You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
128 lines
4.4 KiB
128 lines
4.4 KiB
/*
|
|
* Copyright (C) 2018 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
// Contains classes that can execute different models/parts of a model.
|
|
|
|
#ifndef LIBTEXTCLASSIFIER_ANNOTATOR_MODEL_EXECUTOR_H_
|
|
#define LIBTEXTCLASSIFIER_ANNOTATOR_MODEL_EXECUTOR_H_
|
|
|
|
#include <memory>
|
|
|
|
#include "annotator/types.h"
|
|
#include "utils/base/logging.h"
|
|
#include "utils/tensor-view.h"
|
|
#include "utils/tflite-model-executor.h"
|
|
|
|
namespace libtextclassifier3 {
|
|
|
|
// Executor for the text selection prediction and classification models.
|
|
class ModelExecutor : public TfLiteModelExecutor {
|
|
public:
|
|
static std::unique_ptr<ModelExecutor> FromModelSpec(
|
|
const tflite::Model* model_spec) {
|
|
auto model = TfLiteModelFromModelSpec(model_spec);
|
|
if (!model) {
|
|
return nullptr;
|
|
}
|
|
return std::unique_ptr<ModelExecutor>(new ModelExecutor(std::move(model)));
|
|
}
|
|
|
|
static std::unique_ptr<ModelExecutor> FromBuffer(
|
|
const flatbuffers::Vector<uint8_t>* model_spec_buffer) {
|
|
auto model = TfLiteModelFromBuffer(model_spec_buffer);
|
|
if (!model) {
|
|
return nullptr;
|
|
}
|
|
return std::unique_ptr<ModelExecutor>(new ModelExecutor(std::move(model)));
|
|
}
|
|
|
|
TensorView<float> ComputeLogits(const TensorView<float>& features,
|
|
tflite::Interpreter* interpreter) const;
|
|
|
|
protected:
|
|
explicit ModelExecutor(std::unique_ptr<const tflite::FlatBufferModel> model)
|
|
: TfLiteModelExecutor(std::move(model)) {}
|
|
|
|
static constexpr int kInputIndexFeatures = 0;
|
|
static constexpr int kOutputIndexLogits = 0;
|
|
};
|
|
|
|
// Executor for embedding sparse features into a dense vector.
|
|
class EmbeddingExecutor {
|
|
public:
|
|
virtual ~EmbeddingExecutor() {}
|
|
|
|
// Embeds the sparse_features into a dense embedding and adds (+) it
|
|
// element-wise to the dest vector.
|
|
virtual bool AddEmbedding(const TensorView<int>& sparse_features, float* dest,
|
|
int dest_size) const = 0;
|
|
|
|
// Returns true when the model is ready to be used, false otherwise.
|
|
virtual bool IsReady() const { return true; }
|
|
};
|
|
|
|
class TFLiteEmbeddingExecutor : public EmbeddingExecutor {
|
|
public:
|
|
static std::unique_ptr<TFLiteEmbeddingExecutor> FromBuffer(
|
|
const flatbuffers::Vector<uint8_t>* model_spec_buffer, int embedding_size,
|
|
int quantization_bits,
|
|
const Model_::EmbeddingPruningMask* embedding_pruning_mask = nullptr);
|
|
|
|
// Embeds the sparse_features into a dense embedding and adds (+) it
|
|
// element-wise to the dest vector.
|
|
bool AddEmbedding(const TensorView<int>& sparse_features, float* dest,
|
|
int dest_size) const;
|
|
|
|
// Auxiliary function for computing prefixes used in implementation of
|
|
// efficient mask indexing data structure.
|
|
void ComputePrefixCounts();
|
|
|
|
// Function implementing mask indexing based on efficient data structure
|
|
int PruneBucketId(int bucket_id) const;
|
|
|
|
protected:
|
|
explicit TFLiteEmbeddingExecutor(
|
|
std::unique_ptr<TfLiteModelExecutor> executor, int quantization_bits,
|
|
int num_buckets, int bytes_per_embedding, int output_embedding_size,
|
|
const TfLiteTensor* scales, const TfLiteTensor* embeddings,
|
|
std::unique_ptr<tflite::Interpreter> interpreter,
|
|
const Model_::EmbeddingPruningMask* embedding_pruning_mask = nullptr);
|
|
|
|
std::unique_ptr<TfLiteModelExecutor> executor_;
|
|
|
|
int quantization_bits_;
|
|
int num_buckets_ = -1;
|
|
int bytes_per_embedding_ = -1;
|
|
int output_embedding_size_ = -1;
|
|
const TfLiteTensor* scales_ = nullptr;
|
|
const TfLiteTensor* embeddings_ = nullptr;
|
|
|
|
// NOTE: This interpreter is used in a read-only way (as a storage for the
|
|
// model params), thus is still thread-safe.
|
|
std::unique_ptr<tflite::Interpreter> interpreter_;
|
|
|
|
std::vector<uint64> pruning_mask_;
|
|
std::vector<uint16> prefix_counts_;
|
|
int full_num_buckets_ = -1;
|
|
|
|
// Index of row of embedding table corresponding to all pruned buckets.
|
|
int pruned_row_bucket_id_ = -1;
|
|
};
|
|
|
|
} // namespace libtextclassifier3
|
|
|
|
#endif // LIBTEXTCLASSIFIER_ANNOTATOR_MODEL_EXECUTOR_H_
|