You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

799 lines
31 KiB

/******************************************************************************
*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*****************************************************************************
* Originally developed and contributed by Ittiam Systems Pvt. Ltd, Bangalore
*/
/**
******************************************************************************
* @file hme_search_algo.c
*
* @brief
* Contains various search algorithms to be used by coarse/refinement layers
*
* @author
* Ittiam
*
*
* List of Functions
* hme_compute_grid_results_step_gt_1()
* hme_compute_grid_results_step_1()
* hme_pred_search_square_stepn()
*
******************************************************************************
*/
/*****************************************************************************/
/* File Includes */
/*****************************************************************************/
/* System include files */
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <assert.h>
#include <stdarg.h>
#include <math.h>
#include <limits.h>
/* User include files */
#include "ihevc_typedefs.h"
#include "itt_video_api.h"
#include "ihevce_api.h"
#include "rc_cntrl_param.h"
#include "rc_frame_info_collector.h"
#include "rc_look_ahead_params.h"
#include "ihevc_defs.h"
#include "ihevc_structs.h"
#include "ihevc_platform_macros.h"
#include "ihevc_deblk.h"
#include "ihevc_itrans_recon.h"
#include "ihevc_chroma_itrans_recon.h"
#include "ihevc_chroma_intra_pred.h"
#include "ihevc_intra_pred.h"
#include "ihevc_inter_pred.h"
#include "ihevc_mem_fns.h"
#include "ihevc_padding.h"
#include "ihevc_weighted_pred.h"
#include "ihevc_sao.h"
#include "ihevc_resi_trans.h"
#include "ihevc_quant_iquant_ssd.h"
#include "ihevc_cabac_tables.h"
#include "ihevce_defs.h"
#include "ihevce_lap_enc_structs.h"
#include "ihevce_multi_thrd_structs.h"
#include "ihevce_multi_thrd_funcs.h"
#include "ihevce_me_common_defs.h"
#include "ihevce_had_satd.h"
#include "ihevce_error_codes.h"
#include "ihevce_bitstream.h"
#include "ihevce_cabac.h"
#include "ihevce_rdoq_macros.h"
#include "ihevce_function_selector.h"
#include "ihevce_enc_structs.h"
#include "ihevce_entropy_structs.h"
#include "ihevce_cmn_utils_instr_set_router.h"
#include "ihevce_enc_loop_structs.h"
#include "ihevce_bs_compute_ctb.h"
#include "ihevce_global_tables.h"
#include "ihevce_dep_mngr_interface.h"
#include "hme_datatype.h"
#include "hme_interface.h"
#include "hme_common_defs.h"
#include "hme_defs.h"
#include "ihevce_me_instr_set_router.h"
#include "hme_globals.h"
#include "hme_utils.h"
#include "hme_coarse.h"
#include "hme_fullpel.h"
#include "hme_subpel.h"
#include "hme_refine.h"
#include "hme_err_compute.h"
#include "hme_common_utils.h"
#include "hme_search_algo.h"
#include "ihevce_stasino_helpers.h"
#include "ihevce_common_utils.h"
/*****************************************************************************/
/* Function Definitions */
/*****************************************************************************/
/**
********************************************************************************
* @fn void hme_compute_grid_results_step_1(err_prms_t *ps_err_prms,
result_upd_prms_t *ps_result_prms,
BLK_SIZE_T e_blk_size)
*
* @brief Updates results for a grid of step = 1
*
* @param[in] ps_err_prms: Various parameters to this function
*
* @param[in] ps_result_prms : Parameters pertaining to result updation
*
* @param[out] e_blk_size: Block size of the blk being searched for
*
* @return none
********************************************************************************
*/
void hme_compute_grid_results(
err_prms_t *ps_err_prms, result_upd_prms_t *ps_result_prms, BLK_SIZE_T e_blk_size)
{
PF_RESULT_FXN_T pf_hme_result_fxn;
PF_SAD_FXN_T pf_sad_fxn;
S32 i4_num_results;
S32 part_id;
part_id = ps_result_prms->pi4_valid_part_ids[0];
i4_num_results = (S32)ps_result_prms->ps_search_results->u1_num_results_per_part;
pf_sad_fxn = hme_get_sad_fxn(e_blk_size, ps_err_prms->i4_grid_mask, ps_err_prms->i4_part_mask);
pf_hme_result_fxn =
hme_get_result_fxn(ps_err_prms->i4_grid_mask, ps_err_prms->i4_part_mask, i4_num_results);
pf_sad_fxn(ps_err_prms);
pf_hme_result_fxn(ps_result_prms);
}
/**
********************************************************************************
* @fn void hme_pred_search_square_stepn(hme_search_prms_t *ps_search_prms,
* layer_ctxt_t *ps_layer_ctxt)
*
* @brief Implements predictive search, with square grid refinement. In this
* case, we start with a bigger step size, like 4, refining upto a
* variable number of pts, till we hit end of search range or hit a
* minima. Then we refine using smaller steps. The bigger step size
* like 4 or 2, do not use optimized SAD functions, they evaluate
* SAD for each individual pt.
