You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

264 lines
9.8 KiB

// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef IPC_IPC_SYNC_CHANNEL_H_
#define IPC_IPC_SYNC_CHANNEL_H_
#include <memory>
#include <string>
#include <vector>
#include "base/component_export.h"
#include "base/containers/circular_deque.h"
#include "base/macros.h"
#include "base/memory/ref_counted.h"
#include "base/synchronization/lock.h"
#include "base/synchronization/waitable_event_watcher.h"
#include "ipc/ipc_channel_handle.h"
#include "ipc/ipc_channel_proxy.h"
#include "ipc/ipc_sync_message.h"
#include "ipc/ipc_sync_message_filter.h"
#include "mojo/public/c/system/types.h"
#include "mojo/public/cpp/system/simple_watcher.h"
namespace base {
class RunLoop;
class WaitableEvent;
};
namespace mojo {
class SyncHandleRegistry;
}
namespace IPC {
class ChannelFactory;
class SyncMessage;
// This is similar to ChannelProxy, with the added feature of supporting sending
// synchronous messages.
//
// Overview of how the sync channel works
// --------------------------------------
// When the sending thread sends a synchronous message, we create a bunch
// of tracking info (created in Send, stored in the PendingSyncMsg
// structure) associated with the message that we identify by the unique
// "MessageId" on the SyncMessage. Among the things we save is the
// "Deserializer" which is provided by the sync message. This object is in
// charge of reading the parameters from the reply message and putting them in
// the output variables provided by its caller.
//
// The info gets stashed in a queue since we could have a nested stack of sync
// messages (each side could send sync messages in response to sync messages,
// so it works like calling a function). The message is sent to the I/O thread
// for dispatch and the original thread blocks waiting for the reply.
//
// SyncContext maintains the queue in a threadsafe way and listens for replies
// on the I/O thread. When a reply comes in that matches one of the messages
// it's looking for (using the unique message ID), it will execute the
// deserializer stashed from before, and unblock the original thread.
//
//
// Significant complexity results from the fact that messages are still coming
// in while the original thread is blocked. Normal async messages are queued
// and dispatched after the blocking call is complete. Sync messages must
// be dispatched in a reentrant manner to avoid deadlock.
//
//
// Note that care must be taken that the lifetime of the ipc_thread argument
// is more than this object. If the message loop goes away while this object
// is running and it's used to send a message, then it will use the invalid
// message loop pointer to proxy it to the ipc thread.
class COMPONENT_EXPORT(IPC) SyncChannel : public ChannelProxy {
public:
enum RestrictDispatchGroup {
kRestrictDispatchGroup_None = 0,
};
// Creates and initializes a sync channel. If create_pipe_now is specified,
// the channel will be initialized synchronously.
// The naming pattern follows IPC::Channel.
static std::unique_ptr<SyncChannel> Create(
const IPC::ChannelHandle& channel_handle,
IPC::Channel::Mode mode,
Listener* listener,
const scoped_refptr<base::SingleThreadTaskRunner>& ipc_task_runner,
const scoped_refptr<base::SingleThreadTaskRunner>& listener_task_runner,
bool create_pipe_now,
base::WaitableEvent* shutdown_event);
static std::unique_ptr<SyncChannel> Create(
std::unique_ptr<ChannelFactory> factory,
Listener* listener,
const scoped_refptr<base::SingleThreadTaskRunner>& ipc_task_runner,
const scoped_refptr<base::SingleThreadTaskRunner>& listener_task_runner,
bool create_pipe_now,
base::WaitableEvent* shutdown_event);
// Creates an uninitialized sync channel. Call ChannelProxy::Init to
// initialize the channel. This two-step setup allows message filters to be
// added before any messages are sent or received.
static std::unique_ptr<SyncChannel> Create(
Listener* listener,
const scoped_refptr<base::SingleThreadTaskRunner>& ipc_task_runner,
const scoped_refptr<base::SingleThreadTaskRunner>& listener_task_runner,
base::WaitableEvent* shutdown_event);
~SyncChannel() override;
bool Send(Message* message) override;
// Sets the dispatch group for this channel, to only allow re-entrant dispatch
// of messages to other channels in the same group.
//
// Normally, any unblocking message coming from any channel can be dispatched
// when any (possibly other) channel is blocked on sending a message. This is
// needed in some cases to unblock certain loops (e.g. necessary when some
// processes share a window hierarchy), but may cause re-entrancy issues in
// some cases where such loops are not possible. This flags allows the tagging
// of some particular channels to only re-enter in known correct cases.
//
// Incoming messages on channels belonging to a group that is not
// kRestrictDispatchGroup_None will only be dispatched while a sync message is
// being sent on a channel of the *same* group.
