You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
705 lines
25 KiB
705 lines
25 KiB
//=== AArch64PostLegalizerLowering.cpp --------------------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// \file
|
|
/// Post-legalization lowering for instructions.
|
|
///
|
|
/// This is used to offload pattern matching from the selector.
|
|
///
|
|
/// For example, this combiner will notice that a G_SHUFFLE_VECTOR is actually
|
|
/// a G_ZIP, G_UZP, etc.
|
|
///
|
|
/// General optimization combines should be handled by either the
|
|
/// AArch64PostLegalizerCombiner or the AArch64PreLegalizerCombiner.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AArch64TargetMachine.h"
|
|
#include "AArch64GlobalISelUtils.h"
|
|
#include "MCTargetDesc/AArch64MCTargetDesc.h"
|
|
#include "llvm/CodeGen/GlobalISel/Combiner.h"
|
|
#include "llvm/CodeGen/GlobalISel/CombinerHelper.h"
|
|
#include "llvm/CodeGen/GlobalISel/CombinerInfo.h"
|
|
#include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
|
|
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
|
|
#include "llvm/CodeGen/GlobalISel/Utils.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/TargetOpcodes.h"
|
|
#include "llvm/CodeGen/TargetPassConfig.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
#define DEBUG_TYPE "aarch64-postlegalizer-lowering"
|
|
|
|
using namespace llvm;
|
|
using namespace MIPatternMatch;
|
|
using namespace AArch64GISelUtils;
|
|
|
|
/// Represents a pseudo instruction which replaces a G_SHUFFLE_VECTOR.
|
|
///
|
|
/// Used for matching target-supported shuffles before codegen.
|
|
struct ShuffleVectorPseudo {
|
|
unsigned Opc; ///< Opcode for the instruction. (E.g. G_ZIP1)
|
|
Register Dst; ///< Destination register.
|
|
SmallVector<SrcOp, 2> SrcOps; ///< Source registers.
|
|
ShuffleVectorPseudo(unsigned Opc, Register Dst,
|
|
std::initializer_list<SrcOp> SrcOps)
|
|
: Opc(Opc), Dst(Dst), SrcOps(SrcOps){};
|
|
ShuffleVectorPseudo() {}
|
|
};
|
|
|
|
/// Check if a vector shuffle corresponds to a REV instruction with the
|
|
/// specified blocksize.
|
|
static bool isREVMask(ArrayRef<int> M, unsigned EltSize, unsigned NumElts,
|
|
unsigned BlockSize) {
|
|
assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) &&
|
|
"Only possible block sizes for REV are: 16, 32, 64");
|
|
assert(EltSize != 64 && "EltSize cannot be 64 for REV mask.");
|
|
|
|
unsigned BlockElts = M[0] + 1;
|
|
|
|
// If the first shuffle index is UNDEF, be optimistic.
|
|
if (M[0] < 0)
|
|
BlockElts = BlockSize / EltSize;
|
|
|
|
if (BlockSize <= EltSize || BlockSize != BlockElts * EltSize)
|
|
return false;
|
|
|
|
for (unsigned i = 0; i < NumElts; ++i) {
|
|
// Ignore undef indices.
|
|
if (M[i] < 0)
|
|
continue;
|
|
if (static_cast<unsigned>(M[i]) !=
|
|
(i - i % BlockElts) + (BlockElts - 1 - i % BlockElts))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Determines if \p M is a shuffle vector mask for a TRN of \p NumElts.
|
|
/// Whether or not G_TRN1 or G_TRN2 should be used is stored in \p WhichResult.
|
|
static bool isTRNMask(ArrayRef<int> M, unsigned NumElts,
|
|
unsigned &WhichResult) {
|
|
if (NumElts % 2 != 0)
|
|
return false;
|
|
WhichResult = (M[0] == 0 ? 0 : 1);
|
|
for (unsigned i = 0; i < NumElts; i += 2) {
|
|
if ((M[i] >= 0 && static_cast<unsigned>(M[i]) != i + WhichResult) ||
|
|
(M[i + 1] >= 0 &&
|
|
static_cast<unsigned>(M[i + 1]) != i + NumElts + WhichResult))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Check if a G_EXT instruction can handle a shuffle mask \p M when the vector
|
|
/// sources of the shuffle are different.