*
* @param[in,out] ps_search_prms: All the params to this function
*
* @param[in] ps_layer_ctxt: Context for the layer
*
* @return None
********************************************************************************
*/
void hme_pred_search_square_stepn(
hme_search_prms_t *ps_search_prms,
layer_ctxt_t *ps_layer_ctxt,
wgt_pred_ctxt_t *ps_wt_inp_prms,
ME_QUALITY_PRESETS_T e_me_quality_preset,
ihevce_me_optimised_function_list_t *ps_me_optimised_function_list
)
{
/* Stores the SAD for all parts at each pt in the grid */
S32 ai4_sad_grid[9][TOT_NUM_PARTS];
S32 ai4_valid_part_ids[TOT_NUM_PARTS + 1];
/* Atributes of input candidates */
search_candt_t *ps_search_candts;
search_node_t s_search_node;
/* Number of candidates to search */
S32 i4_num_candts, max_num_iters, i4_num_results;
/* Input and reference attributes */
S32 i4_inp_stride, i4_ref_stride, i4_ref_offset;
/* The reference is actually an array of ptrs since there are several */
/* reference id. So an array gets passed form calling function */
U08 **ppu1_ref;
/* Holds the search results at the end of this fxn */
search_results_t *ps_search_results;
/* These control number of parts and number of pts in grid to search */
S32 i4_part_mask, i4_grid_mask;
/* Blk width, blk height and blk size are derived from input params */
BLK_SIZE_T e_blk_size;
CU_SIZE_T e_cu_size;
S32 i4_blk_wd, i4_blk_ht, i4_step, i4_candt, i4_iter;
S32 i4_inp_off;
S32 i4_min_id;
/* Points to the range limits for mv */
range_prms_t *ps_range_prms;
/*************************************************************************/
/* These functions pointers for calculating Err and the result update */
/* Each carries its own parameters structure, which is generated on the */
/* fly in this function */
/*************************************************************************/
err_prms_t s_err_prms;
result_upd_prms_t s_result_prms;
max_num_iters = ps_search_prms->i4_max_iters;
/* Using the member 0 to store for all ref. idx., see in coarsest */
ps_range_prms = ps_search_prms->aps_mv_range[0];
i4_inp_stride = ps_search_prms->i4_inp_stride;
/* Move to the location of the search blk in inp buffer */
i4_inp_off = ps_search_prms->i4_cu_x_off;
i4_inp_off += (ps_search_prms->i4_cu_y_off * i4_inp_stride);
ps_search_results = ps_search_prms->ps_search_results;
/*************************************************************************/
/* Depending on flag i4_use_rec, we use either input of previously */
/* encoded pictures or we use recon of previously encoded pictures. */
/*************************************************************************/
if(ps_search_prms->i4_use_rec == 1)
{
i4_ref_stride = ps_layer_ctxt->i4_rec_stride;
ppu1_ref = ps_layer_ctxt->ppu1_list_rec_fxfy;
}
else
{
i4_ref_stride = ps_layer_ctxt->i4_inp_stride;
ppu1_ref = ps_layer_ctxt->ppu1_list_inp;
}
i4_ref_offset = (i4_ref_stride * ps_search_prms->i4_y_off) + ps_search_prms->i4_x_off;
/*************************************************************************/
/* Obtain the blk size of the search blk. Assumed here that the search */
/* is done on a CU size, rather than any arbitrary blk size. */
