You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1898 lines
64 KiB

/*
* Copyright 2019 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <iomanip>
#include <sstream>
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include "cppbor.h"
#include "cppbor_parse.h"
using namespace cppbor;
using namespace std;
using ::testing::_;
using ::testing::AllOf;
using ::testing::ByRef;
using ::testing::InSequence;
using ::testing::IsNull;
using ::testing::NotNull;
using ::testing::Return;
using ::testing::Truly;
using ::testing::Unused;
string hexDump(const string& str) {
stringstream s;
for (auto c : str) {
s << setfill('0') << setw(2) << hex << (static_cast<unsigned>(c) & 0xff);
}
return s.str();
}
TEST(SimpleValueTest, UnsignedValueSizes) {
// Check that unsigned integers encode to correct lengths, and that encodedSize() is correct.
vector<pair<uint64_t /* value */, size_t /* expected encoded size */>> testCases{
{0, 1},
{1, 1},
{23, 1},
{24, 2},
{255, 2},
{256, 3},
{65535, 3},
{65536, 5},
{4294967295, 5},
{4294967296, 9},
{std::numeric_limits<uint64_t>::max(), 9},
};
for (auto& testCase : testCases) {
Uint val(testCase.first);
EXPECT_EQ(testCase.second, val.encodedSize()) << "Wrong size for value " << testCase.first;
EXPECT_EQ(val.encodedSize(), val.toString().size())
<< "encodedSize and encoding disagree for value " << testCase.first;
}
}
TEST(SimpleValueTest, UnsignedValueEncodings) {
EXPECT_EQ("\x00"s, Uint(0u).toString());
EXPECT_EQ("\x01"s, Uint(1u).toString());
EXPECT_EQ("\x0a"s, Uint(10u).toString());
EXPECT_EQ("\x17"s, Uint(23u).toString());
EXPECT_EQ("\x18\x18"s, Uint(24u).toString());
EXPECT_EQ("\x18\x19"s, Uint(25u).toString());
EXPECT_EQ("\x18\x64"s, Uint(100u).toString());
EXPECT_EQ("\x19\x03\xe8"s, Uint(1000u).toString());
EXPECT_EQ("\x1a\x00\x0f\x42\x40"s, Uint(1000000u).toString());
EXPECT_EQ("\x1b\x00\x00\x00\xe8\xd4\xa5\x10\x00"s, Uint(1000000000000u).toString());
EXPECT_EQ("\x1B\x7f\xff\xff\xff\xff\xff\xff\xff"s,
Uint(std::numeric_limits<int64_t>::max()).toString());
}
TEST(SimpleValueTest, NegativeValueEncodings) {
EXPECT_EQ("\x20"s, Nint(-1).toString());
EXPECT_EQ("\x28"s, Nint(-9).toString());
EXPECT_EQ("\x29"s, Nint(-10).toString());
EXPECT_EQ("\x36"s, Nint(-23).toString());
EXPECT_EQ("\x37"s, Nint(-24).toString());
EXPECT_EQ("\x38\x18"s, Nint(-25).toString());
EXPECT_EQ("\x38\x62"s, Nint(-99).toString());
EXPECT_EQ("\x38\x63"s, Nint(-100).toString());
EXPECT_EQ("\x39\x03\xe6"s, Nint(-999).toString());
EXPECT_EQ("\x39\x03\xe7"s, Nint(-1000).toString());
EXPECT_EQ("\x3a\x00\x0f\x42\x3F"s, Nint(-1000000).toString());
EXPECT_EQ("\x3b\x00\x00\x00\xe8\xd4\xa5\x0f\xff"s, Nint(-1000000000000).toString());
EXPECT_EQ("\x3B\x7f\xff\xff\xff\xff\xff\xff\xff"s,
Nint(std::numeric_limits<int64_t>::min()).toString());
}
TEST(SimpleValueDeathTest, NegativeValueEncodings) {
EXPECT_DEATH(Nint(0), "");
EXPECT_DEATH(Nint(1), "");
}
TEST(SimpleValueTest, BooleanEncodings) {
EXPECT_EQ("\xf4"s, Bool(false).toString());
EXPECT_EQ("\xf5"s, Bool(true).toString());
}
TEST(SimpleValueTest, NullEncodings) {
EXPECT_EQ("\xf6"s, Null().toString());
}
TEST(SimpleValueTest, ByteStringEncodings) {
EXPECT_EQ("\x40", Bstr("").toString());
EXPECT_EQ("\x41\x61", Bstr("a").toString());
EXPECT_EQ("\x41\x41", Bstr("A").toString());
EXPECT_EQ("\x44\x49\x45\x54\x46", Bstr("IETF").toString());
EXPECT_EQ("\x42\x22\x5c", Bstr("\"\\").toString());
EXPECT_EQ("\x42\xc3\xbc", Bstr("\xc3\xbc").toString());
EXPECT_EQ("\x43\xe6\xb0\xb4", Bstr("\xe6\xb0\xb4").toString());
EXPECT_EQ("\x44\xf0\x90\x85\x91", Bstr("\xf0\x90\x85\x91").toString());
EXPECT_EQ("\x44\x01\x02\x03\x04", Bstr("\x01\x02\x03\x04").toString());
EXPECT_EQ("\x44\x40\x40\x40\x40", Bstr("@@@@").toString());
}
TEST(SimpleValueTest, TextStringEncodings) {
EXPECT_EQ("\x60"s, Tstr("").toString());
EXPECT_EQ("\x61\x61"s, Tstr("a").toString());
EXPECT_EQ("\x61\x41"s, Tstr("A").toString());
EXPECT_EQ("\x64\x49\x45\x54\x46"s, Tstr("IETF").toString());
EXPECT_EQ("\x62\x22\x5c"s, Tstr("\"\\").toString());
EXPECT_EQ("\x62\xc3\xbc"s, Tstr("\xc3\xbc").toString());
EXPECT_EQ("\x63\xe6\xb0\xb4"s, Tstr("\xe6\xb0\xb4").toString());
EXPECT_EQ("\x64\xf0\x90\x85\x91"s, Tstr("\xf0\x90\x85\x91").toString());
EXPECT_EQ("\x64\x01\x02\x03\x04"s, Tstr("\x01\x02\x03\x04").toString());
}
TEST(SimpleValueTest, SemanticTagEncoding) {
EXPECT_EQ("\xDB\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\x63\x41\x45\x53"s,
SemanticTag(std::numeric_limits<uint64_t>::max(), "AES").toString());
}
TEST(SimpleValueTest, NestedSemanticTagEncoding) {
auto tripleTagged =
SemanticTag(254,
SemanticTag(1, //
SemanticTag(std::numeric_limits<uint64_t>::max(), //
"AES")));
EXPECT_EQ("\xD8\xFE\xC1\xDB\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\x63\x41\x45\x53"s,
tripleTagged.toString());
}
TEST(SimpleValueTest, ViewByteStringEncodings) {
EXPECT_EQ("\x40", ViewBstr("").toString());
EXPECT_EQ("\x41\x61", ViewBstr("a").toString());
EXPECT_EQ("\x41\x41", ViewBstr("A").toString());
EXPECT_EQ("\x44\x49\x45\x54\x46", ViewBstr("IETF").toString());
EXPECT_EQ("\x42\x22\x5c", ViewBstr("\"\\").toString());
EXPECT_EQ("\x42\xc3\xbc", ViewBstr("\xc3\xbc").toString());
EXPECT_EQ("\x43\xe6\xb0\xb4", ViewBstr("\xe6\xb0\xb4").toString());
EXPECT_EQ("\x44\xf0\x90\x85\x91", ViewBstr("\xf0\x90\x85\x91").toString());
EXPECT_EQ("\x44\x01\x02\x03\x04", ViewBstr("\x01\x02\x03\x04").toString());
EXPECT_EQ("\x44\x40\x40\x40\x40", ViewBstr("@@@@").toString());
}
TEST(SimpleValueTest, ViewTextStringEncodings) {
EXPECT_EQ("\x60"s, ViewTstr("").toString());
EXPECT_EQ("\x61\x61"s, ViewTstr("a").toString());
EXPECT_EQ("\x61\x41"s, ViewTstr("A").toString());
EXPECT_EQ("\x64\x49\x45\x54\x46"s, ViewTstr("IETF").toString());
EXPECT_EQ("\x62\x22\x5c"s, ViewTstr("\"\\").toString());
EXPECT_EQ("\x62\xc3\xbc"s, ViewTstr("\xc3\xbc").toString());
EXPECT_EQ("\x63\xe6\xb0\xb4"s, ViewTstr("\xe6\xb0\xb4").toString());
EXPECT_EQ("\x64\xf0\x90\x85\x91"s, ViewTstr("\xf0\x90\x85\x91").toString());
EXPECT_EQ("\x64\x01\x02\x03\x04"s, ViewTstr("\x01\x02\x03\x04").toString());
}
TEST(IsIteratorPairOverTest, All) {
EXPECT_TRUE((
details::is_iterator_pair_over<pair<string::iterator, string::iterator>, char>::value));
EXPECT_TRUE((details::is_iterator_pair_over<pair<string::const_iterator, string::iterator>,
char>::value));
EXPECT_TRUE((details::is_iterator_pair_over<pair<string::iterator, string::const_iterator>,
char>::value));
EXPECT_TRUE((details::is_iterator_pair_over<pair<char*, char*>, char>::value));
EXPECT_TRUE((details::is_iterator_pair_over<pair<const char*, char*>, char>::value));
EXPECT_TRUE((details::is_iterator_pair_over<pair<char*, const char*>, char>::value));
EXPECT_FALSE((details::is_iterator_pair_over<pair<string::iterator, string::iterator>,
uint8_t>::value));
EXPECT_FALSE((details::is_iterator_pair_over<pair<char*, char*>, uint8_t>::value));
EXPECT_TRUE((details::is_iterator_pair_over<
pair<vector<uint8_t>::iterator, vector<uint8_t>::iterator>, uint8_t>::value));
EXPECT_TRUE((details::is_iterator_pair_over<
pair<vector<uint8_t>::const_iterator, vector<uint8_t>::iterator>,
uint8_t>::value));
EXPECT_TRUE((details::is_iterator_pair_over<
pair<vector<uint8_t>::iterator, vector<uint8_t>::const_iterator>,
uint8_t>::value));
EXPECT_TRUE((details::is_iterator_pair_over<pair<uint8_t*, uint8_t*>, uint8_t>::value));
