You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

386 lines
17 KiB

// RUN: mlir-opt -allow-unregistered-dialect %s -split-input-file -affine-pipeline-data-transfer | FileCheck %s
// -----
// CHECK-DAG: [[$MOD_2:#map[0-9]+]] = affine_map<(d0) -> (d0 mod 2)>
// CHECK-DAG: [[$MAP_MINUS_1:#map[0-9]+]] = affine_map<(d0) -> (d0 - 1)>
// CHECK-LABEL: func @loop_nest_dma() {
func @loop_nest_dma() {
%A = alloc() : memref<256 x f32, affine_map<(d0) -> (d0)>, 0>
%Ah = alloc() : memref<32 x f32, affine_map<(d0) -> (d0)>, 1>
%tag = alloc() : memref<1 x f32>
%zero = constant 0 : index
%num_elts = constant 32 : index
affine.for %i = 0 to 8 {
affine.dma_start %A[%i], %Ah[%i], %tag[%zero], %num_elts : memref<256 x f32>, memref<32 x f32, 1>, memref<1 x f32>
affine.dma_wait %tag[%zero], %num_elts : memref<1 x f32>
%v = affine.load %Ah[%i] : memref<32 x f32, affine_map<(d0) -> (d0)>, 1>
%r = "compute"(%v) : (f32) -> (f32)
affine.store %r, %Ah[%i] : memref<32 x f32, affine_map<(d0) -> (d0)>, 1>
affine.for %j = 0 to 32 {
"do_more_compute"(%i, %j) : (index, index) -> ()
}
}
dealloc %tag : memref<1 x f32>
dealloc %Ah : memref<32 x f32, affine_map<(d0) -> (d0)>, 1>
return
}
// CHECK: %{{.*}} = alloc() : memref<256xf32>
// CHECK: %{{.*}} = alloc() : memref<2x32xf32, 1>
// CHECK-NEXT: %{{.*}} = alloc() : memref<2x1xf32>
// CHECK-NEXT: affine.dma_start %{{.*}}[%{{.*}}], %{{.*}}[%{{.*}} mod 2, %{{.*}}], %{{.*}}[%{{.*}} mod 2, 0], %{{.*}} : memref<256xf32>, memref<2x32xf32, 1>, memref<2x1xf32>
// CHECK-NEXT: affine.for %{{.*}} = 1 to 8 {
// CHECK-NEXT: affine.dma_start %{{.*}}[%{{.*}}], %{{.*}}[%{{.*}} mod 2, %{{.*}}], %{{.*}}[%{{.*}} mod 2, 0], %{{.*}} : memref<256xf32>, memref<2x32xf32, 1>, memref<2x1xf32>
// CHECK-NEXT: affine.apply [[$MAP_MINUS_1]](%{{.*}})
// CHECK-NEXT: affine.apply [[$MOD_2]](%{{.*}})
// CHECK-NEXT: affine.apply [[$MOD_2]](%{{.*}})
// CHECK-NEXT: affine.dma_wait %{{.*}}[%{{.*}} mod 2, 0], %{{.*}} : memref<2x1xf32>
// CHECK-NEXT: affine.load %{{.*}}[%{{.*}} mod 2, %{{.*}}] : memref<2x32xf32, 1>
// CHECK-NEXT: "compute"(%{{.*}}) : (f32) -> f32
// CHECK-NEXT: affine.store %{{.*}}, %{{.*}}[%{{.*}} mod 2, %{{.*}}] : memref<2x32xf32, 1>
// CHECK-NEXT: affine.for %{{.*}} = 0 to 32 {
// CHECK-NEXT: "do_more_compute"(%{{.*}}, %{{.*}}) : (index, index) -> ()
// CHECK-NEXT: }
// CHECK-NEXT: }
// CHECK-NEXT: affine.apply [[$MAP_MINUS_1]](%{{.*}})
// CHECK-NEXT: affine.apply [[$MOD_2]](%{{.*}})
// CHECK-NEXT: affine.apply [[$MOD_2]](%{{.*}})
// CHECK-NEXT: affine.dma_wait %{{.*}}[%{{.*}} mod 2, 0], %{{.*}} : memref<2x1xf32>
// CHECK-NEXT: affine.load %{{.*}}[%{{.*}} mod 2, %{{.*}}] : memref<2x32xf32, 1>
// CHECK-NEXT: "compute"(%{{.*}}) : (f32) -> f32
// CHECK-NEXT: affine.store %{{.*}}, %{{.*}}[%{{.*}} mod 2, %{{.*}}] : memref<2x32xf32, 1>
// CHECK-NEXT: affine.for %{{.*}} = 0 to 32 {
