You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1049 lines
33 KiB

//
// Copyright (C) 2018 The Android Open Source Project
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
include "annotator/entity-data.fbs";
include "annotator/experimental/experimental.fbs";
include "utils/codepoint-range.fbs";
include "utils/container/bit-vector.fbs";
include "utils/flatbuffers/flatbuffers.fbs";
include "utils/grammar/rules.fbs";
include "utils/intents/intent-config.fbs";
include "utils/normalization.fbs";
include "utils/resources.fbs";
include "utils/tokenizer.fbs";
include "utils/zlib/buffer.fbs";
file_identifier "TC2 ";
// The possible model modes, represents a bit field.
namespace libtextclassifier3;
enum ModeFlag : int {
NONE = 0,
ANNOTATION = 1,
CLASSIFICATION = 2,
ANNOTATION_AND_CLASSIFICATION = 3,
SELECTION = 4,
ANNOTATION_AND_SELECTION = 5,
CLASSIFICATION_AND_SELECTION = 6,
ALL = 7,
}
// Enum for specifying the annotation usecase.
namespace libtextclassifier3;
enum AnnotationUsecase : int {
// Results are optimized for Smart{Select,Share,Linkify}.
ANNOTATION_USECASE_SMART = 0,
// Smart{Select,Share,Linkify}
// Results are optimized for using TextClassifier as an infrastructure that
// annotates as much as possible.
ANNOTATION_USECASE_RAW = 1,
}
namespace libtextclassifier3;
enum DatetimeExtractorType : int {
UNKNOWN_DATETIME_EXTRACTOR_TYPE = 0,
AM = 1,
PM = 2,
JANUARY = 3,
FEBRUARY = 4,
MARCH = 5,
APRIL = 6,
MAY = 7,
JUNE = 8,
JULY = 9,
AUGUST = 10,
SEPTEMBER = 11,
OCTOBER = 12,
NOVEMBER = 13,
DECEMBER = 14,
NEXT = 15,
NEXT_OR_SAME = 16,
LAST = 17,
NOW = 18,
TOMORROW = 19,
YESTERDAY = 20,
PAST = 21,
FUTURE = 22,
DAY = 23,
WEEK = 24,
MONTH = 25,
YEAR = 26,
MONDAY = 27,
TUESDAY = 28,
WEDNESDAY = 29,
THURSDAY = 30,
FRIDAY = 31,
SATURDAY = 32,
SUNDAY = 33,
DAYS = 34,
WEEKS = 35,
MONTHS = 36,
// TODO(zilka): Make the following 3 values singular for consistency.
HOURS = 37,
MINUTES = 38,
SECONDS = 39,
YEARS = 40,
DIGITS = 41,
SIGNEDDIGITS = 42,
ZERO = 43,
ONE = 44,
TWO = 45,
THREE = 46,
FOUR = 47,
FIVE = 48,
SIX = 49,
SEVEN = 50,
EIGHT = 51,
NINE = 52,
TEN = 53,
ELEVEN = 54,
TWELVE = 55,
THIRTEEN = 56,
FOURTEEN = 57,
FIFTEEN = 58,
SIXTEEN = 59,
SEVENTEEN = 60,
EIGHTEEN = 61,
NINETEEN = 62,
TWENTY = 63,
THIRTY = 64,
FORTY = 65,
FIFTY = 66,
SIXTY = 67,
SEVENTY = 68,
EIGHTY = 69,
NINETY = 70,
HUNDRED = 71,
THOUSAND = 72,
NOON = 73,
MIDNIGHT = 74,
}
namespace libtextclassifier3;
enum DatetimeGroupType : int {
GROUP_UNKNOWN = 0,
GROUP_UNUSED = 1,
GROUP_YEAR = 2,
GROUP_MONTH = 3,
GROUP_DAY = 4,
GROUP_HOUR = 5,
GROUP_MINUTE = 6,
GROUP_SECOND = 7,
GROUP_AMPM = 8,
GROUP_RELATIONDISTANCE = 9,
GROUP_RELATION = 10,
GROUP_RELATIONTYPE = 11,
// Dummy groups serve just as an inflator of the selection. E.g. we might want
// to select more text than was contained in an envelope of all extractor
// spans.