EXPECT_TRUE((details::is_iterator_pair_over<pair<const uint8_t*, uint8_t*>, uint8_t>::value));
EXPECT_TRUE((details::is_iterator_pair_over<pair<uint8_t*, const uint8_t*>, uint8_t>::value));
EXPECT_FALSE((details::is_iterator_pair_over<
pair<vector<uint8_t>::iterator, vector<uint8_t>::iterator>, char>::value));
EXPECT_FALSE((details::is_iterator_pair_over<pair<uint8_t*, const uint8_t*>, char>::value));
}
TEST(IsUniquePtrSubclassOf, All) {
EXPECT_TRUE((details::is_unique_ptr_of_subclass_of_v<Item, std::unique_ptr<Bool>>::value));
EXPECT_TRUE((details::is_unique_ptr_of_subclass_of_v<Item, std::unique_ptr<Map>>::value));
EXPECT_TRUE((details::is_unique_ptr_of_subclass_of_v<Item, std::unique_ptr<Array>>::value));
EXPECT_TRUE(
(details::is_unique_ptr_of_subclass_of_v<Item, std::unique_ptr<SemanticTag>>::value));
EXPECT_FALSE(
(details::is_unique_ptr_of_subclass_of_v<std::string, std::unique_ptr<Bool>>::value));
EXPECT_FALSE((
details::is_unique_ptr_of_subclass_of_v<uint8_t, std::unique_ptr<std::string>>::value));
}
TEST(MakeEntryTest, Boolean) {
EXPECT_EQ("\xf4"s, details::makeItem(false)->toString());
}
TEST(MakeEntryTest, Null) {
EXPECT_EQ("\xf6"s, details::makeItem(nullptr)->toString());
}
TEST(MakeEntryTest, Integers) {
EXPECT_EQ("\x00"s, details::makeItem(static_cast<uint8_t>(0))->toString());
EXPECT_EQ("\x00"s, details::makeItem(static_cast<uint16_t>(0))->toString());
EXPECT_EQ("\x00"s, details::makeItem(static_cast<uint32_t>(0))->toString());
EXPECT_EQ("\x00"s, details::makeItem(static_cast<uint64_t>(0))->toString());
EXPECT_EQ("\x00"s, details::makeItem(static_cast<int8_t>(0))->toString());
EXPECT_EQ("\x00"s, details::makeItem(static_cast<int16_t>(0))->toString());
EXPECT_EQ("\x00"s, details::makeItem(static_cast<int32_t>(0))->toString());
EXPECT_EQ("\x00"s, details::makeItem(static_cast<int64_t>(0))->toString());
EXPECT_EQ("\x20"s, details::makeItem(static_cast<int8_t>(-1))->toString());
EXPECT_EQ("\x20"s, details::makeItem(static_cast<int16_t>(-1))->toString());
EXPECT_EQ("\x20"s, details::makeItem(static_cast<int32_t>(-1))->toString());
EXPECT_EQ("\x20"s, details::makeItem(static_cast<int64_t>(-1))->toString());
EXPECT_EQ("\x1b\xff\xff\xff\xff\xff\xff\xff\xff"s,
details::makeItem(static_cast<uint64_t>(std::numeric_limits<uint64_t>::max()))
->toString());
}
TEST(MakeEntryTest, StdStrings) {
string s1("hello");
const string s2("hello");
EXPECT_EQ("\x65\x68\x65\x6c\x6c\x6f"s, details::makeItem(s1)->toString()); // copy of string
EXPECT_EQ("\x65\x68\x65\x6c\x6c\x6f"s,
details::makeItem(s2)->toString()); // copy of const string
EXPECT_EQ("\x65\x68\x65\x6c\x6c\x6f"s,
details::makeItem(std::move(s1))->toString()); // move string
EXPECT_EQ(0U, s1.size()); // Prove string was moved, not copied.
}
TEST(MakeEntryTest, StdStringViews) {
string_view s1("hello");
const string_view s2("hello");
EXPECT_EQ("\x65\x68\x65\x6c\x6c\x6f"s, details::makeItem(s1)->toString());
EXPECT_EQ("\x65\x68\x65\x6c\x6c\x6f"s, details::makeItem(s2)->toString());
}
TEST(MakeEntryTest, CStrings) {
char s1[] = "hello";
const char s2[] = "hello";
const char* s3 = "hello";
EXPECT_EQ("\x65\x68\x65\x6c\x6c\x6f"s, details::makeItem(s1)->toString());
EXPECT_EQ("\x65\x68\x65\x6c\x6c\x6f"s, details::makeItem(s2)->toString());
EXPECT_EQ("\x65\x68\x65\x6c\x6c\x6f"s, details::makeItem(s3)->toString());
}
TEST(MakeEntryTest, StringIteratorPairs) {
// Use iterators from string to prove that "real" iterators work
string s1 = "hello"s;
pair<string::iterator, string::iterator> p1 = make_pair(s1.begin(), s1.end());
const pair<string::iterator, string::iterator> p2 = p1;
EXPECT_EQ("\x65\x68\x65\x6c\x6c\x6f"s, details::makeItem(p1)->toString());
EXPECT_EQ("\x65\x68\x65\x6c\x6c\x6f"s, details::makeItem(p2)->toString());
// Use char*s as iterators
const char* s2 = "hello";
pair p3 = make_pair(s2, s2 + 5);
const pair p4 = p3;
EXPECT_EQ("\x65\x68\x65\x6c\x6c\x6f"s, details::makeItem(p3)->toString());
EXPECT_EQ("\x65\x68\x65\x6c\x6c\x6f"s, details::makeItem(p4)->toString());
}
TEST(MakeEntryTest, ByteStrings) {
vector<uint8_t> v1 = {0x00, 0x01, 0x02};
const vector<uint8_t> v2 = {0x00, 0x01, 0x02};
EXPECT_EQ("\x43\x00\x01\x02"s, details::makeItem(v1)->toString()); // copy of vector
EXPECT_EQ("\x43\x00\x01\x02"s, details::makeItem(v2)->toString()); // copy of const vector
EXPECT_EQ("\x43\x00\x01\x02"s, details::makeItem(std::move(v1))->toString()); // move vector
EXPECT_EQ(0U, v1.size()); // Prove vector was moved, not copied.
}
TEST(MakeEntryTest, ByteStringIteratorPairs) {
using vec = vector<uint8_t>;
using iter = vec::iterator;
vec v1 = {0x00, 0x01, 0x02};
pair<iter, iter> p1 = make_pair(v1.begin(), v1.end());
const pair<iter, iter> p2 = make_pair(v1.begin(), v1.end());
EXPECT_EQ("\x43\x00\x01\x02"s, details::makeItem(p1)->toString());
EXPECT_EQ("\x43\x00\x01\x02"s, details::makeItem(p2)->toString());
// Use uint8_t*s as iterators
uint8_t v2[] = {0x00, 0x01, 0x02};
uint8_t* v3 = v2;
pair<uint8_t*, uint8_t*> p3 = make_pair(v2, v2 + 3);
const pair<uint8_t*, uint8_t*> p4 = make_pair(v2, v2 + 3);
pair<uint8_t*, uint8_t*> p5 = make_pair(v3, v3 + 3);
const pair<uint8_t*, uint8_t*> p6 = make_pair(v3, v3 + 3);
EXPECT_EQ("\x43\x00\x01\x02"s, details::makeItem(p3)->toString());
EXPECT_EQ("\x43\x00\x01\x02"s, details::makeItem(p4)->toString());
EXPECT_EQ("\x43\x00\x01\x02"s, details::makeItem(p5)->toString());
EXPECT_EQ("\x43\x00\x01\x02"s, details::makeItem(p6)->toString());
}
TEST(MakeEntryTest, ByteStringBuffers) {
uint8_t v1[] = {0x00, 0x01, 0x02};
EXPECT_EQ("\x43\x00\x01\x02"s, details::makeItem(make_pair(v1, 3))->toString());
}
TEST(MakeEntryTest, ItemPointer) {
Uint* p1 = new Uint(0);
EXPECT_EQ("\x00"s, details::makeItem(p1)->toString());
EXPECT_EQ("\x60"s, details::makeItem(new Tstr(string()))->toString());
}
TEST(MakeEntryTest, ItemReference) {
Tstr str("hello"s);
Tstr& strRef = str;
const Tstr& strConstRef = str;
EXPECT_EQ("\x65\x68\x65\x6c\x6c\x6f"s, details::makeItem(str)->toString());
EXPECT_EQ("\x65\x68\x65\x6c\x6c\x6f"s, details::makeItem(strRef)->toString());
EXPECT_EQ("\x65\x68\x65\x6c\x6c\x6f"s, details::makeItem(strConstRef)->toString());
EXPECT_EQ("\x65\x68\x65\x6c\x6c\x6f"s, details::makeItem(std::move(str))->toString());
EXPECT_EQ("\x60"s, details::makeItem(str)->toString()); // Prove that it moved
EXPECT_EQ("\x00"s, details::makeItem(Uint(0))->toString());
EXPECT_EQ("\x43\x00\x01\x02"s,
details::makeItem(Bstr(vector<uint8_t>{0x00, 0x01, 0x02}))->toString());
EXPECT_EQ("\x80"s, details::makeItem(Array())->toString());
EXPECT_EQ("\xa0"s, details::makeItem(Map())->toString());
}
TEST(CompoundValueTest, ArrayOfInts) {
EXPECT_EQ("\x80"s, Array().toString());
Array(Uint(0)).toString();
EXPECT_EQ("\x81\x00"s, Array(Uint(0U)).toString());
EXPECT_EQ("\x82\x00\x01"s, Array(Uint(0), Uint(1)).toString());
EXPECT_EQ("\x83\x00\x01\x38\x62"s, Array(Uint(0), Uint(1), Nint(-99)).toString());
EXPECT_EQ("\x81\x00"s, Array(0).toString());
EXPECT_EQ("\x82\x00\x01"s, Array(0, 1).toString());
EXPECT_EQ("\x83\x00\x01\x38\x62"s, Array(0, 1, -99).toString());
}
TEST(CompoundValueTest, MapOfInts) {
EXPECT_EQ("\xA0"s, Map().toString());
EXPECT_EQ("\xA1\x00\x01"s, Map(Uint(0), Uint(1)).toString());
// Maps with an odd number of arguments will fail to compile. Uncomment the next lines to test.