/*************************************************************************/
ps_search_results = ps_search_prms->ps_search_results;
e_blk_size = ps_search_prms->e_blk_size;
i4_blk_wd = (S32)gau1_blk_size_to_wd[e_blk_size];
i4_blk_ht = (S32)gau1_blk_size_to_ht[e_blk_size];
e_cu_size = ps_search_results->e_cu_size;
i4_num_results = (S32)ps_search_results->u1_num_results_per_part;
ps_search_candts = ps_search_prms->ps_search_candts;
i4_num_candts = ps_search_prms->i4_num_init_candts;
i4_part_mask = ps_search_prms->i4_part_mask;
/*************************************************************************/
/* This array stores the ids of the partitions whose */
/* SADs are updated. Since the partitions whose SADs are updated may not */
/* be in contiguous order, we supply another level of indirection. */
/*************************************************************************/
hme_create_valid_part_ids(i4_part_mask, ai4_valid_part_ids);
/* Update the parameters used to pass to SAD */
/* input ptr, strides, SAD Grid, part mask, blk width and ht */
/* The above are fixed ptrs, only pu1_ref and grid mask are */
/* varying params which are updated just before calling fxn */
s_err_prms.i4_inp_stride = i4_inp_stride;
s_err_prms.i4_ref_stride = i4_ref_stride;
s_err_prms.i4_part_mask = i4_part_mask;
s_err_prms.pi4_sad_grid = &ai4_sad_grid[0][0];
s_err_prms.i4_blk_wd = i4_blk_wd;
s_err_prms.i4_blk_ht = i4_blk_ht;
s_err_prms.pi4_valid_part_ids = ai4_valid_part_ids;
s_result_prms.pf_mv_cost_compute = ps_search_prms->pf_mv_cost_compute;
s_result_prms.ps_search_results = ps_search_results;
s_result_prms.pi4_valid_part_ids = ai4_valid_part_ids;
s_result_prms.i1_ref_idx = ps_search_prms->i1_ref_idx;
s_result_prms.i4_part_mask = ps_search_prms->i4_part_mask;
s_result_prms.ps_search_node_base = &s_search_node;
s_result_prms.pi4_sad_grid = &ai4_sad_grid[0][0];
/* Run through each of the candts in a loop */
for(i4_candt = 0; i4_candt < i4_num_candts; i4_candt++)
{
S32 i4_num_refine;
i4_step = ps_search_prms->i4_start_step;
s_search_node = *(ps_search_candts->ps_search_node);
/* initialize minimum cost for this candidate. As we search around */
/* this candidate, this is used to check early exit, when in any */
/* given iteration, the center pt of the grid is lowest value */
s_result_prms.i4_min_cost = MAX_32BIT_VAL;
/* If we need to do refinements, then we need to evaluate */
/* neighbouring pts. Before doing so, we have to do */
/* basic range checks against max allowed mvs */
i4_num_refine = ps_search_candts->u1_num_steps_refine;
CLIP_MV_WITHIN_RANGE(
s_search_node.s_mv.i2_mvx, s_search_node.s_mv.i2_mvy, ps_range_prms, 0, 0, 0);
/* The first time, we search all 8 pts around init candt plus the init candt */
i4_grid_mask = 0x1ff;
s_err_prms.pu1_inp = ps_wt_inp_prms->apu1_wt_inp[s_search_node.i1_ref_idx] + i4_inp_off;
for(i4_iter = 0; i4_iter < max_num_iters; i4_iter++)
{
i4_grid_mask &= hme_clamp_grid_by_mvrange(&s_search_node, i4_step, ps_range_prms);
s_err_prms.i4_grid_mask = i4_grid_mask;
s_err_prms.pu1_ref = ppu1_ref[s_search_node.i1_ref_idx] + i4_ref_offset;
s_err_prms.pu1_ref +=
(s_search_node.s_mv.i2_mvx +
(s_search_node.s_mv.i2_mvy * s_err_prms.i4_ref_stride));
