You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
340 lines
19 KiB
340 lines
19 KiB
//==- AArch64SchedCortexA55.td - ARM Cortex-A55 Scheduling Definitions -*- tablegen -*-=//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the machine model for the ARM Cortex-A55 processors.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// ===---------------------------------------------------------------------===//
|
|
// The following definitions describe the per-operand machine model.
|
|
// This works with MachineScheduler. See MCSchedModel.h for details.
|
|
|
|
// Cortex-A55 machine model for scheduling and other instruction cost heuristics.
|
|
def CortexA55Model : SchedMachineModel {
|
|
let MicroOpBufferSize = 0; // The Cortex-A55 is an in-order processor
|
|
let IssueWidth = 2; // It dual-issues under most circumstances
|
|
let LoadLatency = 4; // Cycles for loads to access the cache. The
|
|
// optimisation guide shows that most loads have
|
|
// a latency of 3, but some have a latency of 4
|
|
// or 5. Setting it 4 looked to be good trade-off.
|
|
let MispredictPenalty = 8; // A branch direction mispredict.
|
|
let PostRAScheduler = 1; // Enable PostRA scheduler pass.
|
|
let CompleteModel = 0; // Covers instructions applicable to Cortex-A55.
|
|
|
|
list<Predicate> UnsupportedFeatures = [HasSVE];
|
|
|
|
// FIXME: Remove when all errors have been fixed.
|
|
let FullInstRWOverlapCheck = 0;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Define each kind of processor resource and number available.
|
|
|
|
// Modeling each pipeline as a ProcResource using the BufferSize = 0 since the
|
|
// Cortex-A55 is in-order.
|
|
|
|
def CortexA55UnitALU : ProcResource<2> { let BufferSize = 0; } // Int ALU
|
|
def CortexA55UnitMAC : ProcResource<1> { let BufferSize = 0; } // Int MAC, 64-bi wide
|
|
def CortexA55UnitDiv : ProcResource<1> { let BufferSize = 0; } // Int Division, not pipelined
|
|
def CortexA55UnitLd : ProcResource<1> { let BufferSize = 0; } // Load pipe
|
|
def CortexA55UnitSt : ProcResource<1> { let BufferSize = 0; } // Store pipe
|
|
def CortexA55UnitB : ProcResource<1> { let BufferSize = 0; } // Branch
|
|
|
|
// The FP DIV/SQRT instructions execute totally differently from the FP ALU
|
|
// instructions, which can mostly be dual-issued; that's why for now we model
|
|
// them with 2 resources.
|
|
def CortexA55UnitFPALU : ProcResource<2> { let BufferSize = 0; } // FP ALU
|
|
def CortexA55UnitFPMAC : ProcResource<2> { let BufferSize = 0; } // FP MAC
|
|
def CortexA55UnitFPDIV : ProcResource<1> { let BufferSize = 0; } // FP Div/SQRT, 64/128
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Subtarget-specific SchedWrite types
|
|
|
|
let SchedModel = CortexA55Model in {
|
|
|
|
// These latencies are modeled without taking into account forwarding paths
|
|
// (the software optimisation guide lists latencies taking into account
|
|
// typical forwarding paths).
|
|
def : WriteRes<WriteImm, [CortexA55UnitALU]> { let Latency = 3; } // MOVN, MOVZ
|
|
def : WriteRes<WriteI, [CortexA55UnitALU]> { let Latency = 3; } // ALU
|
|
def : WriteRes<WriteISReg, [CortexA55UnitALU]> { let Latency = 3; } // ALU of Shifted-Reg
|
|
def : WriteRes<WriteIEReg, [CortexA55UnitALU]> { let Latency = 3; } // ALU of Extended-Reg
|
|
def : WriteRes<WriteExtr, [CortexA55UnitALU]> { let Latency = 3; } // EXTR from a reg pair
|
|
def : WriteRes<WriteIS, [CortexA55UnitALU]> { let Latency = 3; } // Shift/Scale
|
|
|
|
// MAC
|
|
def : WriteRes<WriteIM32, [CortexA55UnitMAC]> { let Latency = 4; } // 32-bit Multiply
|
|
def : WriteRes<WriteIM64, [CortexA55UnitMAC]> { let Latency = 4; } // 64-bit Multiply
|
|
|
|
// Div
|
|
def : WriteRes<WriteID32, [CortexA55UnitDiv]> {
|
|
let Latency = 8; let ResourceCycles = [8];
|
|
}
|
|
def : WriteRes<WriteID64, [CortexA55UnitDiv]> {
|
|
let Latency = 8; let ResourceCycles = [8];
|
|
}
|
|
|
|
// Load
|
|
def : WriteRes<WriteLD, [CortexA55UnitLd]> { let Latency = 3; }
|
|
def : WriteRes<WriteLDIdx, [CortexA55UnitLd]> { let Latency = 4; }
|
|
def : WriteRes<WriteLDHi, [CortexA55UnitLd]> { let Latency = 5; }
|
|
|
|
// Vector Load - Vector loads take 1-5 cycles to issue. For the WriteVecLd
|
|
// below, choosing the median of 3 which makes the latency 6.
