child_device_types =
sizeof(child_device_types) / sizeof(child_device_types[0]);
static const char *child_device_type(unsigned short type)
{
int i;
for (i = 0; i < num_child_device_types; i++)
if (child_device_types[i].type == type)
return child_device_types[i].name;
return "unknown";
}
static const struct {
unsigned short mask;
const char *name;
} child_device_type_bits[] = {
{ DEVICE_TYPE_CLASS_EXTENSION, "Class extension" },
{ DEVICE_TYPE_POWER_MANAGEMENT, "Power management" },
{ DEVICE_TYPE_HOTPLUG_SIGNALING, "Hotplug signaling" },
{ DEVICE_TYPE_INTERNAL_CONNECTOR, "Internal connector" },
{ DEVICE_TYPE_NOT_HDMI_OUTPUT, "HDMI output" }, /* decoded as inverse */
{ DEVICE_TYPE_MIPI_OUTPUT, "MIPI output" },
{ DEVICE_TYPE_COMPOSITE_OUTPUT, "Composite output" },
{ DEVICE_TYPE_DUAL_CHANNEL, "Dual channel" },
{ 1 << 7, "Content protection" },
{ DEVICE_TYPE_HIGH_SPEED_LINK, "High speed link" },
{ DEVICE_TYPE_LVDS_SIGNALING, "LVDS signaling" },
{ DEVICE_TYPE_TMDS_DVI_SIGNALING, "TMDS/DVI signaling" },
{ DEVICE_TYPE_VIDEO_SIGNALING, "Video signaling" },
{ DEVICE_TYPE_DISPLAYPORT_OUTPUT, "DisplayPort output" },
{ DEVICE_TYPE_DIGITAL_OUTPUT, "Digital output" },
{ DEVICE_TYPE_ANALOG_OUTPUT, "Analog output" },
};
static void dump_child_device_type_bits(uint16_t type)
{
int i;
type ^= DEVICE_TYPE_NOT_HDMI_OUTPUT;
for (i = 0; i < ARRAY_SIZE(child_device_type_bits); i++) {
if (child_device_type_bits[i].mask & type)
printf("\t\t\t%s\n", child_device_type_bits[i].name);
}
}
static const struct {
unsigned char handle;
const char *name;
} child_device_handles[] = {
{ DEVICE_HANDLE_CRT, "CRT" },
{ DEVICE_HANDLE_EFP1, "EFP 1 (HDMI/DVI/DP)" },
{ DEVICE_HANDLE_EFP2, "EFP 2 (HDMI/DVI/DP)" },
{ DEVICE_HANDLE_EFP3, "EFP 3 (HDMI/DVI/DP)" },
{ DEVICE_HANDLE_EFP4, "EFP 4 (HDMI/DVI/DP)" },
{ DEVICE_HANDLE_LPF1, "LFP 1 (eDP)" },
{ DEVICE_HANDLE_LFP2, "LFP 2 (eDP)" },
};
static const int num_child_device_handles =
sizeof(child_device_handles) / sizeof(child_device_handles[0]);
static const char *child_device_handle(unsigned char handle)
{
int i;
for (i = 0; i < num_child_device_handles; i++)
if (child_device_handles[i].handle == handle)
return child_device_handles[i].name;
return "unknown";
}
static const char *dvo_port_names[] = {
[DVO_PORT_HDMIA] = "HDMI-A",
[DVO_PORT_HDMIB] = "HDMI-B",
[DVO_PORT_HDMIC] = "HDMI-C",
[DVO_PORT_HDMID] = "HDMI-D",
[DVO_PORT_LVDS] = "LVDS",
[DVO_PORT_TV] = "TV",
[DVO_PORT_CRT] = "CRT",
[DVO_PORT_DPB] = "DP-B",
[DVO_PORT_DPC] = "DP-C",
[DVO_PORT_DPD] = "DP-D",
[DVO_PORT_DPA] = "DP-A",
[DVO_PORT_DPE] = "DP-E",
[DVO_PORT_HDMIE] = "HDMI-E",
[DVO_PORT_MIPIA] = "MIPI-A",
[DVO_PORT_MIPIB] = "MIPI-B",
[DVO_PORT_MIPIC] = "MIPI-C",
[DVO_PORT_MIPID] = "MIPI-D",
};
static const char *dvo_port(uint8_t type)
{
if (type < ARRAY_SIZE(dvo_port_names) && dvo_port_names[type])
return dvo_port_names[type];
else
return "unknown";
}
static const char *mipi_bridge_type(uint8_t type)
{
switch (type) {
case 1:
return "ASUS";
case 2:
return "Toshiba";
case 3:
return "Renesas";
default:
return "unknown";
}
}
static void dump_hmdi_max_data_rate(uint8_t hdmi_max_data_rate)
{
static const uint16_t max_data_rate[] = {
[HDMI_MAX_DATA_RATE_PLATFORM] = 0,
[HDMI_MAX_DATA_RATE_297] = 297,
[HDMI_MAX_DATA_RATE_165] = 165,
};
if (hdmi_max_data_rate >= ARRAY_SIZE(max_data_rate))
printf("\t\tHDMI max data rate: <unknown> (0x%02x)\n",
hdmi_max_data_rate);
else if (hdmi_max_data_rate == HDMI_MAX_DATA_RATE_PLATFORM)
printf("\t\tHDMI max data rate: <platform max> (0x%02x)\n",
hdmi_max_data_rate);
else
printf("\t\tHDMI max data rate: %d MHz (0x%02x)\n",
max_data_rate[hdmi_max_data_rate],
hdmi_max_data_rate);
}
static void dump_child_device(struct context *context,
const struct child_device_config *child)
{
if (!child->device_type)
return;
printf("\tChild device info:\n");
printf("\t\tDevice handle: 0x%04x (%s)\n", child->handle,
child_device_handle(child->handle));
printf("\t\tDevice type: 0x%04x (%s)\n", child->device_type,
child_device_type(child->device_type));
dump_child_device_type_bits(child->device_type);
if (context->bdb->version < 152) {
printf("\t\tSignature: %.*s\n", (int)sizeof(child->device_id), child->device_id);
} else {
printf("\t\tI2C speed: 0x%02x\n", child->i2c_speed);
printf("\t\tDP onboard redriver: 0x%02x\n", child->dp_onboard_redriver);
printf("\t\tDP ondock redriver: 0x%02x\n", child->dp_ondock_redriver);
printf("\t\tHDMI level shifter value: 0x%02x\n", child->hdmi_level_shifter_value);
dump_hmdi_max_data_rate(child->hdmi_max_data_rate);
printf("\t\tOffset to DTD buffer for edidless CHILD: 0x%02x\n", child->dtd_buf_ptr);
printf("\t\tEdidless EFP: %s\n", YESNO(child->edidless_efp));
printf("\t\tCompression enable: %s\n", YESNO(child->compression_enable));
printf("\t\tCompression method CPS: %s\n", YESNO(child->compression_method));
printf("\t\tDual pipe ganged eDP: %s\n", YESNO(child->ganged_edp));
printf("\t\tCompression structure index: 0x%02x)\n", child->compression_structure_index);
printf("\t\tSlave DDI port: 0x%02x (%s)\n", child->slave_port, dvo_port(child->slave_port));
}
printf("\t\tAIM offset: %d\n", child->addin_offset);
printf("\t\tDVO Port: 0x%02x (%s)\n", child->dvo_port, dvo_port(child->dvo_port));
printf("\t\tAIM I2C pin: 0x%02x\n", child->i2c_pin);
printf("\t\tAIM Slave address: 0x%02x\n", child->slave_addr);
printf("\t\tDDC pin: 0x%02x\n", child->ddc_pin);
printf("\t\tEDID buffer ptr: 0x%02x\n", child->edid_ptr);
printf("\t\tDVO config: 0x%02x\n", child->dvo_cfg);
if (context->bdb->version < 155) {
printf("\t\tDVO2 Port: 0x%02x (%s)\n", child->dvo2_port, dvo_port(child->dvo2_port));
printf("\t\tI2C2 pin: 0x%02x\n", child->i2c2_pin);