s_result_prms.i4_step = i4_step;
s_err_prms.i4_step = i4_step;
s_result_prms.i4_grid_mask = i4_grid_mask;
/* For Top,TopLeft and Left cand., get only center point SAD */
/* and do early exit */
if(0 == i4_num_refine)
{
s_err_prms.i4_grid_mask = 0x1;
s_result_prms.i4_grid_mask = 0x1;
/* sad pt fun. populates sad to 0th location, whereas update */
/* fun. takes it based on part. id */
s_err_prms.pi4_sad_grid =
s_result_prms.pi4_sad_grid + (1 * s_result_prms.pi4_valid_part_ids[0]);
ps_me_optimised_function_list->pf_evalsad_pt_npu_mxn_8bit(&s_err_prms);
s_err_prms.pi4_sad_grid = s_result_prms.pi4_sad_grid;
if(ME_XTREME_SPEED_25 == e_me_quality_preset)
hme_update_results_grid_pu_bestn_xtreme_speed(&s_result_prms);
else
hme_update_results_grid_pu_bestn(&s_result_prms);
i4_min_id = (S32)PT_C; /* Center Point */
i4_step = 0; /* No further refinment */
s_result_prms.i4_step = i4_step;
s_err_prms.i4_step = i4_step;
}
else
{
if(ME_XTREME_SPEED_25 == e_me_quality_preset)
{
err_prms_t *ps_err_prms = &s_err_prms;
ASSERT(ps_err_prms->i4_grid_mask != 1);
ASSERT((ps_err_prms->i4_part_mask == 4) || (ps_err_prms->i4_part_mask == 16));
/*****************************************************************/
/* In this case, there are no partial updates. The blk can be */
/* of any type and need not be a CU. The only thing that matters */
/* here is the width of the blk, 4/8/(>=16) */
/*****************************************************************/
ps_me_optimised_function_list->pf_evalsad_grid_npu_MxN(&s_err_prms);
hme_update_results_grid_pu_bestn_xtreme_speed(&s_result_prms);
}
else
{
/* Obtain SAD for all 9 pts in grid*/
hme_compute_grid_results(&s_err_prms, &s_result_prms, e_blk_size);
}
/* Early exit in case of centre being local minima */
i4_min_id = s_result_prms.i4_min_id;
}
i4_grid_mask = gai4_opt_grid_mask[i4_min_id];
s_search_node.s_mv.i2_mvx += (i4_step * gai1_grid_id_to_x[i4_min_id]);
s_search_node.s_mv.i2_mvy += (i4_step * gai1_grid_id_to_y[i4_min_id]);
if(i4_min_id == (S32)PT_C)
break;
}
/* Next keep reducing stepsize by factor of 2 */
i4_step >>= 1;
while(i4_step)
{
i4_grid_mask = 0x1fe &
hme_clamp_grid_by_mvrange(&s_search_node, i4_step, ps_range_prms);
//i4_grid_mask &= 0x1fe;
s_err_prms.i4_grid_mask = i4_grid_mask;
s_result_prms.i4_grid_mask = i4_grid_mask;
s_err_prms.i4_step = i4_step;
s_result_prms.i4_step = i4_step;
s_err_prms.pu1_ref = ppu1_ref[s_search_node.i1_ref_idx] + i4_ref_offset;
s_err_prms.pu1_ref +=
(s_search_node.s_mv.i2_mvx +
(s_search_node.s_mv.i2_mvy * s_err_prms.i4_ref_stride));
if(ME_XTREME_SPEED_25 == e_me_quality_preset)
{
err_prms_t *ps_err_prms = &s_err_prms;
ASSERT(ps_err_prms->i4_grid_mask != 1);
ASSERT((ps_err_prms->i4_part_mask == 4) || (ps_err_prms->i4_part_mask == 16));
/*****************************************************************/
/* In this case, there are no partial updates. The blk can be */
/* of any type and need not be a CU. The only thing that matters */
/* here is the width of the blk, 4/8/(>=16) */
/*****************************************************************/
ps_me_optimised_function_list->pf_evalsad_grid_npu_MxN(&s_err_prms);