|
|
static Optional<std::pair<bool, uint64_t>> getExtMask(ArrayRef<int> M,
|
|
unsigned NumElts) {
|
|
// Look for the first non-undef element.
|
|
auto FirstRealElt = find_if(M, [](int Elt) { return Elt >= 0; });
|
|
if (FirstRealElt == M.end())
|
|
return None;
|
|
|
|
// Use APInt to handle overflow when calculating expected element.
|
|
unsigned MaskBits = APInt(32, NumElts * 2).logBase2();
|
|
APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1);
|
|
|
|
// The following shuffle indices must be the successive elements after the
|
|
// first real element.
|
|
if (any_of(
|
|
make_range(std::next(FirstRealElt), M.end()),
|
|
[&ExpectedElt](int Elt) { return Elt != ExpectedElt++ && Elt >= 0; }))
|
|
return None;
|
|
|
|
// The index of an EXT is the first element if it is not UNDEF.
|
|
// Watch out for the beginning UNDEFs. The EXT index should be the expected
|
|
// value of the first element. E.g.
|
|
// <-1, -1, 3, ...> is treated as <1, 2, 3, ...>.
|
|
// <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>.
|
|
// ExpectedElt is the last mask index plus 1.
|
|
uint64_t Imm = ExpectedElt.getZExtValue();
|
|
bool ReverseExt = false;
|
|
|
|
// There are two difference cases requiring to reverse input vectors.
|
|
// For example, for vector <4 x i32> we have the following cases,
|
|
// Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>)
|
|
// Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>)
|
|
// For both cases, we finally use mask <5, 6, 7, 0>, which requires
|
|
// to reverse two input vectors.
|
|
if (Imm < NumElts)
|
|
ReverseExt = true;
|
|
else
|
|
Imm -= NumElts;
|
|
return std::make_pair(ReverseExt, Imm);
|
|
}
|
|
|
|
/// Determines if \p M is a shuffle vector mask for a UZP of \p NumElts.
|
|
/// Whether or not G_UZP1 or G_UZP2 should be used is stored in \p WhichResult.
|
|
static bool isUZPMask(ArrayRef<int> M, unsigned NumElts,
|
|
unsigned &WhichResult) {
|
|
WhichResult = (M[0] == 0 ? 0 : 1);
|
|
for (unsigned i = 0; i != NumElts; ++i) {
|
|
// Skip undef indices.
|
|
if (M[i] < 0)
|
|
continue;
|
|
if (static_cast<unsigned>(M[i]) != 2 * i + WhichResult)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// \return true if \p M is a zip mask for a shuffle vector of \p NumElts.
|
|
/// Whether or not G_ZIP1 or G_ZIP2 should be used is stored in \p WhichResult.
|
|
static bool isZipMask(ArrayRef<int> M, unsigned NumElts,
|
|
unsigned &WhichResult) {
|
|
if (NumElts % 2 != 0)
|
|
return false;
|
|
|
|
// 0 means use ZIP1, 1 means use ZIP2.
|
|
WhichResult = (M[0] == 0 ? 0 : 1);
|
|
unsigned Idx = WhichResult * NumElts / 2;
|
|
for (unsigned i = 0; i != NumElts; i += 2) {
|
|
if ((M[i] >= 0 && static_cast<unsigned>(M[i]) != Idx) ||
|
|
(M[i + 1] >= 0 && static_cast<unsigned>(M[i + 1]) != Idx + NumElts))
|
|
return false;
|
|
Idx += 1;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// \return true if a G_SHUFFLE_VECTOR instruction \p MI can be replaced with a
|
|
/// G_REV instruction. Returns the appropriate G_REV opcode in \p Opc.
|
|
static bool matchREV(MachineInstr &MI, MachineRegisterInfo &MRI,
|
|
ShuffleVectorPseudo &MatchInfo) {
|
|
assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
|
|
ArrayRef<int> ShuffleMask = MI.getOperand(3).getShuffleMask();
|
|
Register Dst = MI.getOperand(0).getReg();
|
|
Register Src = MI.getOperand(1).getReg();
|
|
LLT Ty = MRI.getType(Dst);
|
|
unsigned EltSize = Ty.getScalarSizeInBits();
|
|
|
|
// Element size for a rev cannot be 64.