printf("\t\tSlave2 address: 0x%02x\n", child->slave2_addr);
printf("\t\tDDC2 pin: 0x%02x\n", child->ddc2_pin);
} else {
printf("\t\tEFP routed through dock: %s\n", YESNO(child->efp_routed));
printf("\t\tLane reversal: %s\n", YESNO(child->lane_reversal));
printf("\t\tOnboard LSPCON: %s\n", YESNO(child->lspcon));
printf("\t\tIboost enable: %s\n", YESNO(child->iboost));
printf("\t\tHPD sense invert: %s\n", YESNO(child->hpd_invert));
printf("\t\tHDMI compatible? %s\n", YESNO(child->hdmi_support));
printf("\t\tDP compatible? %s\n", YESNO(child->dp_support));
printf("\t\tTMDS compatible? %s\n", YESNO(child->tmds_support));
printf("\t\tAux channel: 0x%02x\n", child->aux_channel);
printf("\t\tDongle detect: 0x%02x\n", child->dongle_detect);
}
printf("\t\tPipe capabilities: 0x%02x\n", child->pipe_cap);
printf("\t\tSDVO stall signal available: %s\n", YESNO(child->sdvo_stall));
printf("\t\tHotplug connect status: 0x%02x\n", child->hpd_status);
printf("\t\tIntegrated encoder instead of SDVO: %s\n", YESNO(child->integrated_encoder));
printf("\t\tDVO wiring: 0x%02x\n", child->dvo_wiring);
if (context->bdb->version < 171) {
printf("\t\tDVO2 wiring: 0x%02x\n", child->dvo2_wiring);
} else {
printf("\t\tMIPI bridge type: %02x (%s)\n", child->mipi_bridge_type,
mipi_bridge_type(child->mipi_bridge_type));
}
printf("\t\tDevice class extension: 0x%02x\n", child->extended_type);
printf("\t\tDVO function: 0x%02x\n", child->dvo_function);
if (context->bdb->version >= 195) {
printf("\t\tDP USB type C support: %s\n", YESNO(child->dp_usb_type_c));
printf("\t\t2X DP GPIO index: 0x%02x\n", child->dp_gpio_index);
printf("\t\t2X DP GPIO pin number: 0x%02x\n", child->dp_gpio_pin_num);
}
if (context->bdb->version >= 196) {
printf("\t\tIBoost level for HDMI: 0x%02x\n", child->hdmi_iboost_level);
printf("\t\tIBoost level for DP/eDP: 0x%02x\n", child->dp_iboost_level);
}
}
static void dump_child_devices(struct context *context, const uint8_t *devices,
uint8_t child_dev_num, uint8_t child_dev_size)
{
struct child_device_config *child;
int i;
/*
* Use a temp buffer so dump_child_device() doesn't have to worry about
* accessing the struct beyond child_dev_size. The tail, if any, remains
* initialized to zero.
*/
child = calloc(1, sizeof(*child));
for (i = 0; i < child_dev_num; i++) {
memcpy(child, devices + i * child_dev_size,
min(sizeof(*child), child_dev_size));
dump_child_device(context, child);
}
free(child);
}
static void dump_general_definitions(struct context *context,
const struct bdb_block *block)
{
const struct bdb_general_definitions *defs = block->data;
int child_dev_num;
child_dev_num = (block->size - sizeof(*defs)) / defs->child_dev_size;
printf("\tCRT DDC GMBUS addr: 0x%02x\n", defs->crt_ddc_gmbus_pin);
printf("\tUse ACPI DPMS CRT power states: %s\n",
YESNO(defs->dpms_acpi));
printf("\tSkip CRT detect at boot: %s\n",
YESNO(defs->skip_boot_crt_detect));
printf("\tUse DPMS on AIM devices: %s\n", YESNO(defs->dpms_aim));
printf("\tBoot display type: 0x%02x%02x\n", defs->boot_display[1],
defs->boot_display[0]);
printf("\tChild device size: %d\n", defs->child_dev_size);
printf("\tChild device count: %d\n", child_dev_num);
dump_child_devices(context, defs->devices,
child_dev_num, defs->child_dev_size);
}
static void dump_legacy_child_devices(struct context *context,
const struct bdb_block *block)
{
const struct bdb_legacy_child_devices *defs = block->data;
int child_dev_num;
child_dev_num = (block->size - sizeof(*defs)) / defs->child_dev_size;
printf("\tChild device size: %d\n", defs->child_dev_size);
printf("\tChild device count: %d\n", child_dev_num);
dump_child_devices(context, defs->devices,
child_dev_num, defs->child_dev_size);
}
static void dump_lvds_options(struct context *context,
const struct bdb_block *block)
{
const struct bdb_lvds_options *options = block->data;
if (context->panel_type == options->panel_type)
printf("\tPanel type: %d\n", options->panel_type);
else
printf("\tPanel type: %d (override %d)\n",
options->panel_type, context->panel_type);
printf("\tLVDS EDID available: %s\n", YESNO(options->lvds_edid));
printf("\tPixel dither: %s\n", YESNO(options->pixel_dither));
printf("\tPFIT auto ratio: %s\n", YESNO(options->pfit_ratio_auto));
printf("\tPFIT enhanced graphics mode: %s\n",
YESNO(options->pfit_gfx_mode_enhanced));
printf("\tPFIT enhanced text mode: %s\n",
YESNO(options->pfit_text_mode_enhanced));
printf("\tPFIT mode: %d\n", options->pfit_mode);
}
static void dump_lvds_ptr_data(struct context *context,
const struct bdb_block *block)
{
const struct bdb_lvds_lfp_data_ptrs *ptrs = block->data;
printf("\tNumber of entries: %d\n", ptrs->lvds_entries);
}
static void dump_lvds_data(struct context *context,
const struct bdb_block *block)
{
const struct bdb_lvds_lfp_data *lvds_data = block->data;
struct bdb_block *ptrs_block;
const struct bdb_lvds_lfp_data_ptrs *ptrs;
int num_entries;
int i;
int hdisplay, hsyncstart, hsyncend, htotal;
int vdisplay, vsyncstart, vsyncend, vtotal;
float clock;
int lfp_data_size, dvo_offset;
ptrs_block = find_section(context, BDB_LVDS_LFP_DATA_PTRS);
if (!ptrs_block) {
printf("No LVDS ptr block\n");
return;
}
ptrs = ptrs_block->data;
lfp_data_size =
ptrs->ptr[1].fp_timing_offset - ptrs->ptr[0].fp_timing_offset;
dvo_offset =
ptrs->ptr[0].dvo_timing_offset - ptrs->ptr[0].fp_timing_offset;
num_entries = block->size / lfp_data_size;
printf(" Number of entries: %d (preferred block marked with '*')\n",
num_entries);
for (i = 0; i < num_entries; i++) {
const uint8_t *lfp_data_ptr =
(const uint8_t *) lvds_data->data + lfp_data_size * i;
const uint8_t *timing_data = lfp_data_ptr + dvo_offset;