hme_update_results_grid_pu_bestn_xtreme_speed(&s_result_prms);
}
else
{
hme_compute_grid_results(&s_err_prms, &s_result_prms, e_blk_size);
}
i4_min_id = s_result_prms.i4_min_id;
s_search_node.s_mv.i2_mvx += (i4_step * gai1_grid_id_to_x[i4_min_id]);
s_search_node.s_mv.i2_mvy += (i4_step * gai1_grid_id_to_y[i4_min_id]);
i4_step >>= 1;
}
ps_search_candts++;
}
}
/**
********************************************************************************
* @fn hme_pred_search_square_step1(hme_search_prms_t *ps_search_prms,
* layer_ctxt_t *ps_layer_ctxt)
*
* @brief Implements predictive search with square grid refinement. In this
* case, the square grid is of step 1 always. since this is considered
* to be more of a refinement search
*
* @param[in,out] ps_search_prms: All the params to this function
*
* @param[in] ps_layer_ctxt: All info about this layer
*
* @return None
********************************************************************************
*/
/**
********************************************************************************
* @fn hme_pred_search(hme_search_prms_t *ps_search_prms,
* layer_ctxt_t *ps_layer_ctxt)
*
* @brief Implements predictive search after removing duplicate candidates
* from initial list. Each square grid (of step 1) is expanded
* to nine search pts before the dedeuplication process. one point
* cost is then evaluated for each unique node after the deduplication
* process
*
* @param[in,out] ps_search_prms: All the params to this function
*
* @param[in] ps_layer_ctxt: All info about this layer
*
* @return None
********************************************************************************
*/
void hme_pred_search(
hme_search_prms_t *ps_search_prms,
layer_ctxt_t *ps_layer_ctxt,
wgt_pred_ctxt_t *ps_wt_inp_prms,
S08 i1_grid_flag,
ihevce_me_optimised_function_list_t *ps_me_optimised_function_list
)
{
/* Stores the SAD for all parts at each pt in the grid */
S32 ai4_sad_grid[9 * TOT_NUM_PARTS];
/* Atributes of input candidates */
search_node_t *ps_search_node;
search_results_t *ps_search_results;
S32 i4_num_nodes, i4_candt;
/* Input and reference attributes */
S32 i4_inp_stride, i4_ref_stride, i4_ref_offset;
/* The reference is actually an array of ptrs since there are several */
/* reference id. So an array gets passed form calling function */
U08 **ppu1_ref;
/* These control number of parts and number of pts in grid to search */
S32 i4_part_mask, i4_grid_mask;
S32 shift_for_cu_size;
/* Blk width, blk height and blk size are derived from input params */
BLK_SIZE_T e_blk_size;
CU_SIZE_T e_cu_size;
S32 i4_blk_wd, i4_blk_ht;
/*************************************************************************/
/* These functions pointers for calculating Err and the result update */
/* Each carries its own parameters structure, which is generated on the */
/* fly in this function */
/*************************************************************************/
PF_RESULT_FXN_T pf_hme_result_fxn;
PF_SAD_FXN_T pf_sad_fxn;
PF_CALC_SAD_AND_RESULT pf_calc_sad_and_result;
err_prms_t s_err_prms;
result_upd_prms_t s_result_prms;
S32 i4_num_results;
S32 i4_inp_off;
fullpel_refine_ctxt_t *ps_fullpel_refine_ctxt = ps_search_prms->ps_fullpel_refine_ctxt;