|
|
if (EltSize == 64)
|
|
return false;
|
|
|
|
unsigned NumElts = Ty.getNumElements();
|
|
|
|
// Try to produce G_REV64
|
|
if (isREVMask(ShuffleMask, EltSize, NumElts, 64)) {
|
|
MatchInfo = ShuffleVectorPseudo(AArch64::G_REV64, Dst, {Src});
|
|
return true;
|
|
}
|
|
|
|
// TODO: Produce G_REV32 and G_REV16 once we have proper legalization support.
|
|
// This should be identical to above, but with a constant 32 and constant
|
|
// 16.
|
|
return false;
|
|
}
|
|
|
|
/// \return true if a G_SHUFFLE_VECTOR instruction \p MI can be replaced with
|
|
/// a G_TRN1 or G_TRN2 instruction.
|
|
static bool matchTRN(MachineInstr &MI, MachineRegisterInfo &MRI,
|
|
ShuffleVectorPseudo &MatchInfo) {
|
|
assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
|
|
unsigned WhichResult;
|
|
ArrayRef<int> ShuffleMask = MI.getOperand(3).getShuffleMask();
|
|
Register Dst = MI.getOperand(0).getReg();
|
|
unsigned NumElts = MRI.getType(Dst).getNumElements();
|
|
if (!isTRNMask(ShuffleMask, NumElts, WhichResult))
|
|
return false;
|
|
unsigned Opc = (WhichResult == 0) ? AArch64::G_TRN1 : AArch64::G_TRN2;
|
|
Register V1 = MI.getOperand(1).getReg();
|
|
Register V2 = MI.getOperand(2).getReg();
|
|
MatchInfo = ShuffleVectorPseudo(Opc, Dst, {V1, V2});
|
|
return true;
|
|
}
|
|
|
|
/// \return true if a G_SHUFFLE_VECTOR instruction \p MI can be replaced with
|
|
/// a G_UZP1 or G_UZP2 instruction.
|
|
///
|
|
/// \param [in] MI - The shuffle vector instruction.
|
|
/// \param [out] MatchInfo - Either G_UZP1 or G_UZP2 on success.
|
|
static bool matchUZP(MachineInstr &MI, MachineRegisterInfo &MRI,
|
|
ShuffleVectorPseudo &MatchInfo) {
|
|
assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
|
|
unsigned WhichResult;
|
|
ArrayRef<int> ShuffleMask = MI.getOperand(3).getShuffleMask();
|
|
Register Dst = MI.getOperand(0).getReg();
|
|
unsigned NumElts = MRI.getType(Dst).getNumElements();
|
|
if (!isUZPMask(ShuffleMask, NumElts, WhichResult))
|
|
return false;
|
|
unsigned Opc = (WhichResult == 0) ? AArch64::G_UZP1 : AArch64::G_UZP2;
|
|
Register V1 = MI.getOperand(1).getReg();
|
|
Register V2 = MI.getOperand(2).getReg();
|
|
MatchInfo = ShuffleVectorPseudo(Opc, Dst, {V1, V2});
|
|
return true;
|
|
}
|
|
|
|
static bool matchZip(MachineInstr &MI, MachineRegisterInfo &MRI,
|
|
ShuffleVectorPseudo &MatchInfo) {
|
|
assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
|
|
unsigned WhichResult;
|
|
ArrayRef<int> ShuffleMask = MI.getOperand(3).getShuffleMask();
|
|
Register Dst = MI.getOperand(0).getReg();
|
|
unsigned NumElts = MRI.getType(Dst).getNumElements();
|
|
if (!isZipMask(ShuffleMask, NumElts, WhichResult))
|
|
return false;
|
|
unsigned Opc = (WhichResult == 0) ? AArch64::G_ZIP1 : AArch64::G_ZIP2;
|
|
Register V1 = MI.getOperand(1).getReg();
|
|
Register V2 = MI.getOperand(2).getReg();
|
|
MatchInfo = ShuffleVectorPseudo(Opc, Dst, {V1, V2});
|
|
return true;
|
|
}
|
|
|
|
/// Helper function for matchDup.
|
|
static bool matchDupFromInsertVectorElt(int Lane, MachineInstr &MI,
|
|
MachineRegisterInfo &MRI,
|
|
ShuffleVectorPseudo &MatchInfo) {
|
|
if (Lane != 0)
|
|
return false;
|
|
|
|
// Try to match a vector splat operation into a dup instruction.