// CHECK-NEXT: "do_more_compute"(%{{.*}}, %{{.*}}) : (index, index) -> ()
// CHECK-NEXT: }
// CHECK-NEXT: dealloc %{{.*}} : memref<2x1xf32>
// CHECK-NEXT: dealloc %{{.*}} : memref<2x32xf32, 1>
// CHECK-NEXT: return
// CHECK-NEXT:}
// -----
// CHECK-DAG: [[$FLOOR_MOD_2:#map[0-9]+]] = affine_map<(d0) -> ((d0 floordiv 4) mod 2)>
// CHECK-DAG: [[$REMAP_SHIFT_MINUS_4:#map[0-9]+]] = affine_map<(d0) -> (d0 - 4)>
// CHECK-LABEL: @loop_step
func @loop_step(%arg0: memref<512xf32>,
%arg1: memref<512xf32>) {
%c0 = constant 0 : index
%c4 = constant 4 : index
affine.for %i0 = 0 to 512 step 4 {
%1 = alloc() : memref<4xf32, 1>
%2 = alloc() : memref<1xi32>
affine.dma_start %arg0[%i0], %1[%c0], %2[%c0], %c4,
: memref<512xf32>, memref<4xf32, 1>, memref<1xi32>
affine.dma_wait %2[%c0], %c4 : memref<1xi32>
"compute"(%i0) : (index) -> ()
dealloc %2 : memref<1xi32>
dealloc %1 : memref<4xf32, 1>
}
return
}
// CHECK: [[BUF:%[0-9]+]] = alloc() : memref<2x4xf32, 1>
// CHECK: [[TAG:%[0-9]+]] = alloc() : memref<2x1xi32>
// CHECK-NEXT: affine.dma_start %{{.*}}[%{{.*}}], %{{.*}}[(%{{.*}} floordiv 4) mod 2, 0], [[TAG]][(%{{.*}} floordiv 4) mod 2, 0], %{{.*}} : memref<512xf32>, memref<2x4xf32, 1>, memref<2x1xi32>
// CHECK-NEXT: affine.for %{{.*}} = 4 to 512 step 4 {
// CHECK-NEXT: affine.dma_start %{{.*}}[%{{.*}}], %{{.*}}[(%{{.*}} floordiv 4) mod 2, 0], [[TAG]][(%{{.*}} floordiv 4) mod 2, 0], %{{.*}} : memref<512xf32>, memref<2x4xf32, 1>, memref<2x1xi32>
// CHECK-NEXT: affine.apply [[$REMAP_SHIFT_MINUS_4]](%{{.*}})
// CHECK-NEXT: affine.apply [[$FLOOR_MOD_2]](%{{.*}})
// CHECK: affine.dma_wait [[TAG]][(%{{.*}} floordiv 4) mod 2, 0], %{{.*}} : memref<2x1xi32>
// CHECK-NEXT: "compute"(%{{.*}}) : (index) -> ()
// CHECK-NEXT: }
// CHECK-NEXT: [[SHIFTED:%[0-9]+]] = affine.apply [[$REMAP_SHIFT_MINUS_4]](%{{.*}})
// CHECK-NEXT: %{{.*}} = affine.apply [[$FLOOR_MOD_2]]([[SHIFTED]])
// CHECK: affine.dma_wait [[TAG]][(%{{.*}} floordiv 4) mod 2, 0], %{{.*}} : memref<2x1xi32>
// CHECK-NEXT: "compute"(%{{.*}}) : (index) -> ()
// CHECK-NEXT: dealloc [[TAG]] : memref<2x1xi32>
// CHECK-NEXT: dealloc [[BUF]] : memref<2x4xf32, 1>
// CHECK-NEXT: return
// CHECK-NEXT: }
// -----
#map1 = affine_map<(d0, d1) -> ((d0 * 2048 + d1 * 256) floordiv 32)>
#map2 = affine_map<(d0) -> ((d0 * 2048) floordiv 32)>
// CHECK-LABEL: func @loop_dma_nested(%{{.*}}: memref<512x32xvector<8xf32>
func @loop_dma_nested(%arg0: memref<512x32xvector<8xf32>>, %arg1: memref<512x32xvector<8xf32>>, %arg2: memref<512x32xvector<8xf32>>) {
%num_elts = constant 256 : index
%c0 = constant 0 : index
%0 = alloc() : memref<64x4xvector<8xf32>, 2>
%1 = alloc() : memref<64x4xvector<8xf32>, 2>
%2 = alloc() : memref<64x4xvector<8xf32>, 2>
%3 = alloc() : memref<2xi32>
%4 = alloc() : memref<2xi32>
%5 = alloc() : memref<2xi32>
// Prologue for DMA overlap on arg2.