const struct lvds_lfp_data_entry *lfp_data =
(const struct lvds_lfp_data_entry *)lfp_data_ptr;
char marker;
if (i != context->panel_type && !context->dump_all_panel_types)
continue;
if (i == context->panel_type)
marker = '*';
else
marker = ' ';
hdisplay = _H_ACTIVE(timing_data);
hsyncstart = hdisplay + _H_SYNC_OFF(timing_data);
hsyncend = hsyncstart + _H_SYNC_WIDTH(timing_data);
htotal = hdisplay + _H_BLANK(timing_data);
vdisplay = _V_ACTIVE(timing_data);
vsyncstart = vdisplay + _V_SYNC_OFF(timing_data);
vsyncend = vsyncstart + _V_SYNC_WIDTH(timing_data);
vtotal = vdisplay + _V_BLANK(timing_data);
clock = _PIXEL_CLOCK(timing_data) / 1000;
printf("%c\tpanel type %02i: %dx%d clock %d\n", marker,
i, lfp_data->fp_timing.x_res, lfp_data->fp_timing.y_res,
_PIXEL_CLOCK(timing_data));
printf("\t\tinfo:\n");
printf("\t\t LVDS: 0x%08lx\n",
(unsigned long)lfp_data->fp_timing.lvds_reg_val);
printf("\t\t PP_ON_DELAYS: 0x%08lx\n",
(unsigned long)lfp_data->fp_timing.pp_on_reg_val);
printf("\t\t PP_OFF_DELAYS: 0x%08lx\n",
(unsigned long)lfp_data->fp_timing.pp_off_reg_val);
printf("\t\t PP_DIVISOR: 0x%08lx\n",
(unsigned long)lfp_data->fp_timing.pp_cycle_reg_val);
printf("\t\t PFIT: 0x%08lx\n",
(unsigned long)lfp_data->fp_timing.pfit_reg_val);
printf("\t\ttimings: %d %d %d %d %d %d %d %d %.2f (%s)\n",
hdisplay, hsyncstart, hsyncend, htotal,
vdisplay, vsyncstart, vsyncend, vtotal, clock,
(hsyncend > htotal || vsyncend > vtotal) ?
"BAD!" : "good");
}
free(ptrs_block);
}
static void dump_driver_feature(struct context *context,
const struct bdb_block *block)
{
const struct bdb_driver_features *feature = block->data;
printf("\tBoot Device Algorithm: %s\n", feature->boot_dev_algorithm ?
"driver default" : "os default");
printf("\tBlock display switching when DVD active: %s\n",
YESNO(feature->block_display_switch));
printf("\tAllow display switching when in Full Screen DOS: %s\n",
YESNO(feature->allow_display_switch));
printf("\tHot Plug DVO: %s\n", YESNO(feature->hotplug_dvo));
printf("\tDual View Zoom: %s\n", YESNO(feature->dual_view_zoom));
printf("\tDriver INT 15h hook: %s\n", YESNO(feature->int15h_hook));
printf("\tEnable Sprite in Clone Mode: %s\n",
YESNO(feature->sprite_in_clone));
printf("\tUse 00000110h ID for Primary LFP: %s\n",
YESNO(feature->primary_lfp_id));
printf("\tBoot Mode X: %u\n", feature->boot_mode_x);
printf("\tBoot Mode Y: %u\n", feature->boot_mode_y);
printf("\tBoot Mode Bpp: %u\n", feature->boot_mode_bpp);
printf("\tBoot Mode Refresh: %u\n", feature->boot_mode_refresh);
printf("\tEnable LFP as primary: %s\n",
YESNO(feature->enable_lfp_primary));
printf("\tSelective Mode Pruning: %s\n",
YESNO(feature->selective_mode_pruning));
printf("\tDual-Frequency Graphics Technology: %s\n",
YESNO(feature->dual_frequency));
printf("\tDefault Render Clock Frequency: %s\n",
feature->render_clock_freq ? "low" : "high");
printf("\tNT 4.0 Dual Display Clone Support: %s\n",
YESNO(feature->nt_clone_support));
printf("\tDefault Power Scheme user interface: %s\n",
feature->power_scheme_ui ? "3rd party" : "CUI");
printf
("\tSprite Display Assignment when Overlay is Active in Clone Mode: %s\n",
feature->sprite_display_assign ? "primary" : "secondary");
printf("\tDisplay Maintain Aspect Scaling via CUI: %s\n",
YESNO(feature->cui_aspect_scaling));
printf("\tPreserve Aspect Ratio: %s\n",
YESNO(feature->preserve_aspect_ratio));
printf("\tEnable SDVO device power down: %s\n",
YESNO(feature->sdvo_device_power_down));
printf("\tCRT hotplug: %s\n", YESNO(feature->crt_hotplug));
printf("\tLVDS config: ");
switch (feature->lvds_config) {
case BDB_DRIVER_NO_LVDS:
printf("No LVDS\n");
break;
case BDB_DRIVER_INT_LVDS:
printf("Integrated LVDS\n");
break;
case BDB_DRIVER_SDVO_LVDS:
printf("SDVO LVDS\n");
break;
case BDB_DRIVER_EDP:
printf("Embedded DisplayPort\n");
break;
}
printf("\tDefine Display statically: %s\n",
YESNO(feature->static_display));
printf("\tLegacy CRT max X: %d\n", feature->legacy_crt_max_x);
printf("\tLegacy CRT max Y: %d\n", feature->legacy_crt_max_y);
printf("\tLegacy CRT max refresh: %d\n",
feature->legacy_crt_max_refresh);
printf("\tEnable DRRS: %s\n", YESNO(feature->drrs_enabled));
printf("\tEnable PSR: %s\n", YESNO(feature->psr_enabled));
}
static void dump_edp(struct context *context,
const struct bdb_block *block)
{
const struct bdb_edp *edp = block->data;
int bpp, msa;
int i;
for (i = 0; i < 16; i++) {
if (i != context->panel_type && !context->dump_all_panel_types)
continue;
printf("\tPanel %d%s\n", i, context->panel_type == i ? " *" : "");
printf("\t\tPower Sequence: T3 %d T7 %d T9 %d T10 %d T12 %d\n",
edp->power_seqs[i].t3,
edp->power_seqs[i].t7,
edp->power_seqs[i].t9,
edp->power_seqs[i].t10,
edp->power_seqs[i].t12);
bpp = (edp->color_depth >> (i * 2)) & 3;
printf("\t\tPanel color depth: ");
switch (bpp) {
case EDP_18BPP:
printf("18 bpp\n");
break;
case EDP_24BPP:
printf("24 bpp\n");
break;
case EDP_30BPP:
printf("30 bpp\n");
break;
default:
printf("(unknown value %d)\n", bpp);
break;
}
msa = (edp->sdrrs_msa_timing_delay >> (i * 2)) & 3;
printf("\t\teDP sDRRS MSA Delay: Lane %d\n", msa + 1);
printf("\t\tFast link params:\n");
printf("\t\t\trate: ");
if (edp->fast_link_params[i].rate == EDP_RATE_1_62)
printf("1.62G\n");
else if (edp->fast_link_params[i].rate == EDP_RATE_2_7)
printf("2.7G\n");
printf("\t\t\tlanes: ");
switch (edp->fast_link_params[i].lanes) {
case EDP_LANE_1:
printf("x1 mode\n");
break;
case EDP_LANE_2:
printf("x2 mode\n");
break;
case EDP_LANE_4:
printf("x4 mode\n");
break;
default:
printf("(unknown value %d)\n",
edp->fast_link_params[i].lanes);
break;
}
printf("\t\t\tpre-emphasis: ");
switch (edp->fast_link_params[i].preemphasis) {