|
|
// We're looking for this pattern:
|
|
//
|
|
// %scalar:gpr(s64) = COPY $x0
|
|
// %undef:fpr(<2 x s64>) = G_IMPLICIT_DEF
|
|
// %cst0:gpr(s32) = G_CONSTANT i32 0
|
|
// %zerovec:fpr(<2 x s32>) = G_BUILD_VECTOR %cst0(s32), %cst0(s32)
|
|
// %ins:fpr(<2 x s64>) = G_INSERT_VECTOR_ELT %undef, %scalar(s64), %cst0(s32)
|
|
// %splat:fpr(<2 x s64>) = G_SHUFFLE_VECTOR %ins(<2 x s64>), %undef, %zerovec(<2 x s32>)
|
|
//
|
|
// ...into:
|
|
// %splat = G_DUP %scalar
|
|
|
|
// Begin matching the insert.
|
|
auto *InsMI = getOpcodeDef(TargetOpcode::G_INSERT_VECTOR_ELT,
|
|
MI.getOperand(1).getReg(), MRI);
|
|
if (!InsMI)
|
|
return false;
|
|
// Match the undef vector operand.
|
|
if (!getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, InsMI->getOperand(1).getReg(),
|
|
MRI))
|
|
return false;
|
|
|
|
// Match the index constant 0.
|
|
if (!mi_match(InsMI->getOperand(3).getReg(), MRI, m_ZeroInt()))
|
|
return false;
|
|
|
|
MatchInfo = ShuffleVectorPseudo(AArch64::G_DUP, MI.getOperand(0).getReg(),
|
|
{InsMI->getOperand(2).getReg()});
|
|
return true;
|
|
}
|
|
|
|
/// Helper function for matchDup.
|
|
static bool matchDupFromBuildVector(int Lane, MachineInstr &MI,
|
|
MachineRegisterInfo &MRI,
|
|
ShuffleVectorPseudo &MatchInfo) {
|
|
assert(Lane >= 0 && "Expected positive lane?");
|
|
// Test if the LHS is a BUILD_VECTOR. If it is, then we can just reference the
|
|
// lane's definition directly.
|
|
auto *BuildVecMI = getOpcodeDef(TargetOpcode::G_BUILD_VECTOR,
|
|
MI.getOperand(1).getReg(), MRI);
|
|
if (!BuildVecMI)
|
|
return false;
|
|
Register Reg = BuildVecMI->getOperand(Lane + 1).getReg();
|
|
MatchInfo =
|
|
ShuffleVectorPseudo(AArch64::G_DUP, MI.getOperand(0).getReg(), {Reg});
|
|
return true;
|
|
}
|
|
|
|
static bool matchDup(MachineInstr &MI, MachineRegisterInfo &MRI,
|
|
ShuffleVectorPseudo &MatchInfo) {
|
|
assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
|
|
auto MaybeLane = getSplatIndex(MI);
|
|
if (!MaybeLane)
|
|
return false;
|
|
int Lane = *MaybeLane;
|
|
// If this is undef splat, generate it via "just" vdup, if possible.
|
|
if (Lane < 0)
|
|
Lane = 0;
|
|
if (matchDupFromInsertVectorElt(Lane, MI, MRI, MatchInfo))
|
|
return true;
|
|
if (matchDupFromBuildVector(Lane, MI, MRI, MatchInfo))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static bool matchEXT(MachineInstr &MI, MachineRegisterInfo &MRI,
|
|
ShuffleVectorPseudo &MatchInfo) {
|
|
assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
|
|
Register Dst = MI.getOperand(0).getReg();
|
|
auto ExtInfo = getExtMask(MI.getOperand(3).getShuffleMask(),
|
|
MRI.getType(Dst).getNumElements());
|
|
if (!ExtInfo)
|
|
return false;
|
|
bool ReverseExt;
|
|
uint64_t Imm;
|
|
std::tie(ReverseExt, Imm) = *ExtInfo;
|
|
Register V1 = MI.getOperand(1).getReg();
|
|
Register V2 = MI.getOperand(2).getReg();
|
|
if (ReverseExt)
|
|
std::swap(V1, V2);
|
|
uint64_t ExtFactor = MRI.getType(V1).getScalarSizeInBits() / 8;
|
|
Imm *= ExtFactor;
|
|
MatchInfo = ShuffleVectorPseudo(AArch64::G_EXT, Dst, {V1, V2, Imm});
|
|
return true;
|
|
}
|
|
|
|
/// Replace a G_SHUFFLE_VECTOR instruction with a pseudo.