|
|
// An extra cycle is needed to get the swizzling right.
|
|
def : WriteRes<WriteVLD, [CortexA55UnitLd]> { let Latency = 6;
|
|
let ResourceCycles = [3]; }
|
|
def CortexA55WriteVLD1 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 4; }
|
|
def CortexA55WriteVLD2 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 5;
|
|
let ResourceCycles = [2]; }
|
|
def CortexA55WriteVLD3 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 6;
|
|
let ResourceCycles = [3]; }
|
|
def CortexA55WriteVLD4 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 7;
|
|
let ResourceCycles = [4]; }
|
|
def CortexA55WriteVLD5 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 8;
|
|
let ResourceCycles = [5]; }
|
|
def CortexA55WriteVLD6 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 9;
|
|
let ResourceCycles = [6]; }
|
|
def CortexA55WriteVLD7 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 10;
|
|
let ResourceCycles = [7]; }
|
|
def CortexA55WriteVLD8 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 11;
|
|
let ResourceCycles = [8]; }
|
|
|
|
// Pre/Post Indexing - Performed as part of address generation
|
|
def : WriteRes<WriteAdr, []> { let Latency = 0; }
|
|
|
|
// Store
|
|
def : WriteRes<WriteST, [CortexA55UnitSt]> { let Latency = 4; }
|
|
def : WriteRes<WriteSTP, [CortexA55UnitSt]> { let Latency = 4; }
|
|
def : WriteRes<WriteSTIdx, [CortexA55UnitSt]> { let Latency = 4; }
|
|
def : WriteRes<WriteSTX, [CortexA55UnitSt]> { let Latency = 4; }
|
|
|
|
// Vector Store - Similar to vector loads, can take 1-3 cycles to issue.
|
|
def : WriteRes<WriteVST, [CortexA55UnitSt]> { let Latency = 5;
|
|
let ResourceCycles = [2];}
|
|
def CortexA55WriteVST1 : SchedWriteRes<[CortexA55UnitSt]> { let Latency = 4; }
|
|
def CortexA55WriteVST2 : SchedWriteRes<[CortexA55UnitSt]> { let Latency = 5;
|
|
let ResourceCycles = [2]; }
|
|
def CortexA55WriteVST3 : SchedWriteRes<[CortexA55UnitSt]> { let Latency = 6;
|
|
let ResourceCycles = [3]; }
|
|
def CortexA55WriteVST4 : SchedWriteRes<[CortexA55UnitSt]> { let Latency = 5;
|
|
let ResourceCycles = [4]; }
|
|
|
|
def : WriteRes<WriteAtomic, []> { let Unsupported = 1; }
|
|
|
|
// Branch
|
|
def : WriteRes<WriteBr, [CortexA55UnitB]>;
|
|
def : WriteRes<WriteBrReg, [CortexA55UnitB]>;
|
|
def : WriteRes<WriteSys, [CortexA55UnitB]>;
|
|
def : WriteRes<WriteBarrier, [CortexA55UnitB]>;
|
|
def : WriteRes<WriteHint, [CortexA55UnitB]>;
|
|
|
|
// FP ALU
|
|
// As WriteF result is produced in F5 and it can be mostly forwarded
|
|
// to consumer at F1, the effectively latency is set as 4.