// EXPECT_EQ("\xA1\x00"s, Map(Int(0)).toString());
// EXPECT_EQ("\xA1\x00\x01\x02"s, Map(Int(0), Int(1), Int(2)).toString());
}
TEST(CompoundValueTest, MixedArray) {
vector<uint8_t> vec = {3, 2, 1};
EXPECT_EQ("\x84\x01\x20\x43\x03\x02\x01\x65\x68\x65\x6C\x6C\x6F"s,
Array(Uint(1), Nint(-1), Bstr(vec), Tstr("hello")).toString());
EXPECT_EQ("\x84\x01\x20\x43\x03\x02\x01\x65\x68\x65\x6C\x6C\x6F"s,
Array(1, -1, vec, "hello").toString());
}
TEST(CompoundValueTest, MixedMap) {
vector<uint8_t> vec = {3, 2, 1};
EXPECT_EQ("\xA2\x01\x20\x43\x03\x02\x01\x65\x68\x65\x6C\x6C\x6F"s,
Map(Uint(1), Nint(-1), Bstr(vec), Tstr("hello")).toString());
EXPECT_EQ("\xA2\x01\x20\x43\x03\x02\x01\x65\x68\x65\x6C\x6C\x6F"s,
Map(1, -1, vec, "hello").toString());
}
TEST(CompoundValueTest, NestedStructures) {
vector<uint8_t> vec = {3, 2, 1};
string expectedEncoding =
"\xA2\x66\x4F\x75\x74\x65\x72\x31\x82\xA2\x66\x49\x6E\x6E\x65\x72\x31\x18\x63\x66\x49"
"\x6E"
"\x6E\x65\x72\x32\x43\x03\x02\x01\x63\x66\x6F\x6F\x66\x4F\x75\x74\x65\x72\x32\x0A"s;
// Do it with explicity-created Items
EXPECT_EQ(expectedEncoding,
Map(Tstr("Outer1"),
Array( //
Map(Tstr("Inner1"), Uint(99), Tstr("Inner2"), Bstr(vec)), Tstr("foo")),
Tstr("Outer2"), //
Uint(10))
.toString());
EXPECT_EQ(3U, vec.size());
// Now just use convertible types
EXPECT_EQ(expectedEncoding, Map("Outer1",
Array(Map("Inner1", 99, //
"Inner2", vec),
"foo"),
"Outer2", 10)
.toString());
EXPECT_EQ(3U, vec.size());
// Finally, do it with the .add() method. This is slightly less efficient, but has the
// advantage you can build a structure up incrementally, or somewhat fluently if you like.
// First, fluently.
EXPECT_EQ(expectedEncoding, Map().add("Outer1", Array().add(Map() //
.add("Inner1", 99)
.add("Inner2", vec))
.add("foo"))
.add("Outer2", 10)
.toString());
EXPECT_EQ(3U, vec.size());
// Next, more incrementally
Array arr;
arr.add(Map() //
.add("Inner1", 99)
.add("Inner2", vec))
.add("foo");
EXPECT_EQ(3U, vec.size());
Map m;
m.add("Outer1", std::move(arr)); // Moving is necessary; Map and Array cannot be copied.
m.add("Outer2", 10);
auto s = m.toString();
EXPECT_EQ(expectedEncoding, s);
}
TEST(EncodingMethodsTest, AllVariants) {
Map map;
map.add("key1", Array().add(Map() //
.add("key_a", 9999999)
.add("key_b", std::vector<uint8_t>{0x01, 0x02, 0x03})
.add("key_c", std::numeric_limits<uint64_t>::max())
.add("key_d", std::numeric_limits<int16_t>::min()))
.add("foo"))
.add("key2", true)
.add("key3", SemanticTag(1, SemanticTag(987654321, "Zhai gana test")));
std::vector<uint8_t> buf;
buf.resize(map.encodedSize());
EXPECT_EQ(buf.data() + buf.size(), map.encode(buf.data(), buf.data() + buf.size()));
EXPECT_EQ(buf, map.encode());
std::vector<uint8_t> buf2;
map.encode(std::back_inserter(buf2));
EXPECT_EQ(buf, buf2);
auto iter = buf.begin();
map.encode([&](uint8_t c) { EXPECT_EQ(c, *iter++); });
}
TEST(EncodingMethodsTest, UintWithTooShortBuf) {
Uint val(100000);
vector<uint8_t> buf(val.encodedSize() - 1);
EXPECT_EQ(nullptr, val.encode(buf.data(), buf.data() + buf.size()));
}
TEST(EncodingMethodsTest, TstrWithTooShortBuf) {
Tstr val("01234567890123456789012345"s);
vector<uint8_t> buf(1);
EXPECT_EQ(nullptr, val.encode(buf.data(), buf.data() + buf.size()));
buf.resize(val.encodedSize() - 1);
EXPECT_EQ(nullptr, val.encode(buf.data(), buf.data() + buf.size()));
}
TEST(EncodingMethodsTest, BstrWithTooShortBuf) {
Bstr val("01234567890123456789012345"s);
vector<uint8_t> buf(1);
EXPECT_EQ(nullptr, val.encode(buf.data(), buf.data() + buf.size()));
buf.resize(val.encodedSize() - 1);
EXPECT_EQ(nullptr, val.encode(buf.data(), buf.data() + buf.size()));
}
TEST(EncodingMethodsTest, ArrayWithTooShortBuf) {
Array val("a", 5, -100);
std::vector<uint8_t> buf(val.encodedSize() - 1);
EXPECT_EQ(nullptr, val.encode(buf.data(), buf.data() + buf.size()));
}
TEST(EncodingMethodsTest, MapWithTooShortBuf) {
Map map;
map.add("key1", Array().add(Map() //
.add("key_a", 99)
.add("key_b", std::vector<uint8_t>{0x01, 0x02, 0x03}))
.add("foo"))
.add("key2", true);
std::vector<uint8_t> buf(map.encodedSize() - 1);
EXPECT_EQ(nullptr, map.encode(buf.data(), buf.data() + buf.size()));
}
TEST(EncodingMethodsTest, SemanticTagWithTooShortBuf) {
SemanticTag tag(4321, Array().add(Array().add("Qaiyrly kesh!").add("Kesh zharyq!").add("431"))
.add(Map().add("kilt_1", 777).add("kilt_2", 999)));
std::vector<uint8_t> buf(tag.encodedSize() - 1);
EXPECT_EQ(nullptr, tag.encode(buf.data(), buf.data() + buf.size()));
}
TEST(EqualityTest, Uint) {
Uint val(99);
EXPECT_EQ(val, Uint(99));
EXPECT_NE(val, Uint(98));
EXPECT_NE(val, Nint(-1));
EXPECT_NE(val, Tstr("99"));
EXPECT_NE(val, Bstr("99"));
EXPECT_NE(val, Bool(false));
EXPECT_NE(val, Array(99, 1));
EXPECT_NE(val, Map(99, 1));
EXPECT_NE(val, ViewTstr("99"));
EXPECT_NE(val, ViewBstr("99"));
}
TEST(EqualityTest, Nint) {
Nint val(-1);
EXPECT_EQ(val, Nint(-1));
EXPECT_NE(val, Uint(99));
EXPECT_NE(val, Nint(-4));
EXPECT_NE(val, Tstr("99"));
EXPECT_NE(val, Bstr("99"));
EXPECT_NE(val, Bool(false));
EXPECT_NE(val, Array(99));
EXPECT_NE(val, Map(99, 1));
EXPECT_NE(val, ViewTstr("99"));
EXPECT_NE(val, ViewBstr("99"));
}
TEST(EqualityTest, Tstr) {
Tstr val("99");
EXPECT_EQ(val, Tstr("99"));
EXPECT_NE(val, Uint(99));
EXPECT_NE(val, Nint(-1));
EXPECT_NE(val, Nint(-4));
EXPECT_NE(val, Tstr("98"));
EXPECT_NE(val, Bstr("99"));
EXPECT_NE(val, Bool(false));
EXPECT_NE(val, Array(99, 1));
EXPECT_NE(val, Map(99, 1));
EXPECT_NE(val, ViewTstr("99"));
EXPECT_NE(val, ViewBstr("99"));
}
TEST(EqualityTest, Bstr) {
Bstr val("99");
EXPECT_EQ(val, Bstr("99"));
EXPECT_NE(val, Uint(99));
EXPECT_NE(val, Nint(-1));
EXPECT_NE(val, Nint(-4));
EXPECT_NE(val, Tstr("99"));
EXPECT_NE(val, Bstr("98"));
EXPECT_NE(val, Bool(false));
EXPECT_NE(val, Array(99, 1));
EXPECT_NE(val, Map(99, 1));
EXPECT_NE(val, ViewTstr("99"));
EXPECT_NE(val, ViewBstr("99"));
}
TEST(EqualityTest, Bool) {
Bool val(false);
EXPECT_EQ(val, Bool(false));
EXPECT_NE(val, Uint(99));
EXPECT_NE(val, Nint(-1));
EXPECT_NE(val, Nint(-4));
EXPECT_NE(val, Tstr("99"));
EXPECT_NE(val, Bstr("98"));
EXPECT_NE(val, Bool(true));
EXPECT_NE(val, Array(99, 1));
EXPECT_NE(val, Map(99, 1));
EXPECT_NE(val, ViewTstr("99"));
EXPECT_NE(val, ViewBstr("98"));
}
TEST(EqualityTest, Array) {
Array val(99, 1);
EXPECT_EQ(val, Array(99, 1));
EXPECT_NE(val, Uint(99));
EXPECT_NE(val, Nint(-1));
EXPECT_NE(val, Nint(-4));
EXPECT_NE(val, Tstr("99"));
EXPECT_NE(val, Bstr("98"));
EXPECT_NE(val, Bool(true));
EXPECT_NE(val, Array(99, 2));
EXPECT_NE(val, Array(98, 1));
EXPECT_NE(val, Array(99, 1, 2));
EXPECT_NE(val, Map(99, 1));
EXPECT_NE(val, ViewTstr("99"));
EXPECT_NE(val, ViewBstr("98"));
}
TEST(EqualityTest, Map) {
Map val(99, 1);
EXPECT_EQ(val, Map(99, 1));