GROUP_DUMMY1 = 12,
GROUP_DUMMY2 = 13,
GROUP_ABSOLUTETIME = 14,
}
// Options for the model that predicts text selection.
namespace libtextclassifier3;
table SelectionModelOptions {
// If true, before the selection is returned, the unpaired brackets contained
// in the predicted selection are stripped from the both selection ends.
// The bracket codepoints are defined in the Unicode standard:
// http://www.unicode.org/Public/UNIDATA/BidiBrackets.txt
strip_unpaired_brackets:bool = true;
// Number of hypothetical click positions on either side of the actual click
// to consider in order to enforce symmetry.
symmetry_context_size:int;
// Number of examples to bundle in one batch for inference.
batch_size:int = 1024;
// Whether to always classify a suggested selection or only on demand.
always_classify_suggested_selection:bool = false;
}
// Options for the model that classifies a text selection.
namespace libtextclassifier3;
table ClassificationModelOptions {
// Limits for phone numbers.
phone_min_num_digits:int = 7;
phone_max_num_digits:int = 15;
// Limits for addresses.
address_min_num_tokens:int;
// Maximum number of tokens to attempt a classification (-1 is unlimited).
max_num_tokens:int = -1;
}
// Options for post-checks, checksums and verification to apply on a match.
namespace libtextclassifier3;
table VerificationOptions {
verify_luhn_checksum:bool = false;
// Lua verifier to use.
// Index of the lua verifier in the model.
lua_verifier:int = -1;
}
// Behaviour of rule capturing groups.
// This specifies how the text and span of a capturing group, in a regular
// expression or from a capturing match in a grammar rule, should be handled.
namespace libtextclassifier3;
table CapturingGroup {
// If true, the span of the capturing group will be used to
// extend the selection.
extend_selection:bool = true;
// If set, the text of the capturing group will be used to set a field in
// the classfication result entity data.
entity_field_path:FlatbufferFieldPath;
// If set, the flatbuffer entity data will be merged with the
// classification result entity data.
serialized_entity_data:string (shared);
// If set, normalization to apply before text is used in entity data.
normalization_options:NormalizationOptions;
entity_data:EntityData;
}
// List of regular expression matchers to check.
namespace libtextclassifier3.RegexModel_;
table Pattern {
// The name of the collection of a match.
collection_name:string (shared);
// The pattern to check.
pattern:string (shared);
// The modes for which to apply the patterns.
enabled_modes:ModeFlag = ALL;
// The final score to assign to the results of this pattern.
target_classification_score:float = 1;
// Priority score used for conflict resolution with the other models.
priority_score:float = 0;
// If true, will use an approximate matching implementation implemented
// using Find() instead of the true Match(). This approximate matching will
// use the first Find() result and then check that it spans the whole input.
use_approximate_matching:bool = false;
compressed_pattern:CompressedBuffer;
// Verification to apply on a match.
verification_options:VerificationOptions;
capturing_group:[CapturingGroup];
// Entity data to set for a match.
serialized_entity_data:string (shared);
entity_data:EntityData;
}
namespace libtextclassifier3;
table RegexModel {
patterns:[RegexModel_.Pattern];
// If true, will compile the regexes only on first use.
lazy_regex_compilation:bool = true;
// Lua scripts for match verification.
// The verifier can access:
// * `context`: The context as a string.
// * `match`: The groups of the regex match as an array, each group gives
// * `begin`: span start
// * `end`: span end
// * `text`: the text
// The verifier is expected to return a boolean, indicating whether the
// verification succeeded or not.
lua_verifier:[string];
}
// List of regex patterns.
namespace libtextclassifier3.DatetimeModelPattern_;
table Regex {
pattern:string (shared);
// The ith entry specifies the type of the ith capturing group.