case EDP_PREEMPHASIS_NONE:
printf("none\n");
break;
case EDP_PREEMPHASIS_3_5dB:
printf("3.5dB\n");
break;
case EDP_PREEMPHASIS_6dB:
printf("6dB\n");
break;
case EDP_PREEMPHASIS_9_5dB:
printf("9.5dB\n");
break;
default:
printf("(unknown value %d)\n",
edp->fast_link_params[i].preemphasis);
break;
}
printf("\t\t\tvswing: ");
switch (edp->fast_link_params[i].vswing) {
case EDP_VSWING_0_4V:
printf("0.4V\n");
break;
case EDP_VSWING_0_6V:
printf("0.6V\n");
break;
case EDP_VSWING_0_8V:
printf("0.8V\n");
break;
case EDP_VSWING_1_2V:
printf("1.2V\n");
break;
default:
printf("(unknown value %d)\n",
edp->fast_link_params[i].vswing);
break;
}
if (context->bdb->version >= 162) {
bool val = (edp->edp_s3d_feature >> i) & 1;
printf("\t\tStereo 3D feature: %s\n", YESNO(val));
}
if (context->bdb->version >= 165) {
bool val = (edp->edp_t3_optimization >> i) & 1;
printf("\t\tT3 optimization: %s\n", YESNO(val));
}
if (context->bdb->version >= 173) {
int val = (edp->edp_vswing_preemph >> (i * 4)) & 0xf;
printf("\t\tVswing/preemphasis table selection: ");
switch (val) {
case 0:
printf("Low power (200 mV)\n");
break;
case 1:
printf("Default (400 mV)\n");
break;
default:
printf("(unknown value %d)\n", val);
break;
}
}
if (context->bdb->version >= 182) {
bool val = (edp->fast_link_training >> i) & 1;
printf("\t\tFast link training: %s\n", YESNO(val));
}
if (context->bdb->version >= 185) {
bool val = (edp->dpcd_600h_write_required >> i) & 1;
printf("\t\tDPCD 600h write required: %s\n", YESNO(val));
}
if (context->bdb->version >= 186) {
printf("\t\tPWM delays:\n"
"\t\t\tPWM on to backlight enable: %d\n"
"\t\t\tBacklight disable to PWM off: %d\n",
edp->pwm_delays[i].pwm_on_to_backlight_enable,
edp->pwm_delays[i].backlight_disable_to_pwm_off);
}
if (context->bdb->version >= 199) {
bool val = (edp->full_link_params_provided >> i) & 1;
printf("\t\tFull link params provided: %s\n", YESNO(val));
printf("\t\tFull link params:\n");
printf("\t\t\tpre-emphasis: ");
switch (edp->full_link_params[i].preemphasis) {
case EDP_PREEMPHASIS_NONE:
printf("none\n");
break;
case EDP_PREEMPHASIS_3_5dB:
printf("3.5dB\n");
break;
case EDP_PREEMPHASIS_6dB:
printf("6dB\n");
break;
case EDP_PREEMPHASIS_9_5dB:
printf("9.5dB\n");
break;
default:
printf("(unknown value %d)\n",
edp->full_link_params[i].preemphasis);
break;
}
printf("\t\t\tvswing: ");
switch (edp->full_link_params[i].vswing) {
case EDP_VSWING_0_4V:
printf("0.4V\n");
break;
case EDP_VSWING_0_6V:
printf("0.6V\n");
break;
case EDP_VSWING_0_8V:
printf("0.8V\n");
break;
case EDP_VSWING_1_2V:
printf("1.2V\n");
break;
default:
printf("(unknown value %d)\n",
edp->full_link_params[i].vswing);
break;
}
}
}
}
static void dump_psr(struct context *context,
const struct bdb_block *block)
{
const struct bdb_psr *psr_block = block->data;
int i;
uint32_t psr2_tp_time;
/* The same block ID was used for something else before? */
if (context->bdb->version < 165)
return;
psr2_tp_time = psr_block->psr2_tp2_tp3_wakeup_time;
for (i = 0; i < 16; i++) {
const struct psr_table *psr = &psr_block->psr_table[i];
if (i != context->panel_type && !context->dump_all_panel_types)
continue;
printf("\tPanel %d%s\n", i, context->panel_type == i ? " *" : "");
printf("\t\tFull link: %s\n", YESNO(psr->full_link));
printf("\t\tRequire AUX to wakeup: %s\n", YESNO(psr->require_aux_to_wakeup));
switch (psr->lines_to_wait) {
case 0:
case 1:
printf("\t\tLines to wait before link standby: %d\n",
psr->lines_to_wait);
break;
case 2:
case 3:
printf("\t\tLines to wait before link standby: %d\n",
1 << psr->lines_to_wait);
break;
default:
printf("\t\tLines to wait before link standby: (unknown) (0x%x)\n",
psr->lines_to_wait);
break;
}
printf("\t\tIdle frames to for PSR enable: %d\n",
psr->idle_frames);
printf("\t\tTP1 wakeup time: %d usec (0x%x)\n",
psr->tp1_wakeup_time * 100,
psr->tp1_wakeup_time);
printf("\t\tTP2/TP3 wakeup time: %d usec (0x%x)\n",
psr->tp2_tp3_wakeup_time * 100,
psr->tp2_tp3_wakeup_time);
if (context->bdb->version >= 226) {
int index;
static const uint16_t psr2_tp_times[] = {500, 100, 2500, 5};
index = (psr2_tp_time >> (i * 2)) & 0x3;
printf("\t\tPSR2 TP2/TP3 wakeup time: %d usec (0x%x)\n",
psr2_tp_times[index], index);
}
}
}
static void
print_detail_timing_data(const struct lvds_dvo_timing *dvo_timing)
{
int display, sync_start, sync_end, total;
display = (dvo_timing->hactive_hi << 8) | dvo_timing->hactive_lo;
sync_start = display +
((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo);
sync_end = sync_start + ((dvo_timing->hsync_pulse_width_hi << 8) |
dvo_timing->hsync_pulse_width_lo);
total = display +
((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo);
printf("\thdisplay: %d\n", display);
printf("\thsync [%d, %d] %s\n", sync_start, sync_end,
dvo_timing->hsync_positive ? "+sync" : "-sync");
printf("\thtotal: %d\n", total);
display = (dvo_timing->vactive_hi << 8) | dvo_timing->vactive_lo;
sync_start = display + ((dvo_timing->vsync_off_hi << 8) |
dvo_timing->vsync_off_lo);
sync_end = sync_start + ((dvo_timing->vsync_pulse_width_hi << 8) |
dvo_timing->vsync_pulse_width_lo);
total = display +
((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo);
printf("\tvdisplay: %d\n", display);
printf("\tvsync [%d, %d] %s\n", sync_start, sync_end,
dvo_timing->vsync_positive ? "+sync" : "-sync");
printf("\tvtotal: %d\n", total);
printf("\tclock: %d\n", dvo_timing->clock * 10);
}
static void dump_sdvo_panel_dtds(struct context *context,
const struct bdb_block *block)
{
const struct lvds_dvo_timing *dvo_timing = block->data;
int n, count;
count = block->size / sizeof(struct lvds_dvo_timing);
for (n = 0; n < count; n++) {
printf("%d:\n", n);
