You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
171 lines
5.8 KiB
171 lines
5.8 KiB
// Copyright (c) 2011 The Chromium Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include "base/rand_util.h"
|
|
|
|
#include <stddef.h>
|
|
#include <stdint.h>
|
|
|
|
#include <algorithm>
|
|
#include <limits>
|
|
#include <memory>
|
|
|
|
#include "base/logging.h"
|
|
#include "base/time/time.h"
|
|
#include "testing/gtest/include/gtest/gtest.h"
|
|
|
|
namespace {
|
|
|
|
const int kIntMin = std::numeric_limits<int>::min();
|
|
const int kIntMax = std::numeric_limits<int>::max();
|
|
|
|
} // namespace
|
|
|
|
TEST(RandUtilTest, RandInt) {
|
|
EXPECT_EQ(base::RandInt(0, 0), 0);
|
|
EXPECT_EQ(base::RandInt(kIntMin, kIntMin), kIntMin);
|
|
EXPECT_EQ(base::RandInt(kIntMax, kIntMax), kIntMax);
|
|
|
|
// Check that the DCHECKS in RandInt() don't fire due to internal overflow.
|
|
// There was a 50% chance of that happening, so calling it 40 times means
|
|
// the chances of this passing by accident are tiny (9e-13).
|
|
for (int i = 0; i < 40; ++i)
|
|
base::RandInt(kIntMin, kIntMax);
|
|
}
|
|
|
|
TEST(RandUtilTest, RandDouble) {
|
|
// Force 64-bit precision, making sure we're not in a 80-bit FPU register.
|
|
volatile double number = base::RandDouble();
|
|
EXPECT_GT(1.0, number);
|
|
EXPECT_LE(0.0, number);
|
|
}
|
|
|
|
TEST(RandUtilTest, RandBytes) {
|
|
const size_t buffer_size = 50;
|
|
char buffer[buffer_size];
|
|
memset(buffer, 0, buffer_size);
|
|
base::RandBytes(buffer, buffer_size);
|
|
std::sort(buffer, buffer + buffer_size);
|
|
// Probability of occurrence of less than 25 unique bytes in 50 random bytes
|
|
// is below 10^-25.
|
|
EXPECT_GT(std::unique(buffer, buffer + buffer_size) - buffer, 25);
|
|
}
|
|
|
|
// Verify that calling base::RandBytes with an empty buffer doesn't fail.
|
|
TEST(RandUtilTest, RandBytes0) {
|
|
base::RandBytes(nullptr, 0);
|
|
}
|
|
|
|
TEST(RandUtilTest, RandBytesAsString) {
|
|
std::string random_string = base::RandBytesAsString(1);
|
|
EXPECT_EQ(1U, random_string.size());
|
|
random_string = base::RandBytesAsString(145);
|
|
EXPECT_EQ(145U, random_string.size());
|
|
char accumulator = 0;
|
|
for (size_t i = 0; i < random_string.size(); ++i)
|
|
accumulator |= random_string[i];
|
|
// In theory this test can fail, but it won't before the universe dies of
|
|
// heat death.
|
|
EXPECT_NE(0, accumulator);
|
|
}
|
|
|
|
// Make sure that it is still appropriate to use RandGenerator in conjunction
|
|
// with std::random_shuffle().
|
|
TEST(RandUtilTest, RandGeneratorForRandomShuffle) {
|
|
EXPECT_EQ(base::RandGenerator(1), 0U);
|
|
EXPECT_LE(std::numeric_limits<ptrdiff_t>::max(),
|
|
std::numeric_limits<int64_t>::max());
|
|
}
|
|
|
|
TEST(RandUtilTest, RandGeneratorIsUniform) {
|
|
// Verify that RandGenerator has a uniform distribution. This is a
|
|
// regression test that consistently failed when RandGenerator was
|
|
// implemented this way:
|
|
//
|
|
// return base::RandUint64() % max;
|
|
//
|
|
// A degenerate case for such an implementation is e.g. a top of
|
|
// range that is 2/3rds of the way to MAX_UINT64, in which case the
|
|
// bottom half of the range would be twice as likely to occur as the
|
|
// top half. A bit of calculus care of jar@ shows that the largest
|
|
// measurable delta is when the top of the range is 3/4ths of the
|
|
// way, so that's what we use in the test.