// This is used to decide how the matched content has to be parsed.
groups:[DatetimeGroupType];
compressed_pattern:CompressedBuffer;
}
namespace libtextclassifier3;
table DatetimeModelPattern {
regexes:[DatetimeModelPattern_.Regex];
// List of locale indices in DatetimeModel that represent the locales that
// these patterns should be used for. If empty, can be used for all locales.
locales:[int];
// The final score to assign to the results of this pattern.
target_classification_score:float = 1;
// Priority score used for conflict resolution with the other models.
priority_score:float = 0;
// The modes for which to apply the patterns.
enabled_modes:ModeFlag = ALL;
// The annotation usecases for which to apply the patterns.
// This is a flag field for values of AnnotationUsecase.
enabled_annotation_usecases:uint = 4294967295;
}
namespace libtextclassifier3;
table DatetimeModelExtractor {
extractor:DatetimeExtractorType;
pattern:string (shared);
locales:[int];
compressed_pattern:CompressedBuffer;
}
namespace libtextclassifier3;
table DatetimeModel {
// List of BCP 47 locale strings representing all locales supported by the
// model. The individual patterns refer back to them using an index.
locales:[string];
patterns:[DatetimeModelPattern];
extractors:[DatetimeModelExtractor];
// If true, will use the extractors for determining the match location as
// opposed to using the location where the global pattern matched.
use_extractors_for_locating:bool = true;
// List of locale ids, rules of whose are always run, after the requested
// ones.
default_locales:[int];
// If true, will generate the alternative interpretations for ambiguous
// datetime expressions.
generate_alternative_interpretations_when_ambiguous:bool = false;
// If true, will compile the regexes only on first use.
lazy_regex_compilation:bool = true;
// If true, will give only future dates (when the day is not specified).
prefer_future_for_unspecified_date:bool = false;
}
// Configuration for the tokenizer.
namespace libtextclassifier3;
table GrammarTokenizerOptions {
tokenization_type:TokenizationType = ICU;
// If true, white space tokens will be kept when using the icu tokenizer.
icu_preserve_whitespace_tokens:bool = false;
// Codepoint ranges that determine what role the different codepoints play
// during tokenized. The ranges must not overlap.
tokenization_codepoint_config:[TokenizationCodepointRange];
// A set of codepoint ranges to use in the mixed tokenization mode to identify
// stretches of tokens to re-tokenize using the internal tokenizer.
internal_tokenizer_codepoint_ranges:[CodepointRange];
// If true, tokens will be also split when the codepoint's script_id changes
// as defined in TokenizationCodepointRange.
tokenize_on_script_change:bool = false;
}
namespace libtextclassifier3.DatetimeModelLibrary_;
table Item {
key:string (shared);
value:DatetimeModel;
}
// A set of named DateTime models.
namespace libtextclassifier3;
table DatetimeModelLibrary {
models:[DatetimeModelLibrary_.Item];
}
// Classification result to instantiate for a rule match.
namespace libtextclassifier3.GrammarModel_;
table RuleClassificationResult {
// The name of the collection.
collection_name:string (shared);
// The score.
target_classification_score:float = 1;
// The priority score used for conflict resolution with the other models.
priority_score:float = 0;
// Behaviour of capturing matches.
capturing_group:[CapturingGroup];
// Entity data to set for a match.
serialized_entity_data:string (shared);
// Enabled modes.
enabled_modes:ModeFlag = ALL;
entity_data:EntityData;
}
// Configuration for grammar based annotators.
namespace libtextclassifier3;
table GrammarModel {
// The grammar rules.
rules:grammar.RulesSet;
rule_classification_result:[GrammarModel_.RuleClassificationResult];
// Number of tokens in the context to use for classification and text
// selection suggestion.