print_detail_timing_data(dvo_timing++);
}
}
static void dump_sdvo_lvds_options(struct context *context,
const struct bdb_block *block)
{
const struct bdb_sdvo_lvds_options *options = block->data;
printf("\tbacklight: %d\n", options->panel_backlight);
printf("\th40 type: %d\n", options->h40_set_panel_type);
printf("\ttype: %d\n", options->panel_type);
printf("\tssc_clk_freq: %d\n", options->ssc_clk_freq);
printf("\tals_low_trip: %d\n", options->als_low_trip);
printf("\tals_high_trip: %d\n", options->als_high_trip);
/*
u8 sclalarcoeff_tab_row_num;
u8 sclalarcoeff_tab_row_size;
u8 coefficient[8];
*/
printf("\tmisc[0]: %x\n", options->panel_misc_bits_1);
printf("\tmisc[1]: %x\n", options->panel_misc_bits_2);
printf("\tmisc[2]: %x\n", options->panel_misc_bits_3);
printf("\tmisc[3]: %x\n", options->panel_misc_bits_4);
}
static void dump_mipi_config(struct context *context,
const struct bdb_block *block)
{
const struct bdb_mipi_config *start = block->data;
const struct mipi_config *config;
const struct mipi_pps_data *pps;
config = &start->config[context->panel_type];
pps = &start->pps[context->panel_type];
printf("\tGeneral Param\n");
printf("\t\t BTA disable: %s\n", config->bta ? "Disabled" : "Enabled");
printf("\t\t Panel Rotation: %d degrees\n", config->rotation * 90);
printf("\t\t Video Mode Color Format: ");
if (config->videomode_color_format == 0)
printf("Not supported\n");
else if (config->videomode_color_format == 1)
printf("RGB565\n");
else if (config->videomode_color_format == 2)
printf("RGB666\n");
else if (config->videomode_color_format == 3)
printf("RGB666 Loosely Packed\n");
else if (config->videomode_color_format == 4)
printf("RGB888\n");
printf("\t\t PPS GPIO Pins: %s \n", config->pwm_blc ? "Using SOC" : "Using PMIC");
printf("\t\t CABC Support: %s\n", config->cabc ? "supported" : "not supported");
printf("\t\t Mode: %s\n", config->cmd_mode ? "COMMAND" : "VIDEO");
printf("\t\t Video transfer mode: %s (0x%x)\n",
config->vtm == 1 ? "non-burst with sync pulse" :
config->vtm == 2 ? "non-burst with sync events" :
config->vtm == 3 ? "burst" : "<unknown>",
config->vtm);
printf("\t\t Dithering: %s\n", config->dithering ? "done in Display Controller" : "done in Panel Controller");
printf("\tPort Desc\n");
printf("\t\t Pixel overlap: %d\n", config->pixel_overlap);
printf("\t\t Lane Count: %d\n", config->lane_cnt + 1);
printf("\t\t Dual Link Support: ");
if (config->dual_link == 0)
printf("not supported\n");
else if (config->dual_link == 1)
printf("Front Back mode\n");
else
printf("Pixel Alternative Mode\n");
printf("\tDphy Flags\n");
printf("\t\t Clock Stop: %s\n", config->clk_stop ? "ENABLED" : "DISABLED");
printf("\t\t EOT disabled: %s\n\n", config->eot_disabled ? "EOT not to be sent" : "EOT to be sent");
printf("\tHSTxTimeOut: 0x%x\n", config->hs_tx_timeout);
printf("\tLPRXTimeOut: 0x%x\n", config->lp_rx_timeout);
printf("\tTurnAroundTimeOut: 0x%x\n", config->turn_around_timeout);
printf("\tDeviceResetTimer: 0x%x\n", config->device_reset_timer);
printf("\tMasterinitTimer: 0x%x\n", config->master_init_timer);
printf("\tDBIBandwidthTimer: 0x%x\n", config->dbi_bw_timer);
printf("\tLpByteClkValue: 0x%x\n\n", config->lp_byte_clk_val);
printf("\tDphy Params\n");
printf("\t\tExit to zero Count: 0x%x\n", config->exit_zero_cnt);
printf("\t\tTrail Count: 0x%X\n", config->trail_cnt);
printf("\t\tClk zero count: 0x%x\n", config->clk_zero_cnt);
printf("\t\tPrepare count:0x%x\n\n", config->prepare_cnt);
printf("\tClockLaneSwitchingCount: 0x%x\n", config->clk_lane_switch_cnt);
printf("\tHighToLowSwitchingCount: 0x%x\n\n", config->hl_switch_cnt);
printf("\tTimings based on Dphy spec\n");
printf("\t\tTClkMiss: 0x%x\n", config->tclk_miss);
printf("\t\tTClkPost: 0x%x\n", config->tclk_post);
printf("\t\tTClkPre: 0x%x\n", config->tclk_pre);
printf("\t\tTClkPrepare: 0x%x\n", config->tclk_prepare);
printf("\t\tTClkSettle: 0x%x\n", config->tclk_settle);
printf("\t\tTClkTermEnable: 0x%x\n\n", config->tclk_term_enable);
printf("\tTClkTrail: 0x%x\n", config->tclk_trail);
printf("\tTClkPrepareTClkZero: 0x%x\n", config->tclk_prepare_clkzero);
printf("\tTHSExit: 0x%x\n", config->ths_exit);
printf("\tTHsPrepare: 0x%x\n", config->ths_prepare);
printf("\tTHsPrepareTHsZero: 0x%x\n", config->ths_prepare_hszero);
printf("\tTHSSettle: 0x%x\n", config->ths_settle);
printf("\tTHSSkip: 0x%x\n", config->ths_skip);
printf("\tTHsTrail: 0x%x\n", config->ths_trail);
printf("\tTInit: 0x%x\n", config->tinit);
printf("\tTLPX: 0x%x\n", config->tlpx);
printf("\tMIPI PPS\n");
printf("\t\tPanel power ON delay: %d\n", pps->panel_on_delay);
printf("\t\tPanel power on to Backlight enable delay: %d\n", pps->bl_enable_delay);
printf("\t\tBacklight disable to Panel power OFF delay: %d\n", pps->bl_disable_delay);
printf("\t\tPanel power OFF delay: %d\n", pps->panel_off_delay);
printf("\t\tPanel power cycle delay: %d\n", pps->panel_power_cycle_delay);
}
static const uint8_t *mipi_dump_send_packet(const uint8_t *data, uint8_t seq_version)
{
uint8_t flags, type;
uint16_t len, i;
flags = *data++;
type = *data++;
len = *((const uint16_t *) data);
data += 2;
printf("\t\tSend DCS: Port %s, VC %d, %s, Type %02x, Length %u, Data",
(flags >> 3) & 1 ? "C" : "A",
(flags >> 1) & 3,
flags & 1 ? "HS" : "LP",
type,
len);
for (i = 0; i < len; i++)
printf(" %02x", *data++);
printf("\n");
return data;
}
static const uint8_t *mipi_dump_delay(const uint8_t *data, uint8_t seq_version)
{
printf("\t\tDelay: %u us\n", *((const uint32_t *)data));
return data + 4;
}
static const uint8_t *mipi_dump_gpio(const uint8_t *data, uint8_t seq_version)
{
uint8_t index, number, flags;
if (seq_version >= 3) {
index = *data++;