|
|
def : WriteRes<WriteF, [CortexA55UnitFPALU]> { let Latency = 4; }
|
|
def : WriteRes<WriteFCmp, [CortexA55UnitFPALU]> { let Latency = 3; }
|
|
def : WriteRes<WriteFCvt, [CortexA55UnitFPALU]> { let Latency = 4; }
|
|
def : WriteRes<WriteFCopy, [CortexA55UnitFPALU]> { let Latency = 3; }
|
|
def : WriteRes<WriteFImm, [CortexA55UnitFPALU]> { let Latency = 3; }
|
|
def : WriteRes<WriteV, [CortexA55UnitFPALU]> { let Latency = 4; }
|
|
|
|
// FP ALU specific new schedwrite definitions
|
|
def CortexA55WriteFPALU_F3 : SchedWriteRes<[CortexA55UnitFPALU]> { let Latency = 3;}
|
|
def CortexA55WriteFPALU_F4 : SchedWriteRes<[CortexA55UnitFPALU]> { let Latency = 4;}
|
|
def CortexA55WriteFPALU_F5 : SchedWriteRes<[CortexA55UnitFPALU]> { let Latency = 5;}
|
|
|
|
// FP Mul, Div, Sqrt. Div/Sqrt are not pipelined
|
|
def : WriteRes<WriteFMul, [CortexA55UnitFPMAC]> { let Latency = 4; }
|
|
def : WriteRes<WriteFDiv, [CortexA55UnitFPDIV]> { let Latency = 22;
|
|
let ResourceCycles = [29]; }
|
|
def CortexA55WriteFMAC : SchedWriteRes<[CortexA55UnitFPMAC]> { let Latency = 4; }
|
|
def CortexA55WriteFDivHP : SchedWriteRes<[CortexA55UnitFPDIV]> { let Latency = 8;
|
|
let ResourceCycles = [5]; }
|
|
def CortexA55WriteFDivSP : SchedWriteRes<[CortexA55UnitFPDIV]> { let Latency = 13;
|
|
let ResourceCycles = [10]; }
|
|
def CortexA55WriteFDivDP : SchedWriteRes<[CortexA55UnitFPDIV]> { let Latency = 22;
|
|
let ResourceCycles = [19]; }
|
|
def CortexA55WriteFSqrtHP : SchedWriteRes<[CortexA55UnitFPDIV]> { let Latency = 8;
|
|
let ResourceCycles = [5]; }
|
|
def CortexA55WriteFSqrtSP : SchedWriteRes<[CortexA55UnitFPDIV]> { let Latency = 12;
|
|
let ResourceCycles = [9]; }
|
|
def CortexA55WriteFSqrtDP : SchedWriteRes<[CortexA55UnitFPDIV]> { let Latency = 22;
|
|
let ResourceCycles = [19]; }
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Subtarget-specific SchedRead types.
|
|
|
|
def : ReadAdvance<ReadVLD, 0>;
|
|
def : ReadAdvance<ReadExtrHi, 1>;
|
|
def : ReadAdvance<ReadAdrBase, 1>;
|
|
|
|
// ALU - ALU input operands are generally needed in EX1. An operand produced in
|
|
// in say EX2 can be forwarded for consumption to ALU in EX1, thereby
|
|
// allowing back-to-back ALU operations such as add. If an operand requires
|
|
// a shift, it will, however, be required in ISS stage.
|
|
def : ReadAdvance<ReadI, 2, [WriteImm,WriteI,
|
|
WriteISReg, WriteIEReg,WriteIS,
|
|
WriteID32,WriteID64,
|
|
WriteIM32,WriteIM64]>;
|
|
// Shifted operand
|
|
def CortexA55ReadShifted : SchedReadAdvance<1, [WriteImm,WriteI,
|
|
WriteISReg, WriteIEReg,WriteIS,
|
|
WriteID32,WriteID64,
|
|
WriteIM32,WriteIM64]>;
|
|
def CortexA55ReadNotShifted : SchedReadAdvance<2, [WriteImm,WriteI,
|
|
WriteISReg, WriteIEReg,WriteIS,
|
|
WriteID32,WriteID64,
|
|
WriteIM32,WriteIM64]>;
|
|
def CortexA55ReadISReg : SchedReadVariant<[
|
|
SchedVar<RegShiftedPred, [CortexA55ReadShifted]>,
|
|
SchedVar<NoSchedPred, [CortexA55ReadNotShifted]>]>;
|
|
def : SchedAlias<ReadISReg, CortexA55ReadISReg>;
|
|
|
|
def CortexA55ReadIEReg : SchedReadVariant<[
|
|
SchedVar<RegExtendedPred, [CortexA55ReadShifted]>,
|
|
SchedVar<NoSchedPred, [CortexA55ReadNotShifted]>]>;
|
|
def : SchedAlias<ReadIEReg, CortexA55ReadIEReg>;
|
|
|
|
// MUL
|
|
def : ReadAdvance<ReadIM, 1, [WriteImm,WriteI,
|
|
WriteISReg, WriteIEReg,WriteIS,
|
|
WriteID32,WriteID64,
|
|
WriteIM32,WriteIM64]>;
|
|
def : ReadAdvance<ReadIMA, 2, [WriteImm,WriteI,
|
|
WriteISReg, WriteIEReg,WriteIS,
|
|
WriteID32,WriteID64,
|
|
WriteIM32,WriteIM64]>;
|
|
|
|
// Div
|
|
def : ReadAdvance<ReadID, 1, [WriteImm,WriteI,
|
|
WriteISReg, WriteIEReg,WriteIS,
|
|
WriteID32,WriteID64,
|
|
WriteIM32,WriteIM64]>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Subtarget-specific InstRWs.