|
|
/// \p Opc is the opcode to use. \p MI is the G_SHUFFLE_VECTOR.
|
|
static bool applyShuffleVectorPseudo(MachineInstr &MI,
|
|
ShuffleVectorPseudo &MatchInfo) {
|
|
MachineIRBuilder MIRBuilder(MI);
|
|
MIRBuilder.buildInstr(MatchInfo.Opc, {MatchInfo.Dst}, MatchInfo.SrcOps);
|
|
MI.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
/// Replace a G_SHUFFLE_VECTOR instruction with G_EXT.
|
|
/// Special-cased because the constant operand must be emitted as a G_CONSTANT
|
|
/// for the imported tablegen patterns to work.
|
|
static bool applyEXT(MachineInstr &MI, ShuffleVectorPseudo &MatchInfo) {
|
|
MachineIRBuilder MIRBuilder(MI);
|
|
// Tablegen patterns expect an i32 G_CONSTANT as the final op.
|
|
auto Cst =
|
|
MIRBuilder.buildConstant(LLT::scalar(32), MatchInfo.SrcOps[2].getImm());
|
|
MIRBuilder.buildInstr(MatchInfo.Opc, {MatchInfo.Dst},
|
|
{MatchInfo.SrcOps[0], MatchInfo.SrcOps[1], Cst});
|
|
MI.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
/// isVShiftRImm - Check if this is a valid vector for the immediate
|
|
/// operand of a vector shift right operation. The value must be in the range:
|
|
/// 1 <= Value <= ElementBits for a right shift.
|
|
static bool isVShiftRImm(Register Reg, MachineRegisterInfo &MRI, LLT Ty,
|
|
int64_t &Cnt) {
|
|
assert(Ty.isVector() && "vector shift count is not a vector type");
|
|
MachineInstr *MI = MRI.getVRegDef(Reg);
|
|
auto Cst = getBuildVectorConstantSplat(*MI, MRI);
|
|
if (!Cst)
|
|
return false;
|
|
Cnt = *Cst;
|
|
int64_t ElementBits = Ty.getScalarSizeInBits();
|
|
return Cnt >= 1 && Cnt <= ElementBits;
|
|
}
|
|
|
|
/// Match a vector G_ASHR or G_LSHR with a valid immediate shift.
|
|
static bool matchVAshrLshrImm(MachineInstr &MI, MachineRegisterInfo &MRI,
|
|
int64_t &Imm) {
|
|
assert(MI.getOpcode() == TargetOpcode::G_ASHR ||
|
|
MI.getOpcode() == TargetOpcode::G_LSHR);
|
|
LLT Ty = MRI.getType(MI.getOperand(1).getReg());
|
|
if (!Ty.isVector())
|
|
return false;
|
|
return isVShiftRImm(MI.getOperand(2).getReg(), MRI, Ty, Imm);
|
|
}
|
|
|
|
static bool applyVAshrLshrImm(MachineInstr &MI, MachineRegisterInfo &MRI,
|
|
int64_t &Imm) {
|
|
unsigned Opc = MI.getOpcode();
|
|
assert(Opc == TargetOpcode::G_ASHR || Opc == TargetOpcode::G_LSHR);
|
|
unsigned NewOpc =
|
|
Opc == TargetOpcode::G_ASHR ? AArch64::G_VASHR : AArch64::G_VLSHR;
|
|
MachineIRBuilder MIB(MI);
|
|
auto ImmDef = MIB.buildConstant(LLT::scalar(32), Imm);
|
|
MIB.buildInstr(NewOpc, {MI.getOperand(0)}, {MI.getOperand(1), ImmDef});
|
|
MI.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
/// Determine if it is possible to modify the \p RHS and predicate \p P of a
|
|
/// G_ICMP instruction such that the right-hand side is an arithmetic immediate.