// A value -1 uses the full context.
context_left_num_tokens:int;
context_right_num_tokens:int;
// Grammar specific tokenizer options.
tokenizer_options:GrammarTokenizerOptions;
// The score.
target_classification_score:float = 1;
// The priority score used for conflict resolution with the other models.
priority_score:float = 1;
}
namespace libtextclassifier3.MoneyParsingOptions_;
table QuantitiesNameToExponentEntry {
key:string (key, shared);
value:int;
}
namespace libtextclassifier3;
table MoneyParsingOptions {
// Separators (codepoints) marking decimal or thousand in the money amount.
separators:[int];
// Mapping between a quantity string (e.g. "million") and the power of 10
// it multiplies the amount with (e.g. 6 in case of "million").
// NOTE: The entries need to be sorted by key since we use LookupByKey.
quantities_name_to_exponent:[MoneyParsingOptions_.QuantitiesNameToExponentEntry];
}
namespace libtextclassifier3.ModelTriggeringOptions_;
table CollectionToPriorityEntry {
key:string (key, shared);
value:float;
}
// Options controlling the output of the Tensorflow Lite models.
namespace libtextclassifier3;
table ModelTriggeringOptions {
// Lower bound threshold for filtering annotation model outputs.
min_annotate_confidence:float = 0;
// The modes for which to enable the models.
enabled_modes:ModeFlag = ALL;
// Comma-separated list of locales (BCP 47 tags) that dictionary
// classification supports.
dictionary_locales:string (shared);
// Comma-separated list of locales (BCP 47 tags) that the model supports, that
// are used to prevent triggering on input in unsupported languages. If
// empty, the model will trigger on all inputs.
locales:string (shared);
// Priority score assigned to the "other" class from ML model.
other_collection_priority_score:float = -1000;
// Priority score assigned to knowledge engine annotations.
knowledge_priority_score:float = 0;
reserved_7:int16 (deprecated);
// Apply a factor to the priority score for entities that are added to this
// map. Key: collection type e.g. "address", "phone"..., Value: float number.
// NOTE: The entries here need to be sorted since we use LookupByKey.
collection_to_priority:[ModelTriggeringOptions_.CollectionToPriorityEntry];
}
// Options controlling the output of the classifier.
namespace libtextclassifier3;
table OutputOptions {
// Lists of collection names that will be filtered out at the output:
// - For annotation, the spans of given collection are simply dropped.
// - For classification, the result is mapped to the class "other".
// - For selection, the spans of given class are returned as
// single-selection.
filtered_collections_annotation:[string];
filtered_collections_classification:[string];
filtered_collections_selection:[string];
}
namespace libtextclassifier3.Model_;
table EmbeddingPruningMask {
// If true, use pruning mask. In this case, we use mask
// pruning_mask to determine the mapping of hashed-charactergrams.
enabled:bool;
// Packing of the binary pruning mask into uint64 values.
pruning_mask:[ulong] (force_align: 16);
// Number of buckets before pruning.
full_num_buckets:int;
// Index of row of compressed embedding matrix to which all pruned buckets
// are mapped.
pruned_row_bucket_id:int;
}
namespace libtextclassifier3.Model_;
table ConflictResolutionOptions {
// If true, will prioritize the longest annotation during conflict
// resolution.
prioritize_longest_annotation:bool = false;
// If true, the annotator will perform conflict resolution between the
// different sub-annotators also in the RAW mode. If false, no conflict
// resolution will be performed in RAW mode.
do_conflict_resolution_in_raw_mode:bool = true;
}
namespace libtextclassifier3;
table Model {
// Comma-separated list of locales supported by the model as BCP 47 tags.
locales:string (shared);
version:int;
// A name for the model that can be used for e.g. logging.
name:string (shared);
selection_feature_options:FeatureProcessorOptions;
classification_feature_options:FeatureProcessorOptions;
// Tensorflow Lite models.
selection_model:[ubyte] (force_align: 16);
classification_model:[ubyte] (force_align: 16);
embedding_model:[ubyte] (force_align: 16);
// Options for the different models.