number = *data++;
flags = *data++;
printf("\t\tGPIO index %u, number %u, set %d (0x%02x)\n",
index, number, flags & 1, flags);
} else {
index = *data++;
flags = *data++;
printf("\t\tGPIO index %u, source %d, set %d (0x%02x)\n",
index, (flags >> 1) & 3, flags & 1, flags);
}
return data;
}
static const uint8_t *mipi_dump_i2c(const uint8_t *data, uint8_t seq_version)
{
uint8_t flags, index, bus, offset, len, i;
uint16_t address;
flags = *data++;
index = *data++;
bus = *data++;
address = *((const uint16_t *) data);
data += 2;
offset = *data++;
len = *data++;
printf("\t\tSend I2C: Flags %02x, Index %02x, Bus %02x, Address %04x, Offset %02x, Length %u, Data",
flags, index, bus, address, offset, len);
for (i = 0; i < len; i++)
printf(" %02x", *data++);
printf("\n");
return data;
}
typedef const uint8_t * (*fn_mipi_elem_dump)(const uint8_t *data, uint8_t seq_version);
static const fn_mipi_elem_dump dump_elem[] = {
[MIPI_SEQ_ELEM_SEND_PKT] = mipi_dump_send_packet,
[MIPI_SEQ_ELEM_DELAY] = mipi_dump_delay,
[MIPI_SEQ_ELEM_GPIO] = mipi_dump_gpio,
[MIPI_SEQ_ELEM_I2C] = mipi_dump_i2c,
};
static const char * const seq_name[] = {
[MIPI_SEQ_ASSERT_RESET] = "MIPI_SEQ_ASSERT_RESET",
[MIPI_SEQ_INIT_OTP] = "MIPI_SEQ_INIT_OTP",
[MIPI_SEQ_DISPLAY_ON] = "MIPI_SEQ_DISPLAY_ON",
[MIPI_SEQ_DISPLAY_OFF] = "MIPI_SEQ_DISPLAY_OFF",
[MIPI_SEQ_DEASSERT_RESET] = "MIPI_SEQ_DEASSERT_RESET",
[MIPI_SEQ_BACKLIGHT_ON] = "MIPI_SEQ_BACKLIGHT_ON",
[MIPI_SEQ_BACKLIGHT_OFF] = "MIPI_SEQ_BACKLIGHT_OFF",
[MIPI_SEQ_TEAR_ON] = "MIPI_SEQ_TEAR_ON",
[MIPI_SEQ_TEAR_OFF] = "MIPI_SEQ_TEAR_OFF",
[MIPI_SEQ_POWER_ON] = "MIPI_SEQ_POWER_ON",
[MIPI_SEQ_POWER_OFF] = "MIPI_SEQ_POWER_OFF",
};
static const char *sequence_name(enum mipi_seq seq_id)
{
if (seq_id < ARRAY_SIZE(seq_name) && seq_name[seq_id])
return seq_name[seq_id];
else
return "(unknown)";
}
static const uint8_t *dump_sequence(const uint8_t *data, uint8_t seq_version)
{
fn_mipi_elem_dump mipi_elem_dump;
printf("\tSequence %u - %s\n", *data, sequence_name(*data));
/* Skip Sequence Byte. */
data++;
/* Skip Size of Sequence. */
if (seq_version >= 3)
data += 4;
while (1) {
uint8_t operation_byte = *data++;
uint8_t operation_size = 0;
if (operation_byte == MIPI_SEQ_ELEM_END)
break;
if (operation_byte < ARRAY_SIZE(dump_elem))
mipi_elem_dump = dump_elem[operation_byte];
else
mipi_elem_dump = NULL;
/* Size of Operation. */
if (seq_version >= 3)
operation_size = *data++;
if (mipi_elem_dump) {
const uint8_t *next = data + operation_size;
data = mipi_elem_dump(data, seq_version);
if (operation_size && next != data)
printf("Error: Inconsistent operation size: %d\n",
operation_size);
} else if (operation_size) {
/* We have size, skip. */
data += operation_size;
} else {
/* No size, can't skip without parsing. */
printf("Error: Unsupported MIPI element %u\n",
operation_byte);
return NULL;
}
}
return data;
}
/* Find the sequence block and size for the given panel. */
static const uint8_t *
find_panel_sequence_block(const struct bdb_mipi_sequence *sequence,
uint16_t panel_id, uint32_t total, uint32_t *seq_size)
{
const uint8_t *data = &sequence->data[0];
uint8_t current_id;
uint32_t current_size;
int header_size = sequence->version >= 3 ? 5 : 3;
int index = 0;
int i;
/* skip new block size */
if (sequence->version >= 3)
data += 4;
for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) {
if (index + header_size > total) {
fprintf(stderr, "Invalid sequence block (header)\n");
return NULL;
}
current_id = *(data + index);
if (sequence->version >= 3)
current_size = *((const uint32_t *)(data + index + 1));
else
current_size = *((const uint16_t *)(data + index + 1));
index += header_size;
if (index + current_size > total) {
fprintf(stderr, "Invalid sequence block\n");
return NULL;
}
if (current_id == panel_id) {
*seq_size = current_size;
return data + index;
}
index += current_size;
}
fprintf(stderr, "Sequence block detected but no valid configuration\n");
return NULL;
}
static int goto_next_sequence(const uint8_t *data, int index, int total)
{
uint16_t len;
/* Skip Sequence Byte. */
for (index = index + 1; index < total; index += len) {
uint8_t operation_byte = *(data + index);
index++;
switch (operation_byte) {
case MIPI_SEQ_ELEM_END:
return index;
case MIPI_SEQ_ELEM_SEND_PKT:
if (index + 4 > total)
return 0;
len = *((const uint16_t *)(data + index + 2)) + 4;
break;
case MIPI_SEQ_ELEM_DELAY:
len = 4;
break;
case MIPI_SEQ_ELEM_GPIO:
len = 2;
break;
case MIPI_SEQ_ELEM_I2C:
if (index + 7 > total)
return 0;
len = *(data + index + 6) + 7;
break;
default:
fprintf(stderr, "Unknown operation byte\n");
return 0;
}
}
return 0;
}
static int goto_next_sequence_v3(const uint8_t *data, int index, int total)
{
int seq_end;
uint16_t len;
uint32_t size_of_sequence;
/*
* Could skip sequence based on Size of Sequence alone, but also do some
* checking on the structure.
*/
if (total < 5) {
fprintf(stderr, "Too small sequence size\n");
return 0;
}
/* Skip Sequence Byte. */
index++;
/*
* Size of Sequence. Excludes the Sequence Byte and the size itself,
* includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END
* byte.
*/
size_of_sequence = *((const uint32_t *)(data + index));
index += 4;
seq_end = index + size_of_sequence;
if (seq_end > total) {
fprintf(stderr, "Invalid sequence size\n");
return 0;
}
for (; index < total; index += len) {
uint8_t operation_byte = *(data + index);
index++;
if (operation_byte == MIPI_SEQ_ELEM_END) {
if (index != seq_end) {
fprintf(stderr, "Invalid element structure\n");
return 0;
}
return index;
}
len = *(data + index);
index++;
/*
* FIXME: Would be nice to check elements like for v1/v2 in
* goto_next_sequence() above.