i4_inp_stride = ps_search_prms->i4_inp_stride;
/* Move to the location of the search blk in inp buffer */
i4_inp_off = ps_search_prms->i4_cu_x_off;
i4_inp_off += ps_search_prms->i4_cu_y_off * i4_inp_stride;
/*************************************************************************/
/* Depending on flag i4_use_rec, we use either input of previously */
/* encoded pictures or we use recon of previously encoded pictures. */
/*************************************************************************/
if(ps_search_prms->i4_use_rec == 1)
{
i4_ref_stride = ps_layer_ctxt->i4_rec_stride;
ppu1_ref = ps_layer_ctxt->ppu1_list_rec_fxfy;
}
else
{
i4_ref_stride = ps_layer_ctxt->i4_rec_stride;
ppu1_ref = ps_layer_ctxt->ppu1_list_inp;
}
i4_ref_offset = (i4_ref_stride * ps_search_prms->i4_y_off) + ps_search_prms->i4_x_off;
/* Obtain the blk size of the search blk. Assumed here that the search */
/* is done on a CU size, rather than any arbitrary blk size. */
ps_search_results = ps_search_prms->ps_search_results;
e_blk_size = ps_search_prms->e_blk_size;
i4_blk_wd = gau1_blk_size_to_wd[e_blk_size];
i4_blk_ht = gau1_blk_size_to_ht[e_blk_size];
e_cu_size = ps_search_results->e_cu_size;
/* Assuming cu size of 8x8 as enum 0, the other will be 1, 2, 3 */
/* This will also set the shift w.r.t. the base cu size of 8x8 */
shift_for_cu_size = e_cu_size;
ps_search_node = ps_search_prms->ps_search_nodes;
i4_num_nodes = ps_search_prms->i4_num_search_nodes;
i4_part_mask = ps_search_prms->i4_part_mask;
/* Update the parameters used to pass to SAD */
/* input ptr, strides, SAD Grid, part mask, blk width and ht */
/* The above are fixed ptrs, only pu1_ref and grid mask are */
/* varying params which are updated just before calling fxn */
s_err_prms.i4_inp_stride = i4_inp_stride;
s_err_prms.i4_ref_stride = i4_ref_stride;
s_err_prms.i4_part_mask = i4_part_mask;
s_err_prms.pi4_sad_grid = &ai4_sad_grid[0];
s_err_prms.i4_blk_wd = i4_blk_wd;
s_err_prms.i4_blk_ht = i4_blk_ht;
s_err_prms.i4_step = 1;
s_err_prms.i4_num_partitions = ps_fullpel_refine_ctxt->i4_num_valid_parts;
s_result_prms.pf_mv_cost_compute = ps_search_prms->pf_mv_cost_compute;
s_result_prms.ps_search_results = ps_search_results;
s_result_prms.i1_ref_idx = (S08)ps_search_prms->i1_ref_idx;
s_result_prms.pi4_sad_grid = ai4_sad_grid;
s_result_prms.i4_part_mask = i4_part_mask;
s_result_prms.i4_step = 1;
pf_calc_sad_and_result = hme_get_calc_sad_and_result_fxn(
i1_grid_flag,
ps_search_prms->u1_is_cu_noisy,
i4_part_mask,
ps_fullpel_refine_ctxt->i4_num_valid_parts,
ps_search_results->u1_num_results_per_part);
pf_calc_sad_and_result(
ps_search_prms, ps_wt_inp_prms, &s_err_prms, &s_result_prms, ppu1_ref, i4_ref_stride);
}
static __inline FT_CALC_SAD_AND_RESULT *hme_get_calc_sad_and_result_explicit_fxn(
ihevce_me_optimised_function_list_t *ps_me_optimised_function_list,
S32 i4_part_mask,
S32 i4_num_partitions,
S08 i1_grid_enable,
U08 u1_num_results_per_part)
{
FT_CALC_SAD_AND_RESULT *pf_func = NULL;
if(2 == u1_num_results_per_part)
{
if(i4_part_mask == 1)
{
ASSERT(i4_num_partitions == 1);
if(i1_grid_enable == 0)
{
pf_func =
ps_me_optimised_function_list->pf_calc_pt_sad_and_2_best_results_explicit_8x8;