selection_options:SelectionModelOptions;
classification_options:ClassificationModelOptions;
regex_model:RegexModel;
datetime_model:DatetimeModel;
// Options controlling the output of the models.
triggering_options:ModelTriggeringOptions;
// Global switch that controls if SuggestSelection(), ClassifyText() and
// Annotate() will run. If a mode is disabled it returns empty/no-op results.
enabled_modes:ModeFlag = ALL;
// If true, will snap the selections that consist only of whitespaces to the
// containing suggested span. Otherwise, no suggestion is proposed, since the
// selections are not part of any token.
snap_whitespace_selections:bool = true;
// Global configuration for the output of SuggestSelection(), ClassifyText()
// and Annotate().
output_options:OutputOptions;
// Configures how Intents should be generated on Android.
android_intent_options:AndroidIntentFactoryOptions;
intent_options:IntentFactoryModel;
// Model resources.
resources:ResourcePool;
// Schema data for handling entity data.
entity_data_schema:[ubyte];
number_annotator_options:NumberAnnotatorOptions;
duration_annotator_options:DurationAnnotatorOptions;
// Comma-separated list of locales (BCP 47 tags) that the model supports, that
// are used to prevent triggering on input in unsupported languages. If
// empty, the model will trigger on all inputs.
triggering_locales:string (shared);
embedding_pruning_mask:Model_.EmbeddingPruningMask;
reserved_25:int16 (deprecated);
contact_annotator_options:ContactAnnotatorOptions;
money_parsing_options:MoneyParsingOptions;
translate_annotator_options:TranslateAnnotatorOptions;
grammar_model:GrammarModel;
conflict_resolution_options:Model_.ConflictResolutionOptions;
experimental_model:ExperimentalModel;
pod_ner_model:PodNerModel;
vocab_model:VocabModel;
datetime_grammar_model:GrammarModel;
}
// Method for selecting the center token.
namespace libtextclassifier3.FeatureProcessorOptions_;
enum CenterTokenSelectionMethod : int {
DEFAULT_CENTER_TOKEN_METHOD = 0,
// Invalid option.
// Use click indices to determine the center token.
CENTER_TOKEN_FROM_CLICK = 1,
// Use selection indices to get a token range, and select the middle of it
// as the center token.
CENTER_TOKEN_MIDDLE_OF_SELECTION = 2,
}
// Bounds-sensitive feature extraction configuration.
namespace libtextclassifier3.FeatureProcessorOptions_;
table BoundsSensitiveFeatures {
// Enables the extraction of bounds-sensitive features, instead of the click
// context features.
enabled:bool;
// The numbers of tokens to extract in specific locations relative to the
// bounds.
// Immediately before the span.
num_tokens_before:int;
// Inside the span, aligned with the beginning.
num_tokens_inside_left:int;
// Inside the span, aligned with the end.
num_tokens_inside_right:int;
// Immediately after the span.
num_tokens_after:int;
// If true, also extracts the tokens of the entire span and adds up their
// features forming one "token" to include in the extracted features.
include_inside_bag:bool;
// If true, includes the selection length (in the number of tokens) as a
// feature.
include_inside_length:bool;
// If true, for selection, single token spans are not run through the model
// and their score is assumed to be zero.
score_single_token_spans_as_zero:bool;
}
namespace libtextclassifier3;
table FeatureProcessorOptions {
// Number of buckets used for hashing charactergrams.
num_buckets:int = -1;
// Size of the embedding.
embedding_size:int = -1;
// Number of bits for quantization for embeddings.
embedding_quantization_bits:int = 8;
// Context size defines the number of words to the left and to the right of
// the selected word to be used as context. For example, if context size is
// N, then we take N words to the left and N words to the right of the
// selected word as its context.
context_size:int = -1;
// Maximum number of words of the context to select in total.
max_selection_span:int = -1;
// Orders of charactergrams to extract. E.g., 2 means character bigrams, 3
// character trigrams etc.