*/
switch (operation_byte) {
case MIPI_SEQ_ELEM_SEND_PKT:
case MIPI_SEQ_ELEM_DELAY:
case MIPI_SEQ_ELEM_GPIO:
case MIPI_SEQ_ELEM_I2C:
case MIPI_SEQ_ELEM_SPI:
case MIPI_SEQ_ELEM_PMIC:
break;
default:
fprintf(stderr, "Unknown operation byte %u\n",
operation_byte);
break;
}
}
return 0;
}
static void dump_mipi_sequence(struct context *context,
const struct bdb_block *block)
{
const struct bdb_mipi_sequence *sequence = block->data;
const uint8_t *data;
uint32_t seq_size;
int index = 0, i;
const uint8_t *sequence_ptrs[MIPI_SEQ_MAX] = {};
/* Check if we have sequence block as well */
if (!sequence) {
printf("No MIPI Sequence found\n");
return;
}
printf("\tSequence block version v%u\n", sequence->version);
/* Fail gracefully for forward incompatible sequence block. */
if (sequence->version >= 4) {
fprintf(stderr, "Unable to parse MIPI Sequence Block v%u\n",
sequence->version);
return;
}
data = find_panel_sequence_block(sequence, context->panel_type,
block->size, &seq_size);
if (!data)
return;
/* Parse the sequences. Corresponds to VBT parsing in the kernel. */
for (;;) {
uint8_t seq_id = *(data + index);
if (seq_id == MIPI_SEQ_END)
break;
if (seq_id >= MIPI_SEQ_MAX) {
fprintf(stderr, "Unknown sequence %u\n", seq_id);
return;
}
sequence_ptrs[seq_id] = data + index;
if (sequence->version >= 3)
index = goto_next_sequence_v3(data, index, seq_size);
else
index = goto_next_sequence(data, index, seq_size);
if (!index) {
fprintf(stderr, "Invalid sequence %u\n", seq_id);
return;
}
}
/* Dump the sequences. Corresponds to sequence execution in kernel. */
for (i = 0; i < ARRAY_SIZE(sequence_ptrs); i++)
if (sequence_ptrs[i])
dump_sequence(sequence_ptrs[i], sequence->version);
}
/* get panel type from lvds options block, or -1 if block not found */
static int get_panel_type(struct context *context)
{
struct bdb_block *block;
const struct bdb_lvds_options *options;
int panel_type;
block = find_section(context, BDB_LVDS_OPTIONS);
if (!block)
return -1;
options = block->data;
panel_type = options->panel_type;
free(block);
return panel_type;
}
static int
get_device_id(unsigned char *bios, int size)
{
int device;
int offset = (bios[0x19] << 8) + bios[0x18];
if (offset + 7 >= size)
return -1;
if (bios[offset] != 'P' ||
bios[offset+1] != 'C' ||
bios[offset+2] != 'I' ||
bios[offset+3] != 'R')
return -1;
device = (bios[offset+7] << 8) + bios[offset+6];
return device;
}
struct dumper {
uint8_t id;
const char *name;
void (*dump)(struct context *context,
const struct bdb_block *block);
};
struct dumper dumpers[] = {
{
.id = BDB_GENERAL_FEATURES,
.name = "General features block",
.dump = dump_general_features,
},
{
.id = BDB_GENERAL_DEFINITIONS,
.name = "General definitions block",
.dump = dump_general_definitions,
},
{
.id = BDB_CHILD_DEVICE_TABLE,
.name = "Legacy child devices block",
.dump = dump_legacy_child_devices,
},
{
.id = BDB_LVDS_OPTIONS,
.name = "LVDS options block",
.dump = dump_lvds_options,
},
{
.id = BDB_LVDS_LFP_DATA_PTRS,
.name = "LVDS timing pointer data",
.dump = dump_lvds_ptr_data,
},
{
.id = BDB_LVDS_LFP_DATA,
.name = "LVDS panel data block",
.dump = dump_lvds_data,
},
{
.id = BDB_LVDS_BACKLIGHT,
.name = "Backlight info block",
.dump = dump_backlight_info,
},
{
.id = BDB_SDVO_LVDS_OPTIONS,
.name = "SDVO LVDS options block",
.dump = dump_sdvo_lvds_options,
},
{
.id = BDB_SDVO_PANEL_DTDS,
.name = "SDVO panel dtds",
.dump = dump_sdvo_panel_dtds,
},
{
.id = BDB_DRIVER_FEATURES,
.name = "Driver feature data block",
.dump = dump_driver_feature,
},
{
.id = BDB_EDP,
.name = "eDP block",
.dump = dump_edp,
},
{
.id = BDB_PSR,
.name = "PSR block",
.dump = dump_psr,
},
{
.id = BDB_MIPI_CONFIG,
.name = "MIPI configuration block",
.dump = dump_mipi_config,
},
{
.id = BDB_MIPI_SEQUENCE,
.name = "MIPI sequence block",
.dump = dump_mipi_sequence,
},
};
static void hex_dump(const void *data, uint32_t size)
{
int i;
const uint8_t *p = data;
for (i = 0; i < size; i++) {
if (i % 16 == 0)
printf("\t%04x: ", i);
printf("%02x", p[i]);
if (i % 16 == 15) {
if (i + 1 < size)
printf("\n");
} else if (i % 8 == 7) {
printf(" ");
} else {
printf(" ");
}
}
printf("\n\n");
}
static void hex_dump_block(const struct bdb_block *block)
{
hex_dump(block->data, block->size);
}
static bool dump_section(struct context *context, int section_id)
{
struct dumper *dumper = NULL;
struct bdb_block *block;
int i;
block = find_section(context, section_id);
if (!block)
return false;
for (i = 0; i < ARRAY_SIZE(dumpers); i++) {
if (block->id == dumpers[i].id) {
dumper = &dumpers[i];
break;
}
}
if (dumper && dumper->name)
printf("BDB block %d - %s:\n", block->id, dumper->name);
else
printf("BDB block %d - Unknown, no decoding available:\n",
block->id);
if (context->hexdump)
hex_dump_block(block);
if (dumper && dumper->dump)
dumper->dump(context, block);
printf("\n");
free(block);
return true;
}
/* print a description of the VBT of the form <bdb-version>-<vbt-signature> */
static void print_description(struct context *context)
{
const struct vbt_header *vbt = context->vbt;
const struct bdb_header *bdb = context->bdb;
char *desc = strndup((char *)vbt->signature, sizeof(vbt->signature));
char *p;
for (p = desc + strlen(desc) - 1; p >= desc && isspace(*p); p--)
*p = '\0';
for (p = desc; *p; p++) {
if (!isalnum(*p))
*p = '-';
else
*p = tolower(*p);
}
p = desc;
if (strncmp(p, "-vbt-", 5) == 0)
p += 5;
printf("%d-%s\n", bdb->version, p);
free (desc);
}
static void dump_headers(struct context *context)
{
const struct vbt_header *vbt = context->vbt;
const struct bdb_header *bdb = context->bdb;
int i, j = 0;
printf("VBT header:\n");
if (context->hexdump)
hex_dump(vbt, vbt->header_size);
printf("\tVBT signature:\t\t\"%.*s\"\n",
(int)sizeof(vbt->signature), vbt->signature);