|
|
const uint64_t kTopOfRange =
|
|
(std::numeric_limits<uint64_t>::max() / 4ULL) * 3ULL;
|
|
const uint64_t kExpectedAverage = kTopOfRange / 2ULL;
|
|
const uint64_t kAllowedVariance = kExpectedAverage / 50ULL; // +/- 2%
|
|
const int kMinAttempts = 1000;
|
|
const int kMaxAttempts = 1000000;
|
|
|
|
double cumulative_average = 0.0;
|
|
int count = 0;
|
|
while (count < kMaxAttempts) {
|
|
uint64_t value = base::RandGenerator(kTopOfRange);
|
|
cumulative_average = (count * cumulative_average + value) / (count + 1);
|
|
|
|
// Don't quit too quickly for things to start converging, or we may have
|
|
// a false positive.
|
|
if (count > kMinAttempts &&
|
|
kExpectedAverage - kAllowedVariance < cumulative_average &&
|
|
cumulative_average < kExpectedAverage + kAllowedVariance) {
|
|
break;
|
|
}
|
|
|
|
++count;
|
|
}
|
|
|
|
ASSERT_LT(count, kMaxAttempts) << "Expected average was " <<
|
|
kExpectedAverage << ", average ended at " << cumulative_average;
|
|
}
|
|
|
|
TEST(RandUtilTest, RandUint64ProducesBothValuesOfAllBits) {
|
|
// This tests to see that our underlying random generator is good
|
|
// enough, for some value of good enough.
|
|
uint64_t kAllZeros = 0ULL;
|
|
uint64_t kAllOnes = ~kAllZeros;
|
|
uint64_t found_ones = kAllZeros;
|
|
uint64_t found_zeros = kAllOnes;
|
|
|
|
for (size_t i = 0; i < 1000; ++i) {
|
|
uint64_t value = base::RandUint64();
|
|
found_ones |= value;
|
|
found_zeros &= value;
|
|
|
|
if (found_zeros == kAllZeros && found_ones == kAllOnes)
|
|
return;
|
|
}
|
|
|
|
FAIL() << "Didn't achieve all bit values in maximum number of tries.";
|
|
}
|
|
|
|
TEST(RandUtilTest, RandBytesLonger) {
|
|
// Fuchsia can only retrieve 256 bytes of entropy at a time, so make sure we
|
|
// handle longer requests than that.
|
|
std::string random_string0 = base::RandBytesAsString(255);
|
|
EXPECT_EQ(255u, random_string0.size());
|
|
std::string random_string1 = base::RandBytesAsString(1023);
|
|
EXPECT_EQ(1023u, random_string1.size());
|
|
std::string random_string2 = base::RandBytesAsString(4097);
|
|
EXPECT_EQ(4097u, random_string2.size());
|
|
}
|
|
|
|
// Benchmark test for RandBytes(). Disabled since it's intentionally slow and
|
|
// does not test anything that isn't already tested by the existing RandBytes()
|
|
// tests.
|
|
TEST(RandUtilTest, DISABLED_RandBytesPerf) {
|
|
// Benchmark the performance of |kTestIterations| of RandBytes() using a
|
|
// buffer size of |kTestBufferSize|.
|
|
const int kTestIterations = 10;
|
|
const size_t kTestBufferSize = 1 * 1024 * 1024;
|
|
|
|
std::unique_ptr<uint8_t[]> buffer(new uint8_t[kTestBufferSize]);
|
|
const base::TimeTicks now = base::TimeTicks::Now();
|
|
for (int i = 0; i < kTestIterations; ++i)
|
|
base::RandBytes(buffer.get(), kTestBufferSize);
|
|
const base::TimeTicks end = base::TimeTicks::Now();
|
|
|
|
LOG(INFO) << "RandBytes(" << kTestBufferSize << ") took: "
|
|
<< (end - now).InMicroseconds() << "µs";
|
|
}
|