// Incoming messages belonging to the kRestrictDispatchGroup_None group (the
// default) will be dispatched in any case.
void SetRestrictDispatchChannelGroup(int group);
// Creates a new IPC::SyncMessageFilter and adds it to this SyncChannel.
// This should be used instead of directly constructing a new
// SyncMessageFilter.
scoped_refptr<IPC::SyncMessageFilter> CreateSyncMessageFilter();
protected:
class ReceivedSyncMsgQueue;
friend class ReceivedSyncMsgQueue;
// SyncContext holds the per object data for SyncChannel, so that SyncChannel
// can be deleted while it's being used in a different thread. See
// ChannelProxy::Context for more information.
class SyncContext : public Context {
public:
SyncContext(
Listener* listener,
const scoped_refptr<base::SingleThreadTaskRunner>& ipc_task_runner,
const scoped_refptr<base::SingleThreadTaskRunner>& listener_task_runner,
base::WaitableEvent* shutdown_event);
// Adds information about an outgoing sync message to the context so that
// we know how to deserialize the reply.
bool Push(SyncMessage* sync_msg);
// Cleanly remove the top deserializer (and throw it away). Returns the
// result of the Send call for that message.
bool Pop();
// Returns a Mojo Event that signals when a sync send is complete or timed
// out or the process shut down.
base::WaitableEvent* GetSendDoneEvent();
// Returns a Mojo Event that signals when an incoming message that's not the
// pending reply needs to get dispatched (by calling DispatchMessages.)
base::WaitableEvent* GetDispatchEvent();
void DispatchMessages();
// Checks if the given message is blocking the listener thread because of a
// synchronous send. If it is, the thread is unblocked and true is
// returned. Otherwise the function returns false.
bool TryToUnblockListener(const Message* msg);
base::WaitableEvent* shutdown_event() { return shutdown_event_; }
ReceivedSyncMsgQueue* received_sync_msgs() {
return received_sync_msgs_.get();
}
void set_restrict_dispatch_group(int group) {
restrict_dispatch_group_ = group;
}
int restrict_dispatch_group() const {
return restrict_dispatch_group_;
}
void OnSendDoneEventSignaled(base::RunLoop* nested_loop,
base::WaitableEvent* event);
private:
~SyncContext() override;
// ChannelProxy methods that we override.
// Called on the listener thread.
void Clear() override;
// Called on the IPC thread.
bool OnMessageReceived(const Message& msg) override;
void OnChannelError() override;
void OnChannelOpened() override;
void OnChannelClosed() override;
// Cancels all pending Send calls.
void CancelPendingSends();
void OnShutdownEventSignaled(base::WaitableEvent* event);
using PendingSyncMessageQueue = base::circular_deque<PendingSyncMsg>;
PendingSyncMessageQueue deserializers_;
bool reject_new_deserializers_ = false;
base::Lock deserializers_lock_;
scoped_refptr<ReceivedSyncMsgQueue> received_sync_msgs_;
base::WaitableEvent* shutdown_event_;
base::WaitableEventWatcher shutdown_watcher_;
base::WaitableEventWatcher::EventCallback shutdown_watcher_callback_;
int restrict_dispatch_group_;
};
private:
SyncChannel(
Listener* listener,
const scoped_refptr<base::SingleThreadTaskRunner>& ipc_task_runner,
const scoped_refptr<base::SingleThreadTaskRunner>& listener_task_runner,
base::WaitableEvent* shutdown_event);
void OnDispatchEventSignaled(base::WaitableEvent* event);
SyncContext* sync_context() {
return reinterpret_cast<SyncContext*>(context());
}
// Both these functions wait for a reply, timeout or process shutdown. The
// latter one also runs a nested run loop in the meantime.
static void WaitForReply(mojo::SyncHandleRegistry* registry,
SyncContext* context,
bool pump_messages);
// Runs a nested run loop until a reply arrives, times out, or the process
// shuts down.
static void WaitForReplyWithNestedMessageLoop(SyncContext* context);
// Starts the dispatch watcher.
void StartWatching();
// ChannelProxy overrides:
void OnChannelInit() override;
scoped_refptr<mojo::SyncHandleRegistry> sync_handle_registry_;
// Used to signal events between the IPC and listener threads.
base::WaitableEventWatcher dispatch_watcher_;
base::WaitableEventWatcher::EventCallback dispatch_watcher_callback_;
// Tracks SyncMessageFilters created before complete channel initialization.
std::vector<scoped_refptr<SyncMessageFilter>> pre_init_sync_message_filters_;
DISALLOW_COPY_AND_ASSIGN(SyncChannel);
};
} // namespace IPC
#endif // IPC_IPC_SYNC_CHANNEL_H_