|
|
|
|
//---
|
|
// Miscellaneous
|
|
//---
|
|
def : InstRW<[CortexA55WriteVLD2,CortexA55WriteVLD1], (instregex "LDP.*")>;
|
|
def : InstRW<[WriteI], (instrs COPY)>;
|
|
//---
|
|
// Vector Loads - 64-bit per cycle
|
|
//---
|
|
// 1-element structures
|
|
def : InstRW<[CortexA55WriteVLD1], (instregex "LD1i(8|16|32|64)$")>; // single element
|
|
def : InstRW<[CortexA55WriteVLD1], (instregex "LD1Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>; // replicate
|
|
def : InstRW<[CortexA55WriteVLD1], (instregex "LD1Onev(8b|4h|2s|1d)$")>;
|
|
def : InstRW<[CortexA55WriteVLD2], (instregex "LD1Onev(16b|8h|4s|2d)$")>;
|
|
def : InstRW<[CortexA55WriteVLD2], (instregex "LD1Twov(8b|4h|2s|1d)$")>; // multiple structures
|
|
def : InstRW<[CortexA55WriteVLD4], (instregex "LD1Twov(16b|8h|4s|2d)$")>;
|
|
def : InstRW<[CortexA55WriteVLD3], (instregex "LD1Threev(8b|4h|2s|1d)$")>;
|
|
def : InstRW<[CortexA55WriteVLD6], (instregex "LD1Threev(16b|8h|4s|2d)$")>;
|
|
def : InstRW<[CortexA55WriteVLD4], (instregex "LD1Fourv(8b|4h|2s|1d)$")>;
|
|
def : InstRW<[CortexA55WriteVLD8], (instregex "LD1Fourv(16b|8h|4s|2d)$")>;
|
|
|
|
def : InstRW<[CortexA55WriteVLD1, WriteAdr], (instregex "LD1i(8|16|32|64)_POST$")>;
|
|
def : InstRW<[CortexA55WriteVLD1, WriteAdr], (instregex "LD1Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
|
|
def : InstRW<[CortexA55WriteVLD1, WriteAdr], (instregex "LD1Onev(8b|4h|2s|1d)_POST$")>;
|
|
def : InstRW<[CortexA55WriteVLD2, WriteAdr], (instregex "LD1Onev(16b|8h|4s|2d)_POST$")>;
|
|
def : InstRW<[CortexA55WriteVLD2, WriteAdr], (instregex "LD1Twov(8b|4h|2s|1d)_POST$")>;
|
|
def : InstRW<[CortexA55WriteVLD4, WriteAdr], (instregex "LD1Twov(16b|8h|4s|2d)_POST$")>;
|
|
def : InstRW<[CortexA55WriteVLD3, WriteAdr], (instregex "LD1Threev(8b|4h|2s|1d)_POST$")>;
|
|
def : InstRW<[CortexA55WriteVLD6, WriteAdr], (instregex "LD1Threev(16b|8h|4s|2d)_POST$")>;
|
|
def : InstRW<[CortexA55WriteVLD4, WriteAdr], (instregex "LD1Fourv(8b|4h|2s|1d)_POST$")>;
|
|
def : InstRW<[CortexA55WriteVLD8, WriteAdr], (instregex "LD1Fourv(16b|8h|4s|2d)_POST$")>;
|
|
|
|
// 2-element structures
|
|
def : InstRW<[CortexA55WriteVLD2], (instregex "LD2i(8|16|32|64)$")>;
|
|
def : InstRW<[CortexA55WriteVLD2], (instregex "LD2Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
|
|
def : InstRW<[CortexA55WriteVLD2], (instregex "LD2Twov(8b|4h|2s)$")>;
|
|
def : InstRW<[CortexA55WriteVLD4], (instregex "LD2Twov(16b|8h|4s|2d)$")>;
|
|
|
|
def : InstRW<[CortexA55WriteVLD2, WriteAdr], (instregex "LD2i(8|16|32|64)(_POST)?$")>;
|
|
def : InstRW<[CortexA55WriteVLD2, WriteAdr], (instregex "LD2Rv(8b|4h|2s|1d|16b|8h|4s|2d)(_POST)?$")>;
|
|
def : InstRW<[CortexA55WriteVLD2, WriteAdr], (instregex "LD2Twov(8b|4h|2s)(_POST)?$")>;
|
|