|
|
///
|
|
/// \returns A pair containing the updated immediate and predicate which may
|
|
/// be used to optimize the instruction.
|
|
///
|
|
/// \note This assumes that the comparison has been legalized.
|
|
Optional<std::pair<uint64_t, CmpInst::Predicate>>
|
|
tryAdjustICmpImmAndPred(Register RHS, CmpInst::Predicate P,
|
|
const MachineRegisterInfo &MRI) {
|
|
const auto &Ty = MRI.getType(RHS);
|
|
if (Ty.isVector())
|
|
return None;
|
|
unsigned Size = Ty.getSizeInBits();
|
|
assert((Size == 32 || Size == 64) && "Expected 32 or 64 bit compare only?");
|
|
|
|
// If the RHS is not a constant, or the RHS is already a valid arithmetic
|
|
// immediate, then there is nothing to change.
|
|
auto ValAndVReg = getConstantVRegValWithLookThrough(RHS, MRI);
|
|
if (!ValAndVReg)
|
|
return None;
|
|
uint64_t C = ValAndVReg->Value;
|
|
if (isLegalArithImmed(C))
|
|
return None;
|
|
|
|
// We have a non-arithmetic immediate. Check if adjusting the immediate and
|
|
// adjusting the predicate will result in a legal arithmetic immediate.
|
|
switch (P) {
|
|
default:
|
|
return None;
|
|
case CmpInst::ICMP_SLT:
|
|
case CmpInst::ICMP_SGE:
|
|
// Check for
|
|
//
|
|
// x slt c => x sle c - 1
|
|
// x sge c => x sgt c - 1
|
|
//
|
|
// When c is not the smallest possible negative number.
|
|
if ((Size == 64 && static_cast<int64_t>(C) == INT64_MIN) ||
|
|
(Size == 32 && static_cast<int32_t>(C) == INT32_MIN))
|
|
return None;
|
|
P = (P == CmpInst::ICMP_SLT) ? CmpInst::ICMP_SLE : CmpInst::ICMP_SGT;
|
|
C -= 1;
|
|
break;
|
|
case CmpInst::ICMP_ULT:
|
|
case CmpInst::ICMP_UGE:
|
|
// Check for
|
|
//
|
|
// x ult c => x ule c - 1
|
|
// x uge c => x ugt c - 1
|
|
//
|
|
// When c is not zero.
|
|
if (C == 0)
|
|
return None;
|
|
P = (P == CmpInst::ICMP_ULT) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT;
|
|
C -= 1;
|
|
break;
|
|
case CmpInst::ICMP_SLE:
|
|
case CmpInst::ICMP_SGT:
|
|
// Check for
|
|
//
|
|
// x sle c => x slt c + 1
|
|
// x sgt c => s sge c + 1
|
|
//
|
|
// When c is not the largest possible signed integer.
|
|
if ((Size == 32 && static_cast<int32_t>(C) == INT32_MAX) ||
|
|
(Size == 64 && static_cast<int64_t>(C) == INT64_MAX))
|
|
return None;
|
|
P = (P == CmpInst::ICMP_SLE) ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGE;
|
|
C += 1;
|
|
break;
|
|
case CmpInst::ICMP_ULE:
|
|
case CmpInst::ICMP_UGT:
|
|
// Check for
|
|
//
|
|
// x ule c => x ult c + 1
|
|
// x ugt c => s uge c + 1
|
|
//
|
|
// When c is not the largest possible unsigned integer.
|
|
if ((Size == 32 && static_cast<uint32_t>(C) == UINT32_MAX) ||
|
|
(Size == 64 && C == UINT64_MAX))
|
|
return None;
|
|
P = (P == CmpInst::ICMP_ULE) ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE;
|
|
C += 1;
|
|
break;
|
|
}
|
|
|
|
// Check if the new constant is valid, and return the updated constant and
|
|
// predicate if it is.
|
|
if (Size == 32)
|
|
C = static_cast<uint32_t>(C);
|
|
if (!isLegalArithImmed(C))
|
|
return None;
|
|
return {{C, P}};
|
|
}
|
|
|
|
/// Determine whether or not it is possible to update the RHS and predicate of
|
|
/// a G_ICMP instruction such that the RHS will be selected as an arithmetic
|
|
/// immediate.