// CHECK-DAG: [[BUF_ARG2:%[0-9]+]] = alloc() : memref<2x64x4xvector<8xf32>, 2>
// CHECK-DAG: [[TAG_ARG2:%[0-9]+]] = alloc() : memref<2x2xi32>
// CHECK: affine.dma_start %{{.*}}[
// CHECK: affine.for %{{.*}} = 1 to 8 {
affine.for %i0 = 0 to 8 {
%6 = affine.apply #map2(%i0)
affine.dma_start %arg2[%6, %c0], %2[%c0, %c0], %5[%c0], %num_elts : memref<512x32xvector<8xf32>>, memref<64x4xvector<8xf32>, 2>, memref<2xi32>
affine.dma_wait %5[%c0], %num_elts : memref<2xi32>
// Steady state for DMA overlap on arg2
// CHECK: affine.dma_start %{{.*}}[
// CHECK: affine.dma_wait [[TAG_ARG2]]
// Prologue for DMA overlap on arg0, arg1 nested within i0
// CHECK: [[BUF_ARG0:%[0-9]+]] = alloc() : memref<2x64x4xvector<8xf32>, 2>
// CHECK: [[BUF_ARG1:%[0-9]+]] = alloc() : memref<2x64x4xvector<8xf32>, 2>
// CHECK: [[TAG_ARG0:%[0-9]+]] = alloc() : memref<2x2xi32>
// CHECK: [[TAG_ARG1:%[0-9]+]] = alloc() : memref<2x2xi32>
// CHECK: affine.dma_start %{{.*}}[
// CHECK: affine.dma_start %{{.*}}[
// CHECK-NEXT: affine.for %{{.*}} = 1 to 8 {
affine.for %i1 = 0 to 8 {
%7 = affine.apply #map1(%i0, %i1)
%8 = affine.apply #map2(%i1)
affine.dma_start %arg0[%7, %c0], %0[%c0, %c0], %3[%c0], %num_elts : memref<512x32xvector<8xf32>>, memref<64x4xvector<8xf32>, 2>, memref<2xi32>
affine.dma_start %arg1[%8, %c0], %1[%c0, %c0], %4[%c0], %num_elts : memref<512x32xvector<8xf32>>, memref<64x4xvector<8xf32>, 2>, memref<2xi32>
affine.dma_wait %3[%c0], %num_elts : memref<2xi32>
affine.dma_wait %4[%c0], %num_elts : memref<2xi32>
// Steady state for DMA overlap on arg0, arg1
// CHECK: affine.dma_start %{{.*}}[
// CHECK: affine.dma_start %{{.*}}[
// CHECK: affine.dma_wait [[TAG_ARG0]]
// CHECK: affine.dma_wait [[TAG_ARG1]]
// CHECK-NEXT: affine.for %{{.*}} = 0 to 4 {
affine.for %i2 = 0 to 4 {
"foo"() : () -> ()
}
}
// epilogue for arg0, arg1
// CHECK: affine.dma_wait [[TAG_ARG0]]
// CHECK: affine.dma_wait [[TAG_ARG1]]
// CHECK-DAG: dealloc [[TAG_ARG1]] : memref<2x2xi32>
// CHECK-DAG: dealloc [[TAG_ARG0]] : memref<2x2xi32>
// CHECK-DAG: dealloc [[BUF_ARG1]] : memref<2x64x4xvector<8xf32>, 2>
// CHECK-DAG: dealloc [[BUF_ARG0]] : memref<2x64x4xvector<8xf32>, 2>
// epilogue for DMA overlap on %arg2
// CHECK: affine.dma_wait [[TAG_ARG2]]
// Within the epilogue for arg2's DMA, we have the DMAs on %arg1, %arg2 nested.