def : InstRW<[CortexA55WriteVLD4, WriteAdr], (instregex "LD2Twov(16b|8h|4s|2d)(_POST)?$")>;
|
|
|
|
// 3-element structures
|
|
def : InstRW<[CortexA55WriteVLD2], (instregex "LD3i(8|16|32|64)$")>;
|
|
def : InstRW<[CortexA55WriteVLD2], (instregex "LD3Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
|
|
def : InstRW<[CortexA55WriteVLD3], (instregex "LD3Threev(8b|4h|2s|1d)$")>;
|
|
def : InstRW<[CortexA55WriteVLD6], (instregex "LD3Threev(16b|8h|4s|2d)$")>;
|
|
|
|
def : InstRW<[CortexA55WriteVLD2, WriteAdr], (instregex "LD3i(8|16|32|64)_POST$")>;
|
|
def : InstRW<[CortexA55WriteVLD2, WriteAdr], (instregex "LD3Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
|
|
def : InstRW<[CortexA55WriteVLD3, WriteAdr], (instregex "LD3Threev(8b|4h|2s|1d)_POST$")>;
|
|
def : InstRW<[CortexA55WriteVLD6, WriteAdr], (instregex "LD3Threev(16b|8h|4s|2d)_POST$")>;
|
|
|
|
// 4-element structures
|
|
def : InstRW<[CortexA55WriteVLD2], (instregex "LD4i(8|16|32|64)$")>; // load single 4-el structure to one lane of 4 regs.
|
|
def : InstRW<[CortexA55WriteVLD2], (instregex "LD4Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>; // load single 4-el structure, replicate to all lanes of 4 regs.
|
|
def : InstRW<[CortexA55WriteVLD4], (instregex "LD4Fourv(8b|4h|2s|1d)$")>; // load multiple 4-el structures to 4 regs.
|
|
def : InstRW<[CortexA55WriteVLD8], (instregex "LD4Fourv(16b|8h|4s|2d)$")>;
|
|
|
|
def : InstRW<[CortexA55WriteVLD2, WriteAdr], (instregex "LD4i(8|16|32|64)_POST$")>;
|
|
def : InstRW<[CortexA55WriteVLD2, WriteAdr], (instregex "LD4Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
|
|
def : InstRW<[CortexA55WriteVLD4, WriteAdr], (instregex "LD4Fourv(8b|4h|2s|1d)_POST$")>;
|
|
def : InstRW<[CortexA55WriteVLD8, WriteAdr], (instregex "LD4Fourv(16b|8h|4s|2d)_POST$")>;
|
|
|
|
//---
|
|
// Vector Stores
|
|
//---
|
|
def : InstRW<[CortexA55WriteVST1], (instregex "ST1i(8|16|32|64)$")>;
|
|
def : InstRW<[CortexA55WriteVST1], (instregex "ST1Onev(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
|
|
def : InstRW<[CortexA55WriteVST1], (instregex "ST1Twov(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
|
|
def : InstRW<[CortexA55WriteVST2], (instregex "ST1Threev(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
|
|
def : InstRW<[CortexA55WriteVST4], (instregex "ST1Fourv(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
|
|
def : InstRW<[CortexA55WriteVST1, WriteAdr], (instregex "ST1i(8|16|32|64)_POST$")>;
|
|
def : InstRW<[CortexA55WriteVST1, WriteAdr], (instregex "ST1Onev(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
|
|
def : InstRW<[CortexA55WriteVST1, WriteAdr], (instregex "ST1Twov(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
|
|