|
|
///
|
|
/// \p MI - The G_ICMP instruction
|
|
/// \p MatchInfo - The new RHS immediate and predicate on success
|
|
///
|
|
/// See tryAdjustICmpImmAndPred for valid transformations.
|
|
bool matchAdjustICmpImmAndPred(
|
|
MachineInstr &MI, const MachineRegisterInfo &MRI,
|
|
std::pair<uint64_t, CmpInst::Predicate> &MatchInfo) {
|
|
assert(MI.getOpcode() == TargetOpcode::G_ICMP);
|
|
Register RHS = MI.getOperand(3).getReg();
|
|
auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
|
|
if (auto MaybeNewImmAndPred = tryAdjustICmpImmAndPred(RHS, Pred, MRI)) {
|
|
MatchInfo = *MaybeNewImmAndPred;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool applyAdjustICmpImmAndPred(
|
|
MachineInstr &MI, std::pair<uint64_t, CmpInst::Predicate> &MatchInfo,
|
|
MachineIRBuilder &MIB, GISelChangeObserver &Observer) {
|
|
MIB.setInstrAndDebugLoc(MI);
|
|
MachineOperand &RHS = MI.getOperand(3);
|
|
MachineRegisterInfo &MRI = *MIB.getMRI();
|
|
auto Cst = MIB.buildConstant(MRI.cloneVirtualRegister(RHS.getReg()),
|
|
MatchInfo.first);
|
|
Observer.changingInstr(MI);
|
|
RHS.setReg(Cst->getOperand(0).getReg());
|
|
MI.getOperand(1).setPredicate(MatchInfo.second);
|
|
Observer.changedInstr(MI);
|
|
return true;
|
|
}
|
|
|
|
bool matchDupLane(MachineInstr &MI, MachineRegisterInfo &MRI,
|
|
std::pair<unsigned, int> &MatchInfo) {
|
|
assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
|
|
Register Src1Reg = MI.getOperand(1).getReg();
|
|
const LLT SrcTy = MRI.getType(Src1Reg);
|
|
const LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
|
|
|
|
auto LaneIdx = getSplatIndex(MI);
|
|
if (!LaneIdx)
|
|
return false;
|
|
|
|
// The lane idx should be within the first source vector.
|
|
if (*LaneIdx >= SrcTy.getNumElements())
|
|
return false;
|
|
|
|
if (DstTy != SrcTy)
|
|
return false;
|
|
|
|
LLT ScalarTy = SrcTy.getElementType();
|
|
unsigned ScalarSize = ScalarTy.getSizeInBits();
|
|
|
|
unsigned Opc = 0;
|
|
switch (SrcTy.getNumElements()) {
|
|
case 2:
|
|
if (ScalarSize == 64)
|
|
Opc = AArch64::G_DUPLANE64;
|
|
break;
|
|
case 4:
|
|
if (ScalarSize == 32)
|
|
Opc = AArch64::G_DUPLANE32;
|
|
break;
|
|
case 8:
|
|
if (ScalarSize == 16)
|
|
Opc = AArch64::G_DUPLANE16;
|
|
break;
|
|
case 16:
|
|
if (ScalarSize == 8)
|
|
Opc = AArch64::G_DUPLANE8;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
if (!Opc)
|
|
return false;
|
|
|
|
MatchInfo.first = Opc;
|
|
MatchInfo.second = *LaneIdx;
|
|
return true;
|
|
}
|
|
|
|
bool applyDupLane(MachineInstr &MI, MachineRegisterInfo &MRI,
|
|
MachineIRBuilder &B, std::pair<unsigned, int> &MatchInfo) {
|
|
assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
|
|
B.setInstrAndDebugLoc(MI);
|
|
auto Lane = B.buildConstant(LLT::scalar(64), MatchInfo.second);
|
|
B.buildInstr(MatchInfo.first, {MI.getOperand(0).getReg()},
|
|
{MI.getOperand(1).getReg(), Lane});
|
|
MI.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
#define AARCH64POSTLEGALIZERLOWERINGHELPER_GENCOMBINERHELPER_DEPS
|
|
#include "AArch64GenPostLegalizeGILowering.inc"
|
|
#undef AARCH64POSTLEGALIZERLOWERINGHELPER_GENCOMBINERHELPER_DEPS
|
|
|
|
namespace {
|
|
#define AARCH64POSTLEGALIZERLOWERINGHELPER_GENCOMBINERHELPER_H
|
|
#include "AArch64GenPostLegalizeGILowering.inc"