chargram_orders:[int];
// Maximum length of a word, in codepoints.
max_word_length:int = 20;
// If true, will use the unicode-aware functionality for extracting features.
unicode_aware_features:bool = false;
// Whether to extract the token case feature.
extract_case_feature:bool = false;
// Whether to extract the selection mask feature.
extract_selection_mask_feature:bool = false;
// List of regexps to run over each token. For each regexp, if there is a
// match, a dense feature of 1.0 is emitted. Otherwise -1.0 is used.
regexp_feature:[string];
// Whether to remap all digits to a single number.
remap_digits:bool = false;
// Whether to lower-case each token before generating hashgrams.
lowercase_tokens:bool;
// If true, the selection classifier output will contain only the selections
// that are feasible (e.g., those that are shorter than max_selection_span),
// if false, the output will be a complete cross-product of possible
// selections to the left and possible selections to the right, including the
// infeasible ones.
// NOTE: Exists mainly for compatibility with older models that were trained
// with the non-reduced output space.
selection_reduced_output_space:bool = true;
// Collection names.
collections:[string];
// An index of collection in collections to be used if a collection name can't
// be mapped to an id.
default_collection:int = -1;
// If true, will split the input by lines, and only use the line that contains
// the clicked token.
only_use_line_with_click:bool = false;
// If true, will split tokens that contain the selection boundary, at the
// position of the boundary.
// E.g. "foo{bar}@google.com" -> "foo", "bar", "@google.com"
split_tokens_on_selection_boundaries:bool = false;
// Codepoint ranges that determine how different codepoints are tokenized.
// The ranges must not overlap.
tokenization_codepoint_config:[TokenizationCodepointRange];
center_token_selection_method:FeatureProcessorOptions_.CenterTokenSelectionMethod;
// If true, span boundaries will be snapped to containing tokens and not
// required to exactly match token boundaries.
snap_label_span_boundaries_to_containing_tokens:bool;
// A set of codepoint ranges supported by the model.
supported_codepoint_ranges:[CodepointRange];
// A set of codepoint ranges to use in the mixed tokenization mode to identify
// stretches of tokens to re-tokenize using the internal tokenizer.
internal_tokenizer_codepoint_ranges:[CodepointRange];
// Minimum ratio of supported codepoints in the input context. If the ratio
// is lower than this, the feature computation will fail.
min_supported_codepoint_ratio:float = 0;
// Used for versioning the format of features the model expects.
// - feature_version == 0:
// For each token the features consist of:
// - chargram embeddings
// - dense features
// Chargram embeddings for tokens are concatenated first together,
// and at the end, the dense features for the tokens are concatenated
// to it. So the resulting feature vector has two regions.
feature_version:int = 0;
tokenization_type:TokenizationType = INTERNAL_TOKENIZER;
icu_preserve_whitespace_tokens:bool = false;
// List of codepoints that will be stripped from beginning and end of
// predicted spans.
ignored_span_boundary_codepoints:[int];
bounds_sensitive_features:FeatureProcessorOptions_.BoundsSensitiveFeatures;
// List of allowed charactergrams. The extracted charactergrams are filtered
// using this list, and charactergrams that are not present are interpreted as
// out-of-vocabulary.
// If no allowed_chargrams are specified, all charactergrams are allowed.
// The field is typed as bytes type to allow non-UTF8 chargrams.
allowed_chargrams:[string];
// If true, tokens will be also split when the codepoint's script_id changes
// as defined in TokenizationCodepointRange.
tokenize_on_script_change:bool = false;
// If true, the pipe character '|' will be used as a newline character when
// splitting lines.
use_pipe_character_for_newline:bool = true;
}
namespace libtextclassifier3;
table NumberAnnotatorOptions {
// If true, number and percentage annotations will be produced.
enabled:bool = false;
// Score to assign to the annotated numbers and percentages in the annotator.
score:float = 1;
// Number priority score used for conflict resolution with the other models.
priority_score:float = 0;
// The modes in which to enable number and percentage annotations.
enabled_modes:ModeFlag = ALL;
// The annotation usecases for which to produce number annotations.