// CHECK: [[BUF_ARG0_NESTED:%[0-9]+]] = alloc() : memref<2x64x4xvector<8xf32>, 2>
// CHECK: [[BUF_ARG1_NESTED:%[0-9]+]] = alloc() : memref<2x64x4xvector<8xf32>, 2>
// CHECK: [[TAG_ARG0_NESTED:%[0-9]+]] = alloc() : memref<2x2xi32>
// CHECK: [[TAG_ARG1_NESTED:%[0-9]+]] = alloc() : memref<2x2xi32>
// CHECK: affine.dma_start %{{.*}}[
// CHECK: affine.dma_start %{{.*}}[
// CHECK: affine.for %{{.*}} = 1 to 8 {
// CHECK: affine.dma_start %{{.*}}[
// CHECK: affine.dma_start %{{.*}}[
// CHECK: affine.dma_wait [[TAG_ARG0_NESTED]]
// CHECK: affine.dma_wait [[TAG_ARG1_NESTED]]
// CHECK: affine.for %{{.*}} = 0 to 4 {
// CHECK: "foo"() : () -> ()
// CHECK: affine.dma_wait [[TAG_ARG0_NESTED]]
// CHECK: affine.dma_wait [[TAG_ARG1_NESTED]]
// CHECK: affine.for %{{.*}} = 0 to 4 {
}
dealloc %5 : memref<2xi32>
dealloc %4 : memref<2xi32>
dealloc %3 : memref<2xi32>
dealloc %2 : memref<64x4xvector<8xf32>, 2>
dealloc %1 : memref<64x4xvector<8xf32>, 2>
dealloc %0 : memref<64x4xvector<8xf32>, 2>
return
// CHECK: }
// CHECK-DAG: dealloc [[TAG_ARG1_NESTED]] : memref<2x2xi32>
// CHECK-DAG: dealloc [[TAG_ARG0_NESTED]] : memref<2x2xi32>
// CHECK-DAG: dealloc [[BUF_ARG1_NESTED]] : memref<2x64x4xvector<8xf32>, 2>
// CHECK-DAG: dealloc [[BUF_ARG0_NESTED]] : memref<2x64x4xvector<8xf32>, 2>
// CHECK-DAG: dealloc [[TAG_ARG2]] : memref<2x2xi32>
// CHECK-DAG: dealloc [[BUF_ARG2]] : memref<2x64x4xvector<8xf32>, 2>
// CHECK-NEXT: return
}
// -----
#map2 = affine_map<(d0) -> ((d0 * 2048) floordiv 32)>
// CHECK: func @loop_dma_dependent
func @loop_dma_dependent(%arg2: memref<512x32xvector<8xf32>>) {
%num_elts = constant 256 : index
%c0 = constant 0 : index
%0 = alloc() : memref<64x4xvector<8xf32>, 2>
%1 = alloc() : memref<64x4xvector<8xf32>, 2>
%2 = alloc() : memref<64x4xvector<8xf32>, 2>
%3 = alloc() : memref<2xi32>
%4 = alloc() : memref<2xi32>
%5 = alloc() : memref<2xi32>
// The two DMAs below are dependent (incoming and outgoing on the same
// memref) in the same iteration; so no pipelining here.