EXPECT_NE(val, Uint(99));
EXPECT_NE(val, Nint(-1));
EXPECT_NE(val, Nint(-4));
EXPECT_NE(val, Tstr("99"));
EXPECT_NE(val, Bstr("98"));
EXPECT_NE(val, Bool(true));
EXPECT_NE(val, Array(99, 1));
EXPECT_NE(val, Map(99, 2));
EXPECT_NE(val, Map(99, 1, 99, 2));
EXPECT_NE(val, ViewTstr("99"));
EXPECT_NE(val, ViewBstr("98"));
}
TEST(EqualityTest, Null) {
Null val;
EXPECT_EQ(val, Null());
EXPECT_NE(val, Uint(99));
EXPECT_NE(val, Nint(-1));
EXPECT_NE(val, Nint(-4));
EXPECT_NE(val, Tstr("99"));
EXPECT_NE(val, Bstr("98"));
EXPECT_NE(val, Bool(true));
EXPECT_NE(val, Array(99, 1));
EXPECT_NE(val, Map(99, 2));
EXPECT_NE(val, Map(99, 1, 99, 2));
EXPECT_NE(val, ViewTstr("99"));
EXPECT_NE(val, ViewBstr("98"));
}
TEST(EqualityTest, SemanticTag) {
SemanticTag val(215, Bstr("asd"));
EXPECT_EQ(val, SemanticTag(215, Bstr("asd")));
EXPECT_NE(val, Uint(99));
EXPECT_NE(val, Nint(-1));
EXPECT_NE(val, Nint(-4));
EXPECT_NE(val, Tstr("99"));
EXPECT_NE(val, Bstr("98"));
EXPECT_NE(val, Bool(true));
EXPECT_NE(val, Array(99, 1));
EXPECT_NE(val, Map(99, 2));
EXPECT_NE(val, Null());
}
TEST(EqualityTest, NestedSemanticTag) {
SemanticTag val(238238, SemanticTag(215, Bstr("asd")));
EXPECT_EQ(val, SemanticTag(238238, SemanticTag(215, Bstr("asd"))));
EXPECT_NE(val, Uint(99));
EXPECT_NE(val, Nint(-1));
EXPECT_NE(val, Nint(-4));
EXPECT_NE(val, Tstr("99"));
EXPECT_NE(val, Bstr("98"));
EXPECT_NE(val, Bool(true));
EXPECT_NE(val, Array(99, 1));
EXPECT_NE(val, Map(99, 2));
EXPECT_NE(val, Null());
EXPECT_NE(val, ViewTstr("99"));
EXPECT_NE(val, ViewBstr("98"));
}
TEST(EqualityTest, ViewTstr) {
ViewTstr val("99");
EXPECT_EQ(val, ViewTstr("99"));
EXPECT_NE(val, Uint(99));
EXPECT_NE(val, Nint(-1));
EXPECT_NE(val, Nint(-4));
EXPECT_NE(val, Tstr("99"));
EXPECT_NE(val, Bstr("99"));
EXPECT_NE(val, Bool(false));
EXPECT_NE(val, Array(99, 1));
EXPECT_NE(val, Map(99, 1));
EXPECT_NE(val, ViewTstr("98"));
EXPECT_NE(val, ViewBstr("99"));
}
TEST(EqualityTest, ViewBstr) {
ViewBstr val("99");
EXPECT_EQ(val, ViewBstr("99"));
EXPECT_NE(val, Uint(99));
EXPECT_NE(val, Nint(-1));
EXPECT_NE(val, Nint(-4));
EXPECT_NE(val, Tstr("99"));
EXPECT_NE(val, Bstr("99"));
EXPECT_NE(val, Bool(false));
EXPECT_NE(val, Array(99, 1));
EXPECT_NE(val, Map(99, 1));
EXPECT_NE(val, ViewTstr("99"));
EXPECT_NE(val, ViewBstr("98"));
}
TEST(ConvertTest, Uint) {
unique_ptr<Item> item = details::makeItem(10);
EXPECT_EQ(UINT, item->type());
EXPECT_NE(nullptr, item->asInt());
EXPECT_NE(nullptr, item->asUint());
EXPECT_EQ(nullptr, item->asNint());
EXPECT_EQ(nullptr, item->asTstr());
EXPECT_EQ(nullptr, item->asBstr());
EXPECT_EQ(nullptr, item->asSimple());
EXPECT_EQ(nullptr, item->asMap());
EXPECT_EQ(nullptr, item->asArray());
EXPECT_EQ(nullptr, item->asViewTstr());
EXPECT_EQ(nullptr, item->asViewBstr());
EXPECT_EQ(10, item->asInt()->value());
EXPECT_EQ(10, item->asUint()->value());
}
TEST(ConvertTest, Nint) {
unique_ptr<Item> item = details::makeItem(-10);
EXPECT_EQ(NINT, item->type());
EXPECT_NE(nullptr, item->asInt());
EXPECT_EQ(nullptr, item->asUint());
EXPECT_NE(nullptr, item->asNint());
EXPECT_EQ(nullptr, item->asTstr());
EXPECT_EQ(nullptr, item->asBstr());
EXPECT_EQ(nullptr, item->asSimple());
EXPECT_EQ(nullptr, item->asMap());
EXPECT_EQ(nullptr, item->asArray());
EXPECT_EQ(nullptr, item->asViewTstr());
EXPECT_EQ(nullptr, item->asViewBstr());
EXPECT_EQ(-10, item->asInt()->value());
EXPECT_EQ(-10, item->asNint()->value());
}
TEST(ConvertTest, Tstr) {
unique_ptr<Item> item = details::makeItem("hello");
EXPECT_EQ(TSTR, item->type());
EXPECT_EQ(nullptr, item->asInt());
EXPECT_EQ(nullptr, item->asUint());
EXPECT_EQ(nullptr, item->asNint());
EXPECT_NE(nullptr, item->asTstr());
EXPECT_EQ(nullptr, item->asBstr());
EXPECT_EQ(nullptr, item->asSimple());
EXPECT_EQ(nullptr, item->asMap());
EXPECT_EQ(nullptr, item->asArray());
EXPECT_EQ(nullptr, item->asViewTstr());
EXPECT_EQ(nullptr, item->asViewBstr());
EXPECT_EQ("hello"s, item->asTstr()->value());
}
TEST(ConvertTest, Bstr) {
vector<uint8_t> vec{0x23, 0x24, 0x22};
unique_ptr<Item> item = details::makeItem(vec);
EXPECT_EQ(BSTR, item->type());
EXPECT_EQ(nullptr, item->asInt());
EXPECT_EQ(nullptr, item->asUint());
EXPECT_EQ(nullptr, item->asNint());
EXPECT_EQ(nullptr, item->asTstr());
EXPECT_NE(nullptr, item->asBstr());
EXPECT_EQ(nullptr, item->asSimple());
EXPECT_EQ(nullptr, item->asMap());
EXPECT_EQ(nullptr, item->asArray());
EXPECT_EQ(nullptr, item->asViewTstr());
EXPECT_EQ(nullptr, item->asViewBstr());
EXPECT_EQ(vec, item->asBstr()->value());
}
TEST(ConvertTest, Bool) {
unique_ptr<Item> item = details::makeItem(false);
EXPECT_EQ(SIMPLE, item->type());
EXPECT_EQ(nullptr, item->asInt());
EXPECT_EQ(nullptr, item->asUint());
EXPECT_EQ(nullptr, item->asNint());
EXPECT_EQ(nullptr, item->asTstr());
EXPECT_EQ(nullptr, item->asBstr());
EXPECT_NE(nullptr, item->asSimple());
EXPECT_EQ(nullptr, item->asMap());
EXPECT_EQ(nullptr, item->asArray());
EXPECT_EQ(nullptr, item->asViewTstr());
EXPECT_EQ(nullptr, item->asViewBstr());
EXPECT_EQ(BOOLEAN, item->asSimple()->simpleType());
EXPECT_NE(nullptr, item->asSimple()->asBool());
EXPECT_EQ(nullptr, item->asSimple()->asNull());
EXPECT_FALSE(item->asSimple()->asBool()->value());
}
TEST(ConvertTest, Map) {
unique_ptr<Item> item(new Map);
EXPECT_EQ(MAP, item->type());
EXPECT_EQ(nullptr, item->asInt());
EXPECT_EQ(nullptr, item->asUint());
EXPECT_EQ(nullptr, item->asNint());
EXPECT_EQ(nullptr, item->asTstr());
EXPECT_EQ(nullptr, item->asBstr());
EXPECT_EQ(nullptr, item->asSimple());
EXPECT_NE(nullptr, item->asMap());
EXPECT_EQ(nullptr, item->asArray());
EXPECT_EQ(nullptr, item->asViewTstr());
EXPECT_EQ(nullptr, item->asViewBstr());
EXPECT_EQ(0U, item->asMap()->size());
}
TEST(ConvertTest, Array) {
unique_ptr<Item> item(new Array);
EXPECT_EQ(ARRAY, item->type());
EXPECT_EQ(nullptr, item->asInt());
EXPECT_EQ(nullptr, item->asUint());
EXPECT_EQ(nullptr, item->asNint());
EXPECT_EQ(nullptr, item->asTstr());
EXPECT_EQ(nullptr, item->asBstr());
EXPECT_EQ(nullptr, item->asSimple());
EXPECT_EQ(nullptr, item->asMap());
EXPECT_NE(nullptr, item->asArray());
EXPECT_EQ(nullptr, item->asViewTstr());
EXPECT_EQ(nullptr, item->asViewBstr());
EXPECT_EQ(0U, item->asArray()->size());
}
TEST(ConvertTest, SemanticTag) {
unique_ptr<Item> item(new SemanticTag(10, "DSA"));
EXPECT_EQ(TSTR, item->type());
EXPECT_EQ(nullptr, item->asInt());
EXPECT_EQ(nullptr, item->asUint());
EXPECT_EQ(nullptr, item->asNint());
EXPECT_EQ(nullptr, item->asBstr());
EXPECT_EQ(nullptr, item->asSimple());
EXPECT_EQ(nullptr, item->asMap());
EXPECT_EQ(nullptr, item->asArray());
EXPECT_EQ(nullptr, item->asViewTstr());
EXPECT_EQ(nullptr, item->asViewBstr());
// Both asTstr() (the contained type) and asSemanticTag() return non-null.
