You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
3168 lines
107 KiB
3168 lines
107 KiB
//===-- SIInstrInfo.cpp - SI Instruction Information ---------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file
|
|
/// \brief SI Implementation of TargetInstrInfo.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "SIInstrInfo.h"
|
|
#include "AMDGPUTargetMachine.h"
|
|
#include "GCNHazardRecognizer.h"
|
|
#include "SIDefines.h"
|
|
#include "SIMachineFunctionInfo.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/ScheduleDAG.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/CodeGen/RegisterScavenging.h"
|
|
#include "llvm/MC/MCInstrDesc.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
using namespace llvm;
|
|
|
|
SIInstrInfo::SIInstrInfo(const SISubtarget &ST)
|
|
: AMDGPUInstrInfo(ST), RI(), ST(ST) {}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TargetInstrInfo callbacks
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static unsigned getNumOperandsNoGlue(SDNode *Node) {
|
|
unsigned N = Node->getNumOperands();
|
|
while (N && Node->getOperand(N - 1).getValueType() == MVT::Glue)
|
|
--N;
|
|
return N;
|
|
}
|
|
|
|
static SDValue findChainOperand(SDNode *Load) {
|
|
SDValue LastOp = Load->getOperand(getNumOperandsNoGlue(Load) - 1);
|
|
assert(LastOp.getValueType() == MVT::Other && "Chain missing from load node");
|
|
return LastOp;
|
|
}
|
|
|
|
/// \brief Returns true if both nodes have the same value for the given
|
|
/// operand \p Op, or if both nodes do not have this operand.
|
|
static bool nodesHaveSameOperandValue(SDNode *N0, SDNode* N1, unsigned OpName) {
|
|
unsigned Opc0 = N0->getMachineOpcode();
|
|
unsigned Opc1 = N1->getMachineOpcode();
|
|
|
|
int Op0Idx = AMDGPU::getNamedOperandIdx(Opc0, OpName);
|
|
int Op1Idx = AMDGPU::getNamedOperandIdx(Opc1, OpName);
|
|
|
|
if (Op0Idx == -1 && Op1Idx == -1)
|
|
return true;
|
|
|
|
|
|
if ((Op0Idx == -1 && Op1Idx != -1) ||
|
|
(Op1Idx == -1 && Op0Idx != -1))
|
|
return false;
|
|
|
|
// getNamedOperandIdx returns the index for the MachineInstr's operands,
|
|
// which includes the result as the first operand. We are indexing into the
|
|
// MachineSDNode's operands, so we need to skip the result operand to get
|
|
// the real index.
|
|
--Op0Idx;
|
|
--Op1Idx;
|
|
|
|
return N0->getOperand(Op0Idx) == N1->getOperand(Op1Idx);
|
|
}
|
|
|
|
bool SIInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
|
|
AliasAnalysis *AA) const {
|
|
// TODO: The generic check fails for VALU instructions that should be
|
|
// rematerializable due to implicit reads of exec. We really want all of the
|
|
// generic logic for this except for this.
|
|
switch (MI.getOpcode()) {
|
|
case AMDGPU::V_MOV_B32_e32:
|
|
case AMDGPU::V_MOV_B32_e64:
|
|
case AMDGPU::V_MOV_B64_PSEUDO:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool SIInstrInfo::areLoadsFromSameBasePtr(SDNode *Load0, SDNode *Load1,
|
|
int64_t &Offset0,
|
|
int64_t &Offset1) const {
|
|
if (!Load0->isMachineOpcode() || !Load1->isMachineOpcode())
|
|
return false;
|
|
|
|
unsigned Opc0 = Load0->getMachineOpcode();
|
|
unsigned Opc1 = Load1->getMachineOpcode();
|
|
|
|
// Make sure both are actually loads.