printf("\tVBT version:\t\t0x%04x (%d.%d)\n", vbt->version,
vbt->version / 100, vbt->version % 100);
printf("\tVBT header size:\t0x%04x (%u)\n",
vbt->header_size, vbt->header_size);
printf("\tVBT size:\t\t0x%04x (%u)\n", vbt->vbt_size, vbt->vbt_size);
printf("\tVBT checksum:\t\t0x%02x\n", vbt->vbt_checksum);
printf("\tBDB offset:\t\t0x%08x (%u)\n", vbt->bdb_offset, vbt->bdb_offset);
printf("\n");
printf("BDB header:\n");
if (context->hexdump)
hex_dump(bdb, bdb->header_size);
printf("\tBDB signature:\t\t\"%.*s\"\n",
(int)sizeof(bdb->signature), bdb->signature);
printf("\tBDB version:\t\t%d\n", bdb->version);
printf("\tBDB header size:\t0x%04x (%u)\n",
bdb->header_size, bdb->header_size);
printf("\tBDB size:\t\t0x%04x (%u)\n", bdb->bdb_size, bdb->bdb_size);
printf("\n");
printf("BDB blocks present:");
for (i = 0; i < 256; i++) {
struct bdb_block *block;
block = find_section(context, i);
if (!block)
continue;
if (j++ % 16)
printf(" %3d", i);
else
printf("\n\t%3d", i);
free(block);
}
printf("\n\n");
}
enum opt {
OPT_UNKNOWN = '?',
OPT_END = -1,
OPT_FILE,
OPT_DEVID,
OPT_PANEL_TYPE,
OPT_ALL_PANELS,
OPT_HEXDUMP,
OPT_BLOCK,
OPT_USAGE,
OPT_HEADER,
OPT_DESCRIBE,
};
static void usage(const char *toolname)
{
fprintf(stderr, "usage: %s", toolname);
fprintf(stderr, " --file=<rom_file>"
" [--devid=<device_id>]"
" [--panel-type=<panel_type>]"
" [--all-panels]"
" [--hexdump]"
" [--block=<block_no>]"
" [--header]"
" [--describe]"
" [--help]\n");
}
int main(int argc, char **argv)
{
uint8_t *VBIOS;
int index;
enum opt opt;
int fd;
struct vbt_header *vbt = NULL;
int vbt_off, bdb_off, i;
const char *filename = NULL;
const char *toolname = argv[0];
struct stat finfo;
int size;
struct context context = {
.panel_type = -1,
};
char *endp;
int block_number = -1;
bool header_only = false, describe = false;
static struct option options[] = {
{ "file", required_argument, NULL, OPT_FILE },
{ "devid", required_argument, NULL, OPT_DEVID },
{ "panel-type", required_argument, NULL, OPT_PANEL_TYPE },
{ "all-panels", no_argument, NULL, OPT_ALL_PANELS },
{ "hexdump", no_argument, NULL, OPT_HEXDUMP },
{ "block", required_argument, NULL, OPT_BLOCK },
{ "header", no_argument, NULL, OPT_HEADER },
{ "describe", no_argument, NULL, OPT_DESCRIBE },
{ "help", no_argument, NULL, OPT_USAGE },
{ 0 }
};
for (opt = 0; opt != OPT_END; ) {
opt = getopt_long(argc, argv, "", options, &index);
switch (opt) {
case OPT_FILE:
filename = optarg;
break;
case OPT_DEVID:
context.devid = strtoul(optarg, &endp, 16);
if (!context.devid || *endp) {
fprintf(stderr, "invalid devid '%s'\n", optarg);
return EXIT_FAILURE;
}
break;
case OPT_PANEL_TYPE:
context.panel_type = strtoul(optarg, &endp, 0);
if (*endp || context.panel_type > 15) {
fprintf(stderr, "invalid panel type '%s'\n",
optarg);
return EXIT_FAILURE;
}
break;
case OPT_ALL_PANELS:
context.dump_all_panel_types = true;
break;
case OPT_HEXDUMP:
context.hexdump = true;
break;
case OPT_BLOCK:
block_number = strtoul(optarg, &endp, 0);
if (*endp) {
fprintf(stderr, "invalid block number '%s'\n",
optarg);
return EXIT_FAILURE;
}
break;
case OPT_HEADER:
header_only = true;
break;
case OPT_DESCRIBE:
describe = true;
break;
case OPT_END:
break;
case OPT_USAGE: /* fall-through */
case OPT_UNKNOWN:
usage(toolname);
return EXIT_FAILURE;
}
}
argc -= optind;
argv += optind;
if (!filename) {
if (argc == 1) {
/* for backwards compatibility */
filename = argv[0];
} else {
usage(toolname);
return EXIT_FAILURE;
}
}
fd = open(filename, O_RDONLY);
if (fd == -1) {
fprintf(stderr, "Couldn't open \"%s\": %s\n",
filename, strerror(errno));
return EXIT_FAILURE;
}
if (stat(filename, &finfo)) {
fprintf(stderr, "Failed to stat \"%s\": %s\n",
filename, strerror(errno));
return EXIT_FAILURE;
}
size = finfo.st_size;
if (size == 0) {
int len = 0, ret;
size = 8192;
VBIOS = malloc (size);
while ((ret = read(fd, VBIOS + len, size - len))) {
if (ret < 0) {
fprintf(stderr, "Failed to read \"%s\": %s\n",
filename, strerror(errno));
return EXIT_FAILURE;
}
len += ret;
if (len == size) {
size *= 2;
VBIOS = realloc(VBIOS, size);
}
}
} else {
VBIOS = mmap(NULL, size, PROT_READ, MAP_SHARED, fd, 0);
if (VBIOS == MAP_FAILED) {
fprintf(stderr, "Failed to map \"%s\": %s\n",
filename, strerror(errno));
return EXIT_FAILURE;
}
}
/* Scour memory looking for the VBT signature */
for (i = 0; i + 4 < size; i++) {
if (!memcmp(VBIOS + i, "$VBT", 4)) {
vbt_off = i;
vbt = (struct vbt_header *)(VBIOS + i);
break;
}
}
if (!vbt) {
fprintf(stderr, "VBT signature missing\n");
return EXIT_FAILURE;
}
bdb_off = vbt_off + vbt->bdb_offset;
if (bdb_off >= size - sizeof(struct bdb_header)) {
fprintf(stderr, "Invalid VBT found, BDB points beyond end of data block\n");
return EXIT_FAILURE;
}
context.vbt = vbt;
context.bdb = (const struct bdb_header *)(VBIOS + bdb_off);
context.size = size;
if (!context.devid) {
const char *devid_string = getenv("DEVICE");
if (devid_string)
context.devid = strtoul(devid_string, NULL, 16);
}
if (!context.devid)
context.devid = get_device_id(VBIOS, size);
if (!context.devid)
fprintf(stderr, "Warning: could not find PCI device ID!\n");
if (context.panel_type == -1)
context.panel_type = get_panel_type(&context);
if (context.panel_type == -1) {
fprintf(stderr, "Warning: panel type not set, using 0\n");
context.panel_type = 0;
}
if (describe) {
print_description(&context);
} else if (header_only) {
dump_headers(&context);
} else if (block_number != -1) {
/* dump specific section only */
if (!dump_section(&context, block_number)) {
fprintf(stderr, "Block %d not found\n", block_number);
return EXIT_FAILURE;
}
} else {
dump_headers(&context);
/* dump all sections */
for (i = 0; i < 256; i++)
dump_section(&context, i);
}
return 0;
}