EXPECT_NE(nullptr, item->asTstr());
EXPECT_NE(nullptr, item->asSemanticTag());
// asTtr() and asSemanticTag() actually return different objects.
EXPECT_NE(static_cast<Item*>(item->asTstr()), static_cast<Item*>(item->asSemanticTag()));
EXPECT_EQ(1U, item->asSemanticTag()->size());
EXPECT_EQ("DSA", item->asTstr()->value());
EXPECT_EQ(1U, item->semanticTagCount());
EXPECT_EQ(10U, item->semanticTag());
}
TEST(ConvertTest, NestedSemanticTag) {
unique_ptr<Item> item(new SemanticTag(40, new SemanticTag(10, "DSA")));
EXPECT_EQ(TSTR, item->type());
EXPECT_EQ(nullptr, item->asInt());
EXPECT_EQ(nullptr, item->asUint());
EXPECT_EQ(nullptr, item->asNint());
EXPECT_EQ(nullptr, item->asBstr());
EXPECT_EQ(nullptr, item->asSimple());
EXPECT_EQ(nullptr, item->asMap());
EXPECT_EQ(nullptr, item->asArray());
EXPECT_EQ(nullptr, item->asViewTstr());
EXPECT_EQ(nullptr, item->asViewBstr());
// Both asTstr() (the contained type) and asSemanticTag() return non-null.
EXPECT_NE(nullptr, item->asTstr());
EXPECT_NE(nullptr, item->asSemanticTag());
// asTtr() and asSemanticTag() actually return different objects. Note that there's no way to
// get a pointer to the "inner" SemanticTag object. There shouldn't be any need to.
EXPECT_NE(static_cast<Item*>(item->asTstr()), static_cast<Item*>(item->asSemanticTag()));
EXPECT_EQ(1U, item->asSemanticTag()->size());
EXPECT_EQ("DSA", item->asTstr()->value());
EXPECT_EQ(2U, item->semanticTagCount());
EXPECT_EQ(10U, item->semanticTag(0));
EXPECT_EQ(40U, item->semanticTag(1));
}
TEST(ConvertTest, Null) {
unique_ptr<Item> item(new Null);
EXPECT_EQ(SIMPLE, item->type());
EXPECT_EQ(nullptr, item->asInt());
EXPECT_EQ(nullptr, item->asUint());
EXPECT_EQ(nullptr, item->asNint());
EXPECT_EQ(nullptr, item->asTstr());
EXPECT_EQ(nullptr, item->asBstr());
EXPECT_NE(nullptr, item->asSimple());
EXPECT_EQ(nullptr, item->asMap());
EXPECT_EQ(nullptr, item->asArray());
EXPECT_EQ(nullptr, item->asViewTstr());
EXPECT_EQ(nullptr, item->asViewBstr());
EXPECT_EQ(NULL_T, item->asSimple()->simpleType());
EXPECT_EQ(nullptr, item->asSimple()->asBool());
EXPECT_NE(nullptr, item->asSimple()->asNull());
}
TEST(ConvertTest, ViewTstr) {
unique_ptr<Item> item = details::makeItem(ViewTstr("hello"));
EXPECT_EQ(TSTR, item->type());
EXPECT_EQ(nullptr, item->asInt());
EXPECT_EQ(nullptr, item->asUint());
EXPECT_EQ(nullptr, item->asNint());
EXPECT_EQ(nullptr, item->asTstr());
EXPECT_EQ(nullptr, item->asBstr());
EXPECT_EQ(nullptr, item->asSimple());
EXPECT_EQ(nullptr, item->asMap());
EXPECT_EQ(nullptr, item->asArray());
EXPECT_NE(nullptr, item->asViewTstr());
EXPECT_EQ(nullptr, item->asViewBstr());
EXPECT_EQ("hello"sv, item->asViewTstr()->view());
}
TEST(ConvertTest, ViewBstr) {
array<uint8_t, 3> vec{0x23, 0x24, 0x22};
basic_string_view sv(vec.data(), vec.size());
unique_ptr<Item> item = details::makeItem(ViewBstr(sv));
EXPECT_EQ(BSTR, item->type());
EXPECT_EQ(nullptr, item->asInt());
EXPECT_EQ(nullptr, item->asUint());
EXPECT_EQ(nullptr, item->asNint());
EXPECT_EQ(nullptr, item->asTstr());
EXPECT_EQ(nullptr, item->asBstr());
EXPECT_EQ(nullptr, item->asSimple());
EXPECT_EQ(nullptr, item->asMap());
EXPECT_EQ(nullptr, item->asArray());
EXPECT_EQ(nullptr, item->asViewTstr());
EXPECT_NE(nullptr, item->asViewBstr());
EXPECT_EQ(sv, item->asViewBstr()->view());
}
TEST(CloningTest, Uint) {
Uint item(10);
auto clone = item.clone();
EXPECT_EQ(clone->type(), UINT);
EXPECT_NE(clone->asUint(), nullptr);
EXPECT_EQ(item, *clone->asUint());
EXPECT_EQ(*clone->asUint(), Uint(10));
}
TEST(CloningTest, Nint) {
Nint item(-1000000);
auto clone = item.clone();
EXPECT_EQ(clone->type(), NINT);
EXPECT_NE(clone->asNint(), nullptr);
EXPECT_EQ(item, *clone->asNint());
EXPECT_EQ(*clone->asNint(), Nint(-1000000));
}
TEST(CloningTest, Tstr) {
Tstr item("qwertyasdfgh");
auto clone = item.clone();
EXPECT_EQ(clone->type(), TSTR);
EXPECT_NE(clone->asTstr(), nullptr);
EXPECT_EQ(item, *clone->asTstr());
EXPECT_EQ(*clone->asTstr(), Tstr("qwertyasdfgh"));
}
TEST(CloningTest, Bstr) {
Bstr item(std::vector<uint8_t>{1, 2, 3, 255, 0});
auto clone = item.clone();
EXPECT_EQ(clone->type(), BSTR);
EXPECT_NE(clone->asBstr(), nullptr);
EXPECT_EQ(item, *clone->asBstr());
EXPECT_EQ(*clone->asBstr(), Bstr(std::vector<uint8_t>{1, 2, 3, 255, 0}));
}
TEST(CloningTest, Array) {
Array item(-1000000, 22222222, "item", Map(1, 2, 4, Array(1, "das", true, nullptr)),
SemanticTag(16, "DATA")),
copy(-1000000, 22222222, "item", Map(1, 2, 4, Array(1, "das", true, nullptr)),
SemanticTag(16, "DATA"));
auto clone = item.clone();
EXPECT_EQ(clone->type(), ARRAY);
EXPECT_NE(clone->asArray(), nullptr);
EXPECT_EQ(item, *clone->asArray());
EXPECT_EQ(*clone->asArray(), copy);
}
TEST(CloningTest, Map) {
Map item("key", Array("value1", "value2", 3), 15, Null(), -5, 45),
copy("key", Array("value1", "value2", 3), 15, Null(), -5, 45);
auto clone = item.clone();
EXPECT_EQ(clone->type(), MAP);
EXPECT_NE(clone->asMap(), nullptr);
EXPECT_EQ(item, *clone->asMap());
EXPECT_EQ(*clone->asMap(), copy);
}
TEST(CloningTest, Bool) {
Bool item(true);
auto clone = item.clone();
EXPECT_EQ(clone->type(), SIMPLE);
EXPECT_NE(clone->asSimple(), nullptr);
EXPECT_EQ(clone->asSimple()->simpleType(), BOOLEAN);
EXPECT_NE(clone->asSimple()->asBool(), nullptr);
EXPECT_EQ(item, *clone->asSimple()->asBool());
EXPECT_EQ(*clone->asSimple()->asBool(), Bool(true));
}
TEST(CloningTest, Null) {
Null item;
auto clone = item.clone();
EXPECT_EQ(clone->type(), SIMPLE);
EXPECT_NE(clone->asSimple(), nullptr);
EXPECT_EQ(clone->asSimple()->simpleType(), NULL_T);
EXPECT_NE(clone->asSimple()->asNull(), nullptr);
EXPECT_EQ(item, *clone->asSimple()->asNull());
EXPECT_EQ(*clone->asSimple()->asNull(), Null());
}
TEST(CloningTest, SemanticTag) {
SemanticTag item(96, Array(1, 2, 3, "entry", Map("key", "value")));
SemanticTag copy(96, Array(1, 2, 3, "entry", Map("key", "value")));
auto clone = item.clone();
EXPECT_EQ(clone->type(), ARRAY);
EXPECT_NE(clone->asSemanticTag(), nullptr);
EXPECT_EQ(item, *clone->asSemanticTag());
EXPECT_EQ(*clone->asSemanticTag(), copy);
}
TEST(CloningTest, NestedSemanticTag) {
SemanticTag item(20, //
SemanticTag(30, //
SemanticTag(96, //
Array(1, 2, 3, "entry", Map("key", "value")))));
SemanticTag copy(20, //
SemanticTag(30, //
SemanticTag(96, //
Array(1, 2, 3, "entry", Map("key", "value")))));
auto clone = item.clone();
EXPECT_EQ(clone->type(), ARRAY);
EXPECT_NE(clone->asSemanticTag(), nullptr);
EXPECT_EQ(item, *clone->asSemanticTag());
EXPECT_EQ(*clone->asSemanticTag(), copy);
}
TEST(CloningTest, ViewTstr) {
ViewTstr item("qwertyasdfgh");
auto clone = item.clone();
EXPECT_EQ(clone->type(), TSTR);
EXPECT_NE(clone->asViewTstr(), nullptr);
EXPECT_EQ(item, *clone->asViewTstr());
EXPECT_EQ(*clone->asViewTstr(), ViewTstr("qwertyasdfgh"));
}
TEST(CloningTest, ViewBstr) {
array<uint8_t, 5> vec{1, 2, 3, 255, 0};
basic_string_view sv(vec.data(), vec.size());
ViewBstr item(sv);
auto clone = item.clone();
EXPECT_EQ(clone->type(), BSTR);
EXPECT_NE(clone->asViewBstr(), nullptr);
EXPECT_EQ(item, *clone->asViewBstr());
EXPECT_EQ(*clone->asViewBstr(), ViewBstr(sv));
}
TEST(PrettyPrintingTest, NestedSemanticTag) {
SemanticTag item(20, //
SemanticTag(30, //
SemanticTag(96, //
Array(1, 2, 3, "entry", Map("key", "value")))));
EXPECT_EQ(prettyPrint(&item),
"tag 20 tag 30 tag 96 [\n"
" 1,\n"
" 2,\n"
" 3,\n"
" 'entry',\n"
" {\n"
" 'key' : 'value',\n"
" },\n"
"]");
}
TEST(MapCanonicalizationTest, CanonicalizationTest) {
Map map;
map.add("hello", 1)
.add("h", 1)
.add(1, 1)
.add(-4, 1)
.add(-5, 1)
.add(2, 1)
.add("hellp", 1)
.add(254, 1)
.add(27, 1);
EXPECT_EQ(prettyPrint(&map),
"{\n"
" 'hello' : 1,\n"
" 'h' : 1,\n"
" 1 : 1,\n"
" -4 : 1,\n"
" -5 : 1,\n"
" 2 : 1,\n"
" 'hellp' : 1,\n"
" 254 : 1,\n"
" 27 : 1,\n"
"}");
map.canonicalize();
// Canonically ordered by key encoding.