|
|
if (!get(Opc0).mayLoad() || !get(Opc1).mayLoad())
|
|
return false;
|
|
|
|
if (isDS(Opc0) && isDS(Opc1)) {
|
|
|
|
// FIXME: Handle this case:
|
|
if (getNumOperandsNoGlue(Load0) != getNumOperandsNoGlue(Load1))
|
|
return false;
|
|
|
|
// Check base reg.
|
|
if (Load0->getOperand(1) != Load1->getOperand(1))
|
|
return false;
|
|
|
|
// Check chain.
|
|
if (findChainOperand(Load0) != findChainOperand(Load1))
|
|
return false;
|
|
|
|
// Skip read2 / write2 variants for simplicity.
|
|
// TODO: We should report true if the used offsets are adjacent (excluded
|
|
// st64 versions).
|
|
if (AMDGPU::getNamedOperandIdx(Opc0, AMDGPU::OpName::data1) != -1 ||
|
|
AMDGPU::getNamedOperandIdx(Opc1, AMDGPU::OpName::data1) != -1)
|
|
return false;
|
|
|
|
Offset0 = cast<ConstantSDNode>(Load0->getOperand(2))->getZExtValue();
|
|
Offset1 = cast<ConstantSDNode>(Load1->getOperand(2))->getZExtValue();
|
|
return true;
|
|
}
|
|
|
|
if (isSMRD(Opc0) && isSMRD(Opc1)) {
|
|
assert(getNumOperandsNoGlue(Load0) == getNumOperandsNoGlue(Load1));
|
|
|
|
// Check base reg.
|
|
if (Load0->getOperand(0) != Load1->getOperand(0))
|
|
return false;
|
|
|
|
const ConstantSDNode *Load0Offset =
|
|
dyn_cast<ConstantSDNode>(Load0->getOperand(1));
|
|
const ConstantSDNode *Load1Offset =
|
|
dyn_cast<ConstantSDNode>(Load1->getOperand(1));
|
|
|
|
if (!Load0Offset || !Load1Offset)
|
|
return false;
|
|
|
|
// Check chain.
|
|
if (findChainOperand(Load0) != findChainOperand(Load1))
|
|
return false;
|
|
|
|
Offset0 = Load0Offset->getZExtValue();
|
|
Offset1 = Load1Offset->getZExtValue();
|
|
return true;
|
|
}
|
|
|
|
// MUBUF and MTBUF can access the same addresses.
|
|
if ((isMUBUF(Opc0) || isMTBUF(Opc0)) && (isMUBUF(Opc1) || isMTBUF(Opc1))) {
|
|
|
|
// MUBUF and MTBUF have vaddr at different indices.
|
|
if (!nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::soffset) ||
|
|
findChainOperand(Load0) != findChainOperand(Load1) ||
|
|
!nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::vaddr) ||
|
|
!nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::srsrc))
|
|
return false;
|
|
|
|
int OffIdx0 = AMDGPU::getNamedOperandIdx(Opc0, AMDGPU::OpName::offset);
|
|
int OffIdx1 = AMDGPU::getNamedOperandIdx(Opc1, AMDGPU::OpName::offset);
|
|
|
|
if (OffIdx0 == -1 || OffIdx1 == -1)
|
|
return false;
|
|
|
|
// getNamedOperandIdx returns the index for MachineInstrs. Since they
|
|
// inlcude the output in the operand list, but SDNodes don't, we need to
|
|
// subtract the index by one.
|
|
--OffIdx0;
|
|
--OffIdx1;
|
|
|
|
SDValue Off0 = Load0->getOperand(OffIdx0);
|
|
SDValue Off1 = Load1->getOperand(OffIdx1);
|
|
|
|
// The offset might be a FrameIndexSDNode.