|
|
#undef AARCH64POSTLEGALIZERLOWERINGHELPER_GENCOMBINERHELPER_H
|
|
|
|
class AArch64PostLegalizerLoweringInfo : public CombinerInfo {
|
|
public:
|
|
AArch64GenPostLegalizerLoweringHelperRuleConfig GeneratedRuleCfg;
|
|
|
|
AArch64PostLegalizerLoweringInfo(bool OptSize, bool MinSize)
|
|
: CombinerInfo(/*AllowIllegalOps*/ true, /*ShouldLegalizeIllegal*/ false,
|
|
/*LegalizerInfo*/ nullptr, /*OptEnabled = */ true, OptSize,
|
|
MinSize) {
|
|
if (!GeneratedRuleCfg.parseCommandLineOption())
|
|
report_fatal_error("Invalid rule identifier");
|
|
}
|
|
|
|
virtual bool combine(GISelChangeObserver &Observer, MachineInstr &MI,
|
|
MachineIRBuilder &B) const override;
|
|
};
|
|
|
|
bool AArch64PostLegalizerLoweringInfo::combine(GISelChangeObserver &Observer,
|
|
MachineInstr &MI,
|
|
MachineIRBuilder &B) const {
|
|
CombinerHelper Helper(Observer, B);
|
|
AArch64GenPostLegalizerLoweringHelper Generated(GeneratedRuleCfg);
|
|
return Generated.tryCombineAll(Observer, MI, B, Helper);
|
|
}
|
|
|
|
#define AARCH64POSTLEGALIZERLOWERINGHELPER_GENCOMBINERHELPER_CPP
|
|
#include "AArch64GenPostLegalizeGILowering.inc"
|
|
#undef AARCH64POSTLEGALIZERLOWERINGHELPER_GENCOMBINERHELPER_CPP
|
|
|
|
class AArch64PostLegalizerLowering : public MachineFunctionPass {
|
|
public:
|
|
static char ID;
|
|
|
|
AArch64PostLegalizerLowering();
|
|
|
|
StringRef getPassName() const override {
|
|
return "AArch64PostLegalizerLowering";
|
|
}
|
|
|
|
bool runOnMachineFunction(MachineFunction &MF) override;
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override;
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
void AArch64PostLegalizerLowering::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.addRequired<TargetPassConfig>();
|
|
AU.setPreservesCFG();
|
|
getSelectionDAGFallbackAnalysisUsage(AU);
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
AArch64PostLegalizerLowering::AArch64PostLegalizerLowering()
|
|
: MachineFunctionPass(ID) {
|
|
initializeAArch64PostLegalizerLoweringPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool AArch64PostLegalizerLowering::runOnMachineFunction(MachineFunction &MF) {
|
|
if (MF.getProperties().hasProperty(
|
|
MachineFunctionProperties::Property::FailedISel))
|
|
return false;
|
|
assert(MF.getProperties().hasProperty(
|
|
MachineFunctionProperties::Property::Legalized) &&
|
|
"Expected a legalized function?");
|
|
auto *TPC = &getAnalysis<TargetPassConfig>();
|
|
const Function &F = MF.getFunction();
|
|
AArch64PostLegalizerLoweringInfo PCInfo(F.hasOptSize(), F.hasMinSize());
|
|
Combiner C(PCInfo, TPC);
|
|
return C.combineMachineInstrs(MF, /*CSEInfo*/ nullptr);
|
|
}
|
|
|
|
char AArch64PostLegalizerLowering::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(AArch64PostLegalizerLowering, DEBUG_TYPE,
|
|
"Lower AArch64 MachineInstrs after legalization", false,
|
|
false)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
|
|
INITIALIZE_PASS_END(AArch64PostLegalizerLowering, DEBUG_TYPE,
|
|
"Lower AArch64 MachineInstrs after legalization", false,
|
|
false)
|
|
|
|
namespace llvm {
|
|
FunctionPass *createAArch64PostLegalizerLowering() {
|
|
return new AArch64PostLegalizerLowering();
|
|
}
|
|
} // end namespace llvm
|