EXPECT_EQ(prettyPrint(&map),
"{\n"
" 1 : 1,\n"
" 2 : 1,\n"
" -4 : 1,\n"
" -5 : 1,\n"
" 27 : 1,\n"
" 254 : 1,\n"
" 'h' : 1,\n"
" 'hello' : 1,\n"
" 'hellp' : 1,\n"
"}");
}
TEST(MapCanonicalizationTest, DecanonicalizationTest) {
Map map;
map.add("hello", 1)
.add("h", 1)
.add(1, 1)
.add(-4, 1)
.add(-5, 1)
.add(2, 1)
.add("hellp", 1)
.add(254, 1)
.add(27, 1);
EXPECT_FALSE(map.isCanonical());
map.canonicalize();
EXPECT_TRUE(map.isCanonical());
/*
* Any operation that could potentially mutate the contents of the map should mark it as
* non-canonical. This includes getting non-const iterators or using the non-const [] operator.
*/
map.begin();
EXPECT_FALSE(map.isCanonical());
map.canonicalize();
EXPECT_TRUE(map.isCanonical());
map.end(); // Non-const map.end() invalidates canonicalization.
EXPECT_FALSE(map.isCanonical());
map.canonicalize();
EXPECT_TRUE(map.isCanonical());
map[0]; // Non-const map.operator[]() invalidates canonicalization.
EXPECT_FALSE(map.isCanonical());
}
TEST(MapCanonicalizationTest, RecursiveTest) {
auto map = Map() //
.add("hello", 1)
.add("h", 1)
.add(1, 1)
.add(-4, Array( //
2, 1,
Map() //
.add("b", 1)
.add(Map() //
.add("hello", "goodbye")
.add(1, 9)
.add(0, 3),
Map() //
.add("b", 1)
.add("a", 2))))
.add(-5, 1)
.add(2, 1)
.add("hellp", 1)
.add(254, 1)
.add(27, 1);
EXPECT_EQ(prettyPrint(&map),
"{\n"
" 'hello' : 1,\n"
" 'h' : 1,\n"
" 1 : 1,\n"
" -4 : [\n"
" 2,\n"
" 1,\n"
" {\n"
" 'b' : 1,\n"
" {\n"
" 'hello' : 'goodbye',\n"
" 1 : 9,\n"
" 0 : 3,\n"
" } : {\n"
" 'b' : 1,\n"
" 'a' : 2,\n"
" },\n"
" },\n"
" ],\n"
" -5 : 1,\n"
" 2 : 1,\n"
" 'hellp' : 1,\n"
" 254 : 1,\n"
" 27 : 1,\n"
"}");
map.canonicalize(true /* recurse */);
EXPECT_EQ(prettyPrint(&map),
"{\n"
" 1 : 1,\n"
" 2 : 1,\n"
" -4 : [\n"
" 2,\n"
" 1,\n"
" {\n"
" 'b' : 1,\n"
" {\n"
" 0 : 3,\n"
" 1 : 9,\n"
" 'hello' : 'goodbye',\n"
" } : {\n"
" 'a' : 2,\n"
" 'b' : 1,\n"
" },\n"
" },\n"
" ],\n"
" -5 : 1,\n"
" 27 : 1,\n"
" 254 : 1,\n"
" 'h' : 1,\n"
" 'hello' : 1,\n"
" 'hellp' : 1,\n"
"}");
}
class MockParseClient : public ParseClient {
public:
MOCK_METHOD4(item, ParseClient*(std::unique_ptr<Item>& item, const uint8_t* hdrBegin,
const uint8_t* valueBegin, const uint8_t* end));
MOCK_METHOD4(itemEnd, ParseClient*(std::unique_ptr<Item>& item, const uint8_t* hdrBegin,
const uint8_t* valueBegin, const uint8_t* end));
MOCK_METHOD2(error, void(const uint8_t* position, const std::string& errorMessage));
};
MATCHER_P(IsType, value, std::string("Type ") + (negation ? "doesn't match" : "matches")) {
return arg->type() == value;
}
MATCHER_P(MatchesItem, value, "") {
return arg && *arg == value;
}
MATCHER_P(IsArrayOfSize, value, "") {
return arg->type() == ARRAY && arg->asArray()->size() == value;
}
MATCHER_P(IsSemanticTagOfValue, value, "") {
return arg->semanticTagCount() == 1 && arg->semanticTag() == value;
}
MATCHER_P(IsMapOfSize, value, "") {
return arg->type() == MAP && arg->asMap()->size() == value;
}
TEST(StreamParseTest, Uint) {
MockParseClient mpc;
Uint val(100);
auto encoded = val.encode();
uint8_t* encBegin = encoded.data();
uint8_t* encEnd = encoded.data() + encoded.size();
EXPECT_CALL(mpc, item(MatchesItem(val), encBegin, encEnd, encEnd)).WillOnce(Return(&mpc));
EXPECT_CALL(mpc, itemEnd(_, _, _, _)).Times(0);
EXPECT_CALL(mpc, error(_, _)).Times(0);
parse(encoded.data(), encoded.data() + encoded.size(), &mpc);
}
TEST(StreamParseTest, Nint) {
MockParseClient mpc;
Nint val(-10);
auto encoded = val.encode();
uint8_t* encBegin = encoded.data();
uint8_t* encEnd = encoded.data() + encoded.size();
EXPECT_CALL(mpc, item(MatchesItem(val), encBegin, encEnd, encEnd)).WillOnce(Return(&mpc));
EXPECT_CALL(mpc, itemEnd(_, _, _, _)).Times(0);
EXPECT_CALL(mpc, error(_, _)).Times(0);
parse(encoded.data(), encoded.data() + encoded.size(), &mpc);
}
TEST(StreamParseTest, Bool) {
MockParseClient mpc;
Bool val(true);
auto encoded = val.encode();
uint8_t* encBegin = encoded.data();
uint8_t* encEnd = encoded.data() + encoded.size();
EXPECT_CALL(mpc, item(MatchesItem(val), encBegin, encEnd, encEnd)).WillOnce(Return(&mpc));
EXPECT_CALL(mpc, itemEnd(_, _, _, _)).Times(0);
EXPECT_CALL(mpc, error(_, _)).Times(0);
parse(encoded.data(), encoded.data() + encoded.size(), &mpc);
}
TEST(StreamParseTest, Null) {
MockParseClient mpc;
Null val;
auto encoded = val.encode();
uint8_t* encBegin = encoded.data();
uint8_t* encEnd = encoded.data() + encoded.size();
EXPECT_CALL(mpc, item(MatchesItem(val), encBegin, encEnd, encEnd)).WillOnce(Return(&mpc));
EXPECT_CALL(mpc, itemEnd(_, _, _, _)).Times(0);
EXPECT_CALL(mpc, error(_, _)).Times(0);
parse(encoded.data(), encoded.data() + encoded.size(), &mpc);
}
TEST(StreamParseTest, Tstr) {
MockParseClient mpc;
Tstr val("Hello");
auto encoded = val.encode();
uint8_t* encBegin = encoded.data();
uint8_t* encEnd = encoded.data() + encoded.size();
EXPECT_CALL(mpc, item(MatchesItem(val), encBegin, encBegin + 1, encEnd)).WillOnce(Return(&mpc));
EXPECT_CALL(mpc, itemEnd(_, _, _, _)).Times(0);
EXPECT_CALL(mpc, error(_, _)).Times(0);
parse(encoded.data(), encoded.data() + encoded.size(), &mpc);
}
TEST(StreamParseTest, Bstr) {
MockParseClient mpc;
Bstr val("Hello");
auto encoded = val.encode();
uint8_t* encBegin = encoded.data();
uint8_t* encEnd = encoded.data() + encoded.size();
EXPECT_CALL(mpc, item(MatchesItem(val), encBegin, encBegin + 1, encEnd)).WillOnce(Return(&mpc));
EXPECT_CALL(mpc, itemEnd(_, _, _, _)).Times(0);
EXPECT_CALL(mpc, error(_, _)).Times(0);
parse(encoded.data(), encoded.data() + encoded.size(), &mpc);
}
TEST(StreamParseTest, Array) {
MockParseClient mpc;
Array val("Hello", 4, Array(-9, "Goodbye"), std::numeric_limits<uint64_t>::max());
ASSERT_NE(val[2]->asArray(), nullptr);
const Array& interior = *(val[2]->asArray());
auto encoded = val.encode();
uint8_t* encBegin = encoded.data();
uint8_t* encEnd = encoded.data() + encoded.size();
{
InSequence s;
const uint8_t* pos = encBegin;
EXPECT_CALL(mpc, item(IsArrayOfSize(val.size()), pos, pos + 1, pos + 1))
.WillOnce(Return(&mpc));
++pos;
EXPECT_CALL(mpc, item(MatchesItem(ByRef(*val[0])), pos, pos + 1, pos + 6))
.WillOnce(Return(&mpc));
pos += 6;