|
|
if (!isa<ConstantSDNode>(Off0) || !isa<ConstantSDNode>(Off1))
|
|
return false;
|
|
|
|
Offset0 = cast<ConstantSDNode>(Off0)->getZExtValue();
|
|
Offset1 = cast<ConstantSDNode>(Off1)->getZExtValue();
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool isStride64(unsigned Opc) {
|
|
switch (Opc) {
|
|
case AMDGPU::DS_READ2ST64_B32:
|
|
case AMDGPU::DS_READ2ST64_B64:
|
|
case AMDGPU::DS_WRITE2ST64_B32:
|
|
case AMDGPU::DS_WRITE2ST64_B64:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool SIInstrInfo::getMemOpBaseRegImmOfs(MachineInstr &LdSt, unsigned &BaseReg,
|
|
int64_t &Offset,
|
|
const TargetRegisterInfo *TRI) const {
|
|
unsigned Opc = LdSt.getOpcode();
|
|
|
|
if (isDS(LdSt)) {
|
|
const MachineOperand *OffsetImm =
|
|
getNamedOperand(LdSt, AMDGPU::OpName::offset);
|
|
if (OffsetImm) {
|
|
// Normal, single offset LDS instruction.
|
|
const MachineOperand *AddrReg =
|
|
getNamedOperand(LdSt, AMDGPU::OpName::addr);
|
|
|
|
BaseReg = AddrReg->getReg();
|
|
Offset = OffsetImm->getImm();
|
|
return true;
|
|
}
|
|
|
|
// The 2 offset instructions use offset0 and offset1 instead. We can treat
|
|
// these as a load with a single offset if the 2 offsets are consecutive. We
|
|
// will use this for some partially aligned loads.
|
|
const MachineOperand *Offset0Imm =
|
|
getNamedOperand(LdSt, AMDGPU::OpName::offset0);
|
|
const MachineOperand *Offset1Imm =
|
|
getNamedOperand(LdSt, AMDGPU::OpName::offset1);
|
|
|
|
uint8_t Offset0 = Offset0Imm->getImm();
|
|
uint8_t Offset1 = Offset1Imm->getImm();
|
|
|
|
if (Offset1 > Offset0 && Offset1 - Offset0 == 1) {
|
|
// Each of these offsets is in element sized units, so we need to convert
|
|
// to bytes of the individual reads.
|
|
|
|
unsigned EltSize;
|
|
if (LdSt.mayLoad())
|
|
EltSize = getOpRegClass(LdSt, 0)->getSize() / 2;
|
|
else {
|
|
assert(LdSt.mayStore());
|
|
int Data0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data0);
|
|
EltSize = getOpRegClass(LdSt, Data0Idx)->getSize();
|
|
}
|
|
|
|
if (isStride64(Opc))
|
|
EltSize *= 64;
|
|
|
|
const MachineOperand *AddrReg =
|
|
getNamedOperand(LdSt, AMDGPU::OpName::addr);
|
|
BaseReg = AddrReg->getReg();
|
|
Offset = EltSize * Offset0;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
if (isMUBUF(LdSt) || isMTBUF(LdSt)) {
|
|
if (AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::soffset) != -1)
|
|
return false;
|
|
|
|
const MachineOperand *AddrReg =
|
|
getNamedOperand(LdSt, AMDGPU::OpName::vaddr);
|
|
if (!AddrReg)
|
|
return false;
|
|
|
|
const MachineOperand *OffsetImm =
|
|
getNamedOperand(LdSt, AMDGPU::OpName::offset);
|
|
BaseReg = AddrReg->getReg();
|
|
Offset = OffsetImm->getImm();
|
|
return true;
|
|
}
|
|
|
|
if (isSMRD(LdSt)) {
|
|
const MachineOperand *OffsetImm =
|
|
getNamedOperand(LdSt, AMDGPU::OpName::offset);
|
|
if (!OffsetImm)
|
|
return false;