// CHECK-NOT: affine.dma_start
// CHECK: affine.for %{{.*}} = 0 to 8 {
affine.for %i0 = 0 to 8 {
%6 = affine.apply #map2(%i0)
affine.dma_start %arg2[%6, %c0], %2[%c0, %c0], %5[%c0], %num_elts : memref<512x32xvector<8xf32>>, memref<64x4xvector<8xf32>, 2>, memref<2xi32>
affine.dma_wait %5[%c0], %num_elts : memref<2xi32>
affine.dma_start %2[%c0, %c0], %arg2[%6, %c0], %5[%c0], %num_elts : memref<64x4xvector<8xf32>, 2>, memref<512x32xvector<8xf32>>, memref<2xi32>
affine.dma_wait %5[%c0], %num_elts : memref<2xi32>
}
dealloc %5 : memref<2xi32>
dealloc %4 : memref<2xi32>
dealloc %3 : memref<2xi32>
dealloc %2 : memref<64x4xvector<8xf32>, 2>
dealloc %1 : memref<64x4xvector<8xf32>, 2>
dealloc %0 : memref<64x4xvector<8xf32>, 2>
return
}
// -----
// CHECK-LABEL: func @escaping_use
func @escaping_use(%arg0: memref<512 x 32 x f32>) {
%c32 = constant 32 : index
%num_elt = constant 512 : index
%zero = constant 0 : index
%Av = alloc() : memref<32 x 32 x f32, 2>
%tag = alloc() : memref<1 x i32>
// CHECK-NOT: affine.dma_start
// CHECK: affine.for %{{.*}} = 0 to 16 {
affine.for %kTT = 0 to 16 {
affine.dma_start %arg0[%zero, %zero], %Av[%zero, %zero], %tag[%zero], %num_elt :
memref<512 x 32 x f32>,
memref<32 x 32 x f32, 2>, memref<1 x i32>
affine.dma_wait %tag[%zero], %num_elt : memref<1 x i32>
// escaping use; no DMA pipelining / double buffering will be done.
"foo"(%Av) : (memref<32 x 32 x f32, 2>) -> ()
}
dealloc %tag : memref<1 x i32>
dealloc %Av : memref<32 x 32 x f32, 2>
return
// CHECK: "foo"(%{{[0-9]+}}) : (memref<32x32xf32, 2>) -> ()
// CHECK: }
// CHECK: return
}
// -----
// CHECK-LABEL: func @escaping_tag
func @escaping_tag(%arg0: memref<512 x 32 x f32>) {
%c32 = constant 32 : index
%num_elt = constant 512 : index
%zero = constant 0 : index
%Av = alloc() : memref<32 x 32 x f32, 2>
%tag = alloc() : memref<1 x i32>
// CHECK-NOT: affine.dma_start
// CHECK: affine.for %{{.*}} = 0 to 16 {
affine.for %kTT = 0 to 16 {
affine.dma_start %arg0[%zero, %zero], %Av[%zero, %zero], %tag[%zero], %num_elt :
memref<512 x 32 x f32>,
memref<32 x 32 x f32, 2>, memref<1 x i32>
affine.dma_wait %tag[%zero], %num_elt : memref<1 x i32>
// escaping use; no DMA pipelining / double buffering will be done.
"foo"(%tag) : (memref<1 x i32>) -> ()
}
dealloc %tag : memref<1 x i32>
dealloc %Av : memref<32 x 32 x f32, 2>
return
// CHECK: "foo"(%{{[0-9]+}}) : (memref<1xi32>) -> ()
// CHECK: }
// CHECK: return
}
// -----
// CHECK-LABEL: func @live_out_use
func @live_out_use(%arg0: memref<512 x 32 x f32>) -> f32 {
%c32 = constant 32 : index
%num_elt = constant 512 : index
%zero = constant 0 : index
%Av = alloc() : memref<32 x 32 x f32, 2>
%tag = alloc() : memref<1 x i32>
// CHECK-NOT: affine.dma_start
// CHECK: affine.for %{{.*}} = 0 to 16 {
affine.for %kTT = 0 to 16 {
affine.dma_start %arg0[%zero, %zero], %Av[%zero, %zero], %tag[%zero], %num_elt :
memref<512 x 32 x f32>,
memref<32 x 32 x f32, 2>, memref<1 x i32>
affine.dma_wait %tag[%zero], %num_elt : memref<1 x i32>
}
// Use live out of 'affine.for' op; no DMA pipelining will be done.
%v = affine.load %Av[%zero, %zero] : memref<32 x 32 x f32, 2>
dealloc %tag : memref<1 x i32>
dealloc %Av : memref<32 x 32 x f32, 2>
return %v : f32
// CHECK: affine.load %{{[0-9]+}}[%{{.*}}, %{{.*}}] : memref<32x32xf32, 2>
// CHECK: return
}
// -----
// CHECK-LABEL: func @dynamic_shape_dma_buffer
func @dynamic_shape_dma_buffer(%arg0: memref<512 x 32 x f32>) {
%c32 = constant 32 : index
%num_elt = constant 512 : index
%zero = constant 0 : index
%Av = alloc(%c32, %c32) : memref<? x ? x f32, 2>
%tag = alloc() : memref<1 x i32>
// Double buffering for dynamic shaped buffer.