EXPECT_CALL(mpc, item(MatchesItem(ByRef(*val[1])), pos, pos + 1, pos + 1))
.WillOnce(Return(&mpc));
++pos;
const uint8_t* innerArrayBegin = pos;
EXPECT_CALL(mpc, item(IsArrayOfSize(interior.size()), pos, pos + 1, pos + 1))
.WillOnce(Return(&mpc));
++pos;
EXPECT_CALL(mpc, item(MatchesItem(ByRef(*interior[0])), pos, pos + 1, pos + 1))
.WillOnce(Return(&mpc));
++pos;
EXPECT_CALL(mpc, item(MatchesItem(ByRef(*interior[1])), pos, pos + 1, pos + 8))
.WillOnce(Return(&mpc));
pos += 8;
EXPECT_CALL(mpc, itemEnd(IsArrayOfSize(interior.size()), innerArrayBegin,
innerArrayBegin + 1, pos))
.WillOnce(Return(&mpc));
EXPECT_CALL(mpc, item(MatchesItem(ByRef(*val[3])), pos, pos + 9, pos + 9))
.WillOnce(Return(&mpc));
EXPECT_CALL(mpc, itemEnd(IsArrayOfSize(val.size()), encBegin, encBegin + 1, encEnd))
.WillOnce(Return(&mpc));
}
EXPECT_CALL(mpc, error(_, _)) //
.Times(0);
parse(encoded.data(), encoded.data() + encoded.size(), &mpc);
}
TEST(StreamParseTest, SemanticTag) {
MockParseClient mpc;
SemanticTag val(15, Array(-5, "Hi"));
auto encoded = val.encode();
ASSERT_NE(val.asArray(), nullptr);
const Array& array = *(val.asArray());
uint8_t* encBegin = encoded.data();
uint8_t* encEnd = encoded.data() + encoded.size();
{
InSequence s;
const uint8_t* pos = encBegin;
EXPECT_CALL(mpc, item(IsSemanticTagOfValue(val.semanticTag()), pos, pos + 1, pos + 1))
.WillOnce(Return(&mpc));
++pos;
const uint8_t* innerArrayBegin = pos;
EXPECT_CALL(mpc, item(IsArrayOfSize(array.size()), pos, pos + 1, pos + 1))
.WillOnce(Return(&mpc));
++pos;
EXPECT_CALL(mpc, item(MatchesItem(ByRef(*array[0])), pos, pos + 1, pos + 1))
.WillOnce(Return(&mpc));
++pos;
EXPECT_CALL(mpc, item(MatchesItem(ByRef(*array[1])), pos, pos + 1, pos + 3))
.WillOnce(Return(&mpc));
pos += 3;
EXPECT_CALL(mpc,
itemEnd(IsArrayOfSize(array.size()), innerArrayBegin, innerArrayBegin + 1, pos))
.WillOnce(Return(&mpc));
EXPECT_CALL(mpc, itemEnd(IsSemanticTagOfValue(val.semanticTag()), encBegin, encBegin + 1,
encEnd))
.WillOnce(Return(&mpc));
}
EXPECT_CALL(mpc, error(_, _)) //
.Times(0);
parse(encoded.data(), encoded.data() + encoded.size(), &mpc);
}
TEST(StreamParseTest, Map) {
MockParseClient mpc;
Map val("Hello", 4, Array(-9, "Goodbye"), std::numeric_limits<uint64_t>::max());
ASSERT_NE(val[1].first->asArray(), nullptr);
const Array& interior = *(val[1].first->asArray());
auto encoded = val.encode();
uint8_t* encBegin = encoded.data();
uint8_t* encEnd = encoded.data() + encoded.size();
{
InSequence s;
const uint8_t* pos = encBegin;
EXPECT_CALL(mpc, item(_, pos, pos + 1, pos + 1)).WillOnce(Return(&mpc));
++pos;
EXPECT_CALL(mpc, item(MatchesItem(ByRef(*val[0].first)), pos, pos + 1, pos + 6))
.WillOnce(Return(&mpc));
pos += 6;
EXPECT_CALL(mpc, item(MatchesItem(ByRef(*val[0].second)), pos, pos + 1, pos + 1))
.WillOnce(Return(&mpc));
++pos;
const uint8_t* innerArrayBegin = pos;
EXPECT_CALL(mpc, item(IsArrayOfSize(interior.size()), pos, pos + 1, pos + 1))
.WillOnce(Return(&mpc));
++pos;
EXPECT_CALL(mpc, item(MatchesItem(ByRef(*interior[0])), pos, pos + 1, pos + 1))
.WillOnce(Return(&mpc));
++pos;
EXPECT_CALL(mpc, item(MatchesItem(ByRef(*interior[1])), pos, pos + 1, pos + 8))
.WillOnce(Return(&mpc));
pos += 8;
EXPECT_CALL(mpc, itemEnd(IsArrayOfSize(interior.size()), innerArrayBegin,
innerArrayBegin + 1, pos))
.WillOnce(Return(&mpc));
EXPECT_CALL(mpc, item(MatchesItem(ByRef(*val[1].second)), pos, pos + 9, pos + 9))
.WillOnce(Return(&mpc));
EXPECT_CALL(mpc, itemEnd(IsMapOfSize(val.size()), encBegin, encBegin + 1, encEnd))
.WillOnce(Return(&mpc));
}
EXPECT_CALL(mpc, error(_, _)) //
.Times(0);
parse(encoded.data(), encoded.data() + encoded.size(), &mpc);
}
TEST(StreamParseTest, ViewTstr) {
MockParseClient mpc;
ViewTstr val("Hello");
auto encoded = val.encode();
uint8_t* encBegin = encoded.data();
uint8_t* encEnd = encoded.data() + encoded.size();
EXPECT_CALL(mpc, item(MatchesItem(val), encBegin, encBegin + 1, encEnd)).WillOnce(Return(&mpc));
EXPECT_CALL(mpc, itemEnd(_, _, _, _)).Times(0);
EXPECT_CALL(mpc, error(_, _)).Times(0);
parseWithViews(encoded.data(), encoded.data() + encoded.size(), &mpc);
}
TEST(StreamParseTest, ViewBstr) {
MockParseClient mpc;
ViewBstr val("Hello");
auto encoded = val.encode();
uint8_t* encBegin = encoded.data();
uint8_t* encEnd = encoded.data() + encoded.size();
EXPECT_CALL(mpc, item(MatchesItem(val), encBegin, encBegin + 1, encEnd)).WillOnce(Return(&mpc));
EXPECT_CALL(mpc, itemEnd(_, _, _, _)).Times(0);
EXPECT_CALL(mpc, error(_, _)).Times(0);
parseWithViews(encoded.data(), encoded.data() + encoded.size(), &mpc);
}
TEST(FullParserTest, Uint) {
Uint val(10);
auto [item, pos, message] = parse(val.encode());
EXPECT_THAT(item, MatchesItem(val));
}
TEST(FullParserTest, Null) {
Null val;
auto [item, pos, message] = parse(val.encode());
EXPECT_THAT(item, MatchesItem(val));
}
TEST(FullParserTest, Nint) {
Nint val(-10);
auto [item, pos, message] = parse(val.encode());
EXPECT_THAT(item, MatchesItem(val));
vector<uint8_t> minNint = {0x3B, 0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
std::tie(item, pos, message) = parse(minNint);
EXPECT_THAT(item, NotNull());
EXPECT_EQ(item->asNint()->value(), std::numeric_limits<int64_t>::min());
}
TEST(FullParserTest, NintOutOfRange) {
vector<uint8_t> outOfRangeNint = {0x3B, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
auto [item, pos, message] = parse(outOfRangeNint);
EXPECT_THAT(item, IsNull());
EXPECT_EQ(pos, outOfRangeNint.data());
EXPECT_EQ(message, "NINT values that don't fit in int64_t are not supported.");
}
TEST(FullParserTest, Tstr) {
Tstr val("Hello");
auto [item, pos, message] = parse(val.encode());
EXPECT_THAT(item, MatchesItem(val));
}
TEST(FullParserTest, Bstr) {
Bstr val("\x00\x01\0x02"s);
auto [item, pos, message] = parse(val.encode());
EXPECT_THAT(item, MatchesItem(val));
}
TEST(FullParserTest, Array) {
Array val("hello", -4, 3);
auto encoded = val.encode();
auto [item, pos, message] = parse(encoded);
EXPECT_THAT(item, MatchesItem(ByRef(val)));
EXPECT_EQ(pos, encoded.data() + encoded.size());
EXPECT_EQ("", message);
// We've already checked it all, but walk it just for fun.