// This is a flag field for values of AnnotationUsecase.
enabled_annotation_usecases:uint = 4294967295;
// [Deprecated] A list of codepoints that can form a prefix of a valid number.
allowed_prefix_codepoints:[int];
// [Deprecated] A list of codepoints that can form a suffix of a valid number.
allowed_suffix_codepoints:[int];
// [Deprecated] List of codepoints that will be stripped from beginning of
// predicted spans.
ignored_prefix_span_boundary_codepoints:[int];
// [Deprecated] List of codepoints that will be stripped from end of predicted
// spans.
ignored_suffix_span_boundary_codepoints:[int];
// [Deprecated] If true, percent annotations will be produced.
enable_percentage:bool = false;
// Zero separated and ordered list of suffixes that mark a percent.
percentage_pieces_string:string (shared);
// [Deprecated] List of suffixes offsets in the percent_pieces_string string.
percentage_pieces_offsets:[int];
// Priority score for the percentage annotation.
percentage_priority_score:float = 1;
// Float number priority score used for conflict resolution with the other
// models.
float_number_priority_score:float = 0;
// The maximum number of digits an annotated number can have. Requirement:
// the value should be less or equal to 20.
max_number_of_digits:int = 20;
// The annotation usecases for which to produce percentage annotations.
// This is a flag field for values of AnnotationUsecase.
percentage_annotation_usecases:uint = 2;
}
// DurationAnnotator is so far tailored for English and Japanese only.
namespace libtextclassifier3;
table DurationAnnotatorOptions {
// If true, duration annotations will be produced.
enabled:bool = false;
// Score to assign to the annotated durations from the annotator.
score:float = 1;
// Priority score used for conflict resolution with the other models.
priority_score:float = 0;
// The modes in which to enable duration annotations.
enabled_modes:ModeFlag = ALL;
// The annotation usecases for which to produce duration annotations.
enabled_annotation_usecases:uint = 4294967295;
// Durations typically look like XX hours and XX minutes etc... The list of
// strings below enumerate variants of "hours", "minutes", etc. in these
// expressions. These are verbatim strings that are matched against tokens in
// the input.
week_expressions:[string];
day_expressions:[string];
hour_expressions:[string];
minute_expressions:[string];
second_expressions:[string];
// List of expressions that doesn't break a duration expression (can become
// a part of it) but has not semantic meaning.
filler_expressions:[string];
// List of expressions that mean half of a unit of duration (e.g. "half an
// hour").
half_expressions:[string];
// Set of condepoints that can split the Annotator tokens to sub-tokens for
// sub-token matching.
sub_token_separator_codepoints:[int];
// If this is true, unit must be associated with quantity. For example, a
// phrase "minute" is not parsed as one minute duration if this is true.
require_quantity:bool;
// If this is true, dangling quantity is included in the annotation. For
// example, "10 minutes 20" is interpreted as 10 minutes and 20 seconds.
enable_dangling_quantity_interpretation:bool = true;
}
namespace libtextclassifier3;
table ContactAnnotatorOptions {
// Supported for English genitives only so far.
enable_declension:bool;
// For each language there is a customized list of supported declensions.
language:string (shared);
}
namespace libtextclassifier3.TranslateAnnotatorOptions_;
enum Algorithm : int {
DEFAULT_ALGORITHM = 0,
BACKOFF = 1,
}
// Backoff is the algorithm shipped with Android Q.
namespace libtextclassifier3.TranslateAnnotatorOptions_;
table BackoffOptions {
// The minimum size of text to prefer for detection (in codepoints).
min_text_size:int = 20;
// For reducing the score when text is less than the preferred size.
penalize_ratio:float = 1;
// Original detection score to surrounding text detection score ratios.