def : InstRW<[CortexA55WriteVST2, WriteAdr], (instregex "ST1Threev(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
|
|
def : InstRW<[CortexA55WriteVST4, WriteAdr], (instregex "ST1Fourv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
|
|
|
|
def : InstRW<[CortexA55WriteVST2], (instregex "ST2i(8|16|32|64)$")>;
|
|
def : InstRW<[CortexA55WriteVST2], (instregex "ST2Twov(8b|4h|2s)$")>;
|
|
def : InstRW<[CortexA55WriteVST4], (instregex "ST2Twov(16b|8h|4s|2d)$")>;
|
|
def : InstRW<[CortexA55WriteVST2, WriteAdr], (instregex "ST2i(8|16|32|64)_POST$")>;
|
|
def : InstRW<[CortexA55WriteVST2, WriteAdr], (instregex "ST2Twov(8b|4h|2s)_POST$")>;
|
|
def : InstRW<[CortexA55WriteVST4, WriteAdr], (instregex "ST2Twov(16b|8h|4s|2d)_POST$")>;
|
|
|
|
def : InstRW<[CortexA55WriteVST2], (instregex "ST3i(8|16|32|64)$")>;
|
|
def : InstRW<[CortexA55WriteVST4], (instregex "ST3Threev(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
|
|
def : InstRW<[CortexA55WriteVST2, WriteAdr], (instregex "ST3i(8|16|32|64)_POST$")>;
|
|
def : InstRW<[CortexA55WriteVST4, WriteAdr], (instregex "ST3Threev(8b|4h|2s|1d|2d|16b|8h|4s|4d)_POST$")>;
|
|
|
|
def : InstRW<[CortexA55WriteVST2], (instregex "ST4i(8|16|32|64)$")>;
|
|
def : InstRW<[CortexA55WriteVST4], (instregex "ST4Fourv(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
|
|
def : InstRW<[CortexA55WriteVST2, WriteAdr], (instregex "ST4i(8|16|32|64)_POST$")>;
|
|
def : InstRW<[CortexA55WriteVST4, WriteAdr], (instregex "ST4Fourv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
|
|
|
|
//---
|
|
// Floating Point Conversions, MAC, DIV, SQRT
|
|
//---
|
|
def : InstRW<[CortexA55WriteFPALU_F3], (instregex "^FCVT[ALMNPZ][SU](S|U)?(W|X)")>;
|
|
def : InstRW<[CortexA55WriteFPALU_F4], (instregex "^FCVT(X)?[ALMNPXZ](S|U|N)?v")>;
|
|
|
|
def : InstRW<[CortexA55WriteFPALU_F4], (instregex "^(S|U)CVTF(S|U)(W|X)(H|S|D)")>;
|
|
def : InstRW<[CortexA55WriteFPALU_F4], (instregex "^(S|U)CVTF(h|s|d)")>;
|
|
def : InstRW<[CortexA55WriteFPALU_F4], (instregex "^(S|U)CVTFv")>;
|
|
|
|
def : InstRW<[CortexA55WriteFMAC], (instregex "^FN?M(ADD|SUB).*")>;
|
|
def : InstRW<[CortexA55WriteFMAC], (instregex "^FML(A|S).*")>;
|
|
def : InstRW<[CortexA55WriteFDivHP], (instrs FDIVHrr)>;
|
|
def : InstRW<[CortexA55WriteFDivSP], (instrs FDIVSrr)>;
|
|
def : InstRW<[CortexA55WriteFDivDP], (instrs FDIVDrr)>;
|
|
def : InstRW<[CortexA55WriteFDivHP], (instregex "^FDIVv.*16$")>;
|
|
def : InstRW<[CortexA55WriteFDivSP], (instregex "^FDIVv.*32$")>;
|
|
def : InstRW<[CortexA55WriteFDivDP], (instregex "^FDIVv.*64$")>;
|
|
def : InstRW<[CortexA55WriteFSqrtHP], (instregex "^.*SQRT.*16$")>;
|
|
def : InstRW<[CortexA55WriteFSqrtSP], (instregex "^.*SQRT.*32$")>;
|
|
def : InstRW<[CortexA55WriteFSqrtDP], (instregex "^.*SQRT.*64$")>;
|
|
}
|