ASSERT_NE(nullptr, item->asArray());
const Array& arr = *(item->asArray());
ASSERT_EQ(arr[0]->type(), TSTR);
EXPECT_EQ(arr[0]->asTstr()->value(), "hello");
}
TEST(FullParserTest, Map) {
Map val("hello", -4, 3, Bstr("hi"));
auto [item, pos, message] = parse(val.encode());
EXPECT_THAT(item, MatchesItem(ByRef(val)));
}
TEST(FullParserTest, SemanticTag) {
SemanticTag val(99, "Salem");
auto [item, pos, message] = parse(val.encode());
EXPECT_THAT(item, MatchesItem(ByRef(val)));
}
TEST(FullParserTest, NestedSemanticTag) {
SemanticTag val(10, SemanticTag(99, "Salem"));
auto [item, pos, message] = parse(val.encode());
EXPECT_THAT(item, MatchesItem(ByRef(val)));
}
TEST(FullParserTest, Complex) {
vector<uint8_t> vec = {0x01, 0x02, 0x08, 0x03};
Map val("Outer1",
Array(Map("Inner1", 99, //
"Inner2", vec),
"foo"),
"Outer2", 10);
std::unique_ptr<Item> item;
const uint8_t* pos;
std::string message;
std::tie(item, pos, message) = parse(val.encode());
EXPECT_THAT(item, MatchesItem(ByRef(val)));
}
TEST(FullParserTest, IncompleteUint) {
Uint val(1000);
auto encoding = val.encode();
auto [item, pos, message] = parse(encoding.data(), encoding.size() - 1);
EXPECT_EQ(nullptr, item.get());
EXPECT_EQ(encoding.data(), pos);
EXPECT_EQ("Need 2 byte(s) for length field, have 1.", message);
}
TEST(FullParserTest, IncompleteString) {
Tstr val("hello");
auto encoding = val.encode();
auto [item, pos, message] = parse(encoding.data(), encoding.size() - 2);
EXPECT_EQ(nullptr, item.get());
EXPECT_EQ(encoding.data(), pos);
EXPECT_EQ("Need 5 byte(s) for text string, have 3.", message);
}
TEST(FullParserTest, ArrayWithInsufficientEntries) {
Array val(1, 2, 3, 4);
auto encoding = val.encode();
auto [item, pos, message] = parse(encoding.data(), encoding.size() - 1);
EXPECT_EQ(nullptr, item.get());
EXPECT_EQ(encoding.data(), pos);
EXPECT_EQ("Not enough entries for array.", message);
}
TEST(FullParserTest, ArrayWithTruncatedEntry) {
Array val(1, 2, 3, 400000);
auto encoding = val.encode();
auto [item, pos, message] = parse(encoding.data(), encoding.size() - 1);
EXPECT_EQ(nullptr, item.get());
EXPECT_EQ(encoding.data() + encoding.size() - 5, pos);
EXPECT_EQ("Need 4 byte(s) for length field, have 3.", message);
}
TEST(FullParserTest, MapWithTruncatedEntry) {
Map val(1, 2, 300000, 4);
auto encoding = val.encode();
auto [item, pos, message] = parse(encoding.data(), encoding.size() - 2);
EXPECT_EQ(nullptr, item.get());
EXPECT_EQ(encoding.data() + 3, pos);
EXPECT_EQ("Need 4 byte(s) for length field, have 3.", message);
}
TEST(FullParserTest, ViewTstr) {
ViewTstr val("Hello");
auto enc = val.encode();
auto [item, pos, message] = parseWithViews(enc.data(), enc.size());
EXPECT_THAT(item, MatchesItem(val));
}
TEST(FullParserTest, ViewBstr) {
ViewBstr val("\x00\x01\x02"s);
auto enc = val.encode();
auto [item, pos, message] = parseWithViews(enc.data(), enc.size());
EXPECT_THAT(item, MatchesItem(val));
}
TEST(FullParserTest, ReservedAdditionalInformation) {
vector<uint8_t> reservedVal = {0x1D};
auto [item, pos, message] = parse(reservedVal);
EXPECT_THAT(item, IsNull());
EXPECT_EQ(pos, reservedVal.data());
EXPECT_EQ("Reserved additional information value or unsupported indefinite length item.",
message);
}
TEST(FullParserTest, IndefiniteArray) {
vector<uint8_t> indefiniteArray = {0x7F};
auto [item, pos, message] = parse(indefiniteArray);
EXPECT_THAT(item, IsNull());
EXPECT_EQ(pos, indefiniteArray.data());
EXPECT_EQ("Reserved additional information value or unsupported indefinite length item.",
message);
}
TEST(FullParserTest, UnassignedSimpleValue) {
vector<uint8_t> unassignedSimpleValue = {0xE5};
auto [item, pos, message] = parse(unassignedSimpleValue);
EXPECT_THAT(item, IsNull());
EXPECT_EQ(pos, unassignedSimpleValue.data());
EXPECT_EQ("Unsupported floating-point or simple value.", message);
}
TEST(FullParserTest, FloatingPointValue) {
vector<uint8_t> floatingPointValue = {0xFA, 0x12, 0x75, 0x34, 0x37};
auto [item, pos, message] = parse(floatingPointValue);
EXPECT_THAT(item, IsNull());
EXPECT_EQ(pos, floatingPointValue.data());
EXPECT_EQ("Unsupported floating-point or simple value.", message);
}
TEST(MapGetValueByKeyTest, Map) {
Array compoundItem(1, 2, 3, 4, 5, Map(4, 5, "a", "b"));
auto clone = compoundItem.clone();
Map item(1, 2, "key", "value", "item", std::move(compoundItem));
auto& value1 = item.get(1);
EXPECT_NE(value1.get(), nullptr);
EXPECT_EQ(*value1, Uint(2));
auto& value2 = item.get("key");
EXPECT_NE(value2.get(), nullptr);
EXPECT_EQ(*value2, Tstr("value"));
auto& value3 = item.get("item");
EXPECT_NE(value3.get(), nullptr);
EXPECT_EQ(*value3, *clone);
auto& value4 = item.get("wrong");
EXPECT_EQ(value4.get(), nullptr);
}
TEST(EmptyBstrTest, Bstr) {
Bstr bstr(std::vector<uint8_t>{});
auto encoding = bstr.encode();
auto [obj, pos, message] = parse(encoding.data(), encoding.size());
EXPECT_NE(obj.get(), nullptr);
EXPECT_EQ(*obj, bstr);
}
TEST(ArrayIterationTest, EmptyArray) {
Array array;
EXPECT_EQ(array.begin(), array.end());
const Array& const_array = array;
EXPECT_EQ(const_array.begin(), const_array.end());
}
TEST(ArrayIterationTest, ForwardTest) {
Array array(1, 2, 3, "hello", -4);
auto iter = array.begin();
ASSERT_NE(iter, array.end());
EXPECT_EQ(**iter, Uint(1));
ASSERT_NE(++iter, array.end());
EXPECT_EQ(**iter++, Uint(2));
ASSERT_NE(iter, array.end());
EXPECT_EQ(**iter, Uint(3));
ASSERT_NE(++iter, array.end());
EXPECT_EQ(**iter++, Tstr("hello"));
ASSERT_NE(iter, array.end());
EXPECT_EQ(**iter, Nint(-4));
EXPECT_EQ(++iter, array.end());
}
TEST(ArrayIterationTest, BidirectionalTest) {
Array array(1, 2, 3, "hello", -4);
auto iter = array.begin();
ASSERT_NE(iter, array.end());
EXPECT_EQ(**iter, Uint(1));
ASSERT_NE(++iter, array.end());
EXPECT_EQ(**iter, Uint(2));
ASSERT_NE(--iter, array.end());
ASSERT_EQ(iter, array.begin());
EXPECT_EQ(**iter, Uint(1));
ASSERT_NE(++iter, array.end());
EXPECT_EQ(**iter, Uint(2));
ASSERT_NE(++iter, array.end());
EXPECT_EQ(**iter--, Uint(3));
ASSERT_NE(++iter, array.end());
EXPECT_EQ(**iter, Uint(3));
ASSERT_NE(++iter, array.end());
EXPECT_EQ(**iter, Tstr("hello"));
ASSERT_NE(++iter, array.end());
EXPECT_EQ(**iter, Nint(-4));
EXPECT_EQ(++iter, array.end());
}
TEST(MapIterationTest, EmptyMap) {
Map map;
EXPECT_EQ(map.begin(), map.end());
}
TEST(MapIterationTest, ForwardTest) {
Map map(1, 2, 3, "hello", -4, 5);
auto iter = map.begin();
ASSERT_NE(iter, map.end());
EXPECT_EQ(*iter->first, Uint(1));
EXPECT_EQ(*iter->second, Uint(2));
ASSERT_NE(++iter, map.end());
EXPECT_EQ(*iter->first, Uint(3));
EXPECT_EQ(*(iter++)->second, Tstr("hello"));
ASSERT_NE(iter, map.end());
EXPECT_EQ(*iter->first, Nint(-4));
EXPECT_EQ(*(iter++)->second, Uint(5));
EXPECT_EQ(iter, map.end());
}
TEST(MapIterationTest, BidirectionalTest) {
Map map(1, 2, 3, "hello", -4, 5);
auto iter = map.begin();
ASSERT_NE(iter, map.end());
EXPECT_EQ(*iter->first, Uint(1));
EXPECT_EQ(*iter->second, Uint(2));
ASSERT_NE(++iter, map.end());
EXPECT_EQ(*iter->first, Uint(3));
EXPECT_EQ(*(iter--)->second, Tstr("hello"));
ASSERT_NE(iter, map.end());
EXPECT_EQ(*iter->first, Uint(1));
EXPECT_EQ(*(iter++)->second, Uint(2));
ASSERT_NE(iter, map.end());
EXPECT_EQ(*iter->first, Uint(3));
EXPECT_EQ(*iter->second, Tstr("hello"));
ASSERT_NE(++iter, map.end());
EXPECT_EQ(*iter->first, Nint(-4));
EXPECT_EQ(*(iter++)->second, Uint(5));
EXPECT_EQ(iter, map.end());
}
int main(int argc, char** argv) {
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}