subject_text_score_ratio:float = 0.4;
}
namespace libtextclassifier3;
table TranslateAnnotatorOptions {
enabled:bool = false;
// Score to assign to the classification results.
score:float = 1;
// Priority score used for conflict resolution with the other models.
priority_score:float;
algorithm:TranslateAnnotatorOptions_.Algorithm;
backoff_options:TranslateAnnotatorOptions_.BackoffOptions;
}
namespace libtextclassifier3.PodNerModel_;
table Collection {
// Collection's name (e.g., "location", "person").
name:string (shared);
// Priority scores used for conflict resolution with the other annotators
// when the annotation is made over a single/multi token text.
single_token_priority_score:float;
multi_token_priority_score:float;
}
namespace libtextclassifier3.PodNerModel_.Label_;
enum BoiseType : int {
NONE = 0,
BEGIN = 1,
O = 2,
// No label.
INTERMEDIATE = 3,
SINGLE = 4,
END = 5,
}
namespace libtextclassifier3.PodNerModel_.Label_;
enum MentionType : int {
UNDEFINED = 0,
NAM = 1,
NOM = 2,
}
namespace libtextclassifier3.PodNerModel_;
table Label {
boise_type:Label_.BoiseType;
mention_type:Label_.MentionType;
collection_id:int;
// points to the collections array above.
}
namespace libtextclassifier3;
table PodNerModel {
tflite_model:[ubyte];
word_piece_vocab:[ubyte];
lowercase_input:bool = true;
// Index of mention_logits tensor in the output of the tflite model. Can
// be found in the textproto output after model is converted to tflite.
logits_index_in_output_tensor:int = 0;
// Whether to append a period at the end of an input that doesn't already
// end in punctuation.
append_final_period:bool = false;
// Priority score used for conflict resolution with the other models. Used
// only if collections_array is empty.
priority_score:float = 0;
// Maximum number of wordpieces supported by the model.
max_num_wordpieces:int = 128;
// In case of long text (number of wordpieces greater than the max) we use
// sliding window approach, this determines the number of overlapping
// wordpieces between two consecutive windows. This overlap enables context
// for each word NER annotates.
sliding_window_num_wordpieces_overlap:int = 20;
reserved_9:int16 (deprecated);
// The possible labels the ner model can output. If empty the default labels
// will be used.
labels:[PodNerModel_.Label];
// If the ratio of unknown wordpieces in the input text is greater than this
// maximum, the text won't be annotated.
max_ratio_unknown_wordpieces:float = 0.1;
// Possible collections for labeled entities.
collections:[PodNerModel_.Collection];
// Minimum word-length and wordpieces-length required for the text to be
// annotated.
min_number_of_tokens:int = 1;
min_number_of_wordpieces:int = 1;
}
namespace libtextclassifier3;
table VocabModel {
// A trie that stores a list of vocabs that triggers "Define". A id is
// returned when looking up a vocab from the trie and the id can be used
// to access more information about that vocab. The marisa trie library
// requires 8-byte alignment because the first thing in a marisa trie is a
// 64-bit integer.
vocab_trie:[ubyte] (force_align: 8);
// A bit vector that tells if the vocab should trigger "Define" for users of
// beginner proficiency only. To look up the bit vector, use the id returned
// by the trie.
beginner_level:BitVectorData;
// A sorted list of indices of vocabs that should not trigger "Define" if
// its leading character is in upper case. The indices are those returned by
// trie. You may perform binary search to look up an index.
do_not_trigger_in_upper_case:BitVectorData;
// Comma-separated list of locales (BCP 47 tags) that the model supports, that
// are used to prevent triggering on input in unsupported languages. If
// empty, the model will trigger on all inputs.
triggering_locales:string (shared);
// The final score to assign to the results of the vocab model
target_classification_score:float = 1;
// Priority score used for conflict resolution with the other models.
priority_score:float = 0;
}
root_type libtextclassifier3.Model;