// CHECK: alloc(%{{.*}}, %{{.*}}) : memref<?x?xf32, 2>
// CHECK-NEXT: %[[C0:.*]] = constant 0 : index
// CHECK-NEXT: dim %{{.*}}, %[[C0]] : memref<?x?xf32, 2>
// CHECK-NEXT: %[[C1:.*]] = constant 1 : index
// CHECK-NEXT: dim %{{.*}}, %[[C1]] : memref<?x?xf32, 2>
// CHECK-NEXT: alloc(%{{.*}}, %{{.*}}) : memref<2x?x?xf32, 2>
// CHECK: affine.dma_start %{{.*}}[%{{.*}}, %{{.*}}], %{{.*}}[%{{.*}} mod 2, 0, 0], %{{.*}}[%{{.*}} mod 2, 0], %{{.*}}
affine.for %kTT = 0 to 16 {
affine.dma_start %arg0[%zero, %zero], %Av[%zero, %zero], %tag[%zero], %num_elt :
memref<512 x 32 x f32>,
memref<? x ? x f32, 2>, memref<1 x i32>
affine.dma_wait %tag[%zero], %num_elt : memref<1 x i32>
}
dealloc %Av : memref<? x ? x f32, 2>
return
// CHECK-NEXT: affine.for %{{.*}} = 1 to 16 {
// CHECK: affine.dma_start %{{.*}}[%{{.*}}, %{{.*}}], %{{.*}}[%{{.*}} mod 2, 0, 0], %{{.*}}[%{{.*}} mod 2, 0], %{{.*}}
// CHECK: affine.dma_wait %{{.*}}[%{{.*}} mod 2, 0], %{{.*}} : memref<2x1xi32>
// CHECK: }
// CHECK: affine.dma_wait %{{.*}}[%{{.*}} mod 2, 0], %{{.*}} : memref<2x1xi32>
// CHECK: return
}
// Memref replacement will fail here due to a non-dereferencing use. However,
// no incorrect transformation is performed in spite of one of the uses being a
// dereferencing one since replaceAllMemRefUsesWith checks for escaping uses
// before performing any replacement.
// CHECK-LABEL: func @escaping_and_indexed_use_mix
func @escaping_and_indexed_use_mix() {
%A = alloc() : memref<256 x f32, affine_map<(d0) -> (d0)>, 0>
%Ah = alloc() : memref<32 x f32, affine_map<(d0) -> (d0)>, 1>
%tag = alloc() : memref<1 x f32>
%zero = constant 0 : index
%num_elts = constant 32 : index
// alloc for the buffer is created but no replacement should happen.
affine.for %i = 0 to 8 {
affine.dma_start %A[%i], %Ah[%i], %tag[%zero], %num_elts : memref<256 x f32>, memref<32 x f32, 1>, memref<1 x f32>
affine.dma_wait %tag[%zero], %num_elts : memref<1 x f32>
"compute"(%Ah) : (memref<32 x f32, 1>) -> ()
%v = affine.load %Ah[%i] : memref<32 x f32, affine_map<(d0) -> (d0)>, 1>
"foo"(%v) : (f32) -> ()
}
dealloc %A : memref<256 x f32, affine_map<(d0) -> (d0)>, 0>
dealloc %Ah : memref<32 x f32, affine_map<(d0) -> (d0)>, 1>
return
}
// No replacement.
// CHECK: affine.for %{{.*}} = 0 to 8 {
// CHECK-NEXT: affine.dma_start %{{.*}}[%{{.*}}], %{{.*}}[%{{.*}}], %{{.*}}[%{{.*}}], %{{.*}}
// CHECK-NEXT: affine.dma_wait %{{.*}}[%{{.*}}], %{{.*}} : memref<1xf32>
// CHECK-NEXT: "compute"(%{{.*}}) : (memref<32xf32, 1>) -> ()
// CHECK-NEXT: [[VAL:%[0-9]+]] = affine.load %{{.*}}[%{{.*}}] : memref<32xf32, 1>
// CHECK-NEXT: "foo"([[VAL]]) : (f32) -> ()