}
else
{
pf_func = ps_me_optimised_function_list
->pf_calc_pt_sad_and_2_best_results_explicit_8x8_for_grid;
}
}
else
{
ASSERT(i4_num_partitions == 5);
pf_func =
ps_me_optimised_function_list->pf_calc_pt_sad_and_2_best_results_explicit_8x8_4x4;
}
}
else if(1 == u1_num_results_per_part)
{
if(i4_part_mask == 1)
{
ASSERT(i4_num_partitions == 1);
if(i1_grid_enable == 0)
{
pf_func =
ps_me_optimised_function_list->pf_calc_pt_sad_and_1_best_result_explicit_8x8;
}
else
{
pf_func = ps_me_optimised_function_list
->pf_calc_pt_sad_and_1_best_result_explicit_8x8_for_grid;
}
}
else
{
ASSERT(i4_num_partitions == 5);
pf_func =
ps_me_optimised_function_list->pf_calc_pt_sad_and_1_best_result_explicit_8x8_4x4;
}
}
return pf_func;
}
/**
********************************************************************************
* @fn void hme_pred_search_no_encode(hme_search_prms_t *ps_search_prms,
* layer_ctxt_t *ps_layer_ctxt,
* wgt_pred_ctxt_t *ps_wt_inp_prms,
* S32 *pi4_valid_part_ids,
* S32 disable_refine,
* ME_QUALITY_PRESETS_T e_me_quality_preset)
*
* @brief Implements predictive search after removing duplicate candidates
* from initial list. Each square grid (of step 1) is expanded
* to nine search pts before the dedeuplication process. one point
* cost is then evaluated for each unique node after the deduplication
* process
*
* @param[in,out] ps_search_prms: All the params to this function
*
* @param[in] ps_layer_ctxt: All info about this layer
*
* @return None
********************************************************************************
*/
void hme_pred_search_no_encode(
hme_search_prms_t *ps_search_prms,
layer_ctxt_t *ps_layer_ctxt,
wgt_pred_ctxt_t *ps_wt_inp_prms,
S32 *pi4_valid_part_ids,
S32 disable_refine,
ME_QUALITY_PRESETS_T e_me_quality_preset,
S08 i1_grid_enable,
ihevce_me_optimised_function_list_t *ps_me_optimised_function_list)
{
/* Stores the SAD for all parts at each pt in the grid */
S32 ai4_sad_grid[9 * TOT_NUM_PARTS];
/* Atributes of input candidates */
search_node_t *ps_search_node;
search_results_t *ps_search_results;
S32 i4_num_nodes;
/* Input and reference attributes */
S32 i4_inp_stride, i4_ref_stride, i4_ref_offset;
/* The reference is actually an array of ptrs since there are several */
/* reference id. So an array gets passed form calling function */
U08 **ppu1_ref;
/* These control number of parts and number of pts in grid to search */
S32 i4_part_mask; // i4_grid_mask;
S32 shift_for_cu_size;
/* Blk width, blk height and blk size are derived from input params */
BLK_SIZE_T e_blk_size;
CU_SIZE_T e_cu_size;
S32 i4_blk_wd, i4_blk_ht;
/*************************************************************************/
/* These functions pointers for calculating Err and the result update */
/* Each carries its own parameters structure, which is generated on the */
/* fly in this function */
/*************************************************************************/
PF_CALC_SAD_AND_RESULT pf_calc_sad_and_result;
err_prms_t s_err_prms;
result_upd_prms_t s_result_prms;
S32 i4_num_results;
S32 i4_search_idx = ps_search_prms->i1_ref_idx;
S32 i4_inp_off;
S32 i4_num_partitions;
i4_inp_stride = ps_search_prms->i4_inp_stride;
/* Move to the location of the search blk in inp buffer */
i4_inp_off = ps_search_prms->i4_cu_x_off;
i4_inp_off += ps_search_prms->i4_cu_y_off * i4_inp_stride;
/*************************************************************************/
/* Depending on flag i4_use_rec, we use either input of previously */
/* encoded pictures or we use recon of previously encoded pictures. */
/*************************************************************************/
if(ps_search_prms->i4_use_rec == 1)
{
i4_ref_stride = ps_layer_ctxt->i4_rec_stride;
ppu1_ref = ps_layer_ctxt->ppu1_list_rec_fxfy;
}
else
{
i4_ref_stride = ps_layer_ctxt->i4_inp_stride;
ppu1_ref = ps_layer_ctxt->ppu1_list_inp;
}
i4_ref_offset = (i4_ref_stride * ps_search_prms->i4_y_off) + ps_search_prms->i4_x_off;
/* Obtain the blk size of the search blk. Assumed here that the search */
/* is done on a CU size, rather than any arbitrary blk size. */
ps_search_results = ps_search_prms->ps_search_results;
e_blk_size = ps_search_prms->e_blk_size;
i4_blk_wd = gau1_blk_size_to_wd[e_blk_size];
i4_blk_ht = gau1_blk_size_to_ht[e_blk_size];
e_cu_size = ps_search_results->e_cu_size;
/* Assuming cu size of 8x8 as enum 0, the other will be 1, 2, 3 */
/* This will also set the shift w.r.t. the base cu size of 8x8 */
shift_for_cu_size = e_cu_size;
ps_search_node = ps_search_prms->ps_search_nodes;
i4_num_nodes = ps_search_prms->i4_num_search_nodes;
i4_part_mask = ps_search_prms->i4_part_mask;
/*************************************************************************/
/* This array stores the ids of the partitions whose */
/* SADs are updated. Since the partitions whose SADs are updated may not */
/* be in contiguous order, we supply another level of indirection. */
/*************************************************************************/
i4_num_partitions = hme_create_valid_part_ids(i4_part_mask, pi4_valid_part_ids);
/* Update the parameters used to pass to SAD */
/* input ptr, strides, SAD Grid, part mask, blk width and ht */
/* The above are fixed ptrs, only pu1_ref and grid mask are */
/* varying params which are updated just before calling fxn */
s_err_prms.i4_inp_stride = i4_inp_stride;
s_err_prms.i4_ref_stride = i4_ref_stride;
s_err_prms.i4_part_mask = i4_part_mask;
s_err_prms.pi4_sad_grid = &ai4_sad_grid[0];
s_err_prms.i4_blk_wd = i4_blk_wd;
s_err_prms.i4_blk_ht = i4_blk_ht;
s_err_prms.i4_step = 1;
s_err_prms.pi4_valid_part_ids = pi4_valid_part_ids;
s_err_prms.i4_num_partitions = i4_num_partitions;
s_result_prms.pf_mv_cost_compute = ps_search_prms->pf_mv_cost_compute;
s_result_prms.ps_search_results = ps_search_results;
s_result_prms.pi4_valid_part_ids = pi4_valid_part_ids;
s_result_prms.i1_ref_idx = (S08)ps_search_prms->i1_ref_idx;
s_result_prms.pi4_sad_grid = ai4_sad_grid;
s_result_prms.i4_part_mask = i4_part_mask;
s_result_prms.i4_step = 1;
pf_calc_sad_and_result = hme_get_calc_sad_and_result_explicit_fxn(
ps_me_optimised_function_list,
i4_part_mask,
i4_num_partitions,
i1_grid_enable,
ps_search_results->u1_num_results_per_part);
pf_calc_sad_and_result(
ps_search_prms, ps_wt_inp_prms, &s_err_prms, &s_result_prms, ppu1_ref, i4_ref_stride);
}