|
|
|
|
const MachineOperand *SBaseReg =
|
|
getNamedOperand(LdSt, AMDGPU::OpName::sbase);
|
|
BaseReg = SBaseReg->getReg();
|
|
Offset = OffsetImm->getImm();
|
|
return true;
|
|
}
|
|
|
|
if (isFLAT(LdSt)) {
|
|
const MachineOperand *AddrReg = getNamedOperand(LdSt, AMDGPU::OpName::addr);
|
|
BaseReg = AddrReg->getReg();
|
|
Offset = 0;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool SIInstrInfo::shouldClusterMemOps(MachineInstr &FirstLdSt,
|
|
MachineInstr &SecondLdSt,
|
|
unsigned NumLoads) const {
|
|
const MachineOperand *FirstDst = nullptr;
|
|
const MachineOperand *SecondDst = nullptr;
|
|
|
|
if (isDS(FirstLdSt) && isDS(SecondLdSt)) {
|
|
FirstDst = getNamedOperand(FirstLdSt, AMDGPU::OpName::vdst);
|
|
SecondDst = getNamedOperand(SecondLdSt, AMDGPU::OpName::vdst);
|
|
}
|
|
|
|
if (isSMRD(FirstLdSt) && isSMRD(SecondLdSt)) {
|
|
FirstDst = getNamedOperand(FirstLdSt, AMDGPU::OpName::sdst);
|
|
SecondDst = getNamedOperand(SecondLdSt, AMDGPU::OpName::sdst);
|
|
}
|
|
|
|
if ((isMUBUF(FirstLdSt) && isMUBUF(SecondLdSt)) ||
|
|
(isMTBUF(FirstLdSt) && isMTBUF(SecondLdSt))) {
|
|
FirstDst = getNamedOperand(FirstLdSt, AMDGPU::OpName::vdata);
|
|
SecondDst = getNamedOperand(SecondLdSt, AMDGPU::OpName::vdata);
|
|
}
|
|
|
|
if (!FirstDst || !SecondDst)
|
|
return false;
|
|
|
|
// Try to limit clustering based on the total number of bytes loaded
|
|
// rather than the number of instructions. This is done to help reduce
|
|
// register pressure. The method used is somewhat inexact, though,
|
|
// because it assumes that all loads in the cluster will load the
|
|
// same number of bytes as FirstLdSt.
|
|
|
|
// The unit of this value is bytes.
|
|
// FIXME: This needs finer tuning.
|
|
unsigned LoadClusterThreshold = 16;
|
|
|
|
const MachineRegisterInfo &MRI =
|
|
FirstLdSt.getParent()->getParent()->getRegInfo();
|
|
const TargetRegisterClass *DstRC = MRI.getRegClass(FirstDst->getReg());
|
|
|
|
return (NumLoads * DstRC->getSize()) <= LoadClusterThreshold;
|
|
}
|
|
|
|
void SIInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MI,
|
|
const DebugLoc &DL, unsigned DestReg,
|
|
unsigned SrcReg, bool KillSrc) const {
|
|
|
|
// If we are trying to copy to or from SCC, there is a bug somewhere else in
|
|
// the backend. While it may be theoretically possible to do this, it should
|
|
// never be necessary.
|
|
assert(DestReg != AMDGPU::SCC && SrcReg != AMDGPU::SCC);
|
|
|
|
static const int16_t Sub0_15[] = {
|
|
AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3,
|
|
AMDGPU::sub4, AMDGPU::sub5, AMDGPU::sub6, AMDGPU::sub7,
|
|
AMDGPU::sub8, AMDGPU::sub9, AMDGPU::sub10, AMDGPU::sub11,
|
|
AMDGPU::sub12, AMDGPU::sub13, AMDGPU::sub14, AMDGPU::sub15,
|
|
};
|
|
|
|
static const int16_t Sub0_15_64[] = {
|
|
AMDGPU::sub0_sub1, AMDGPU::sub2_sub3,
|
|
AMDGPU::sub4_sub5, AMDGPU::sub6_sub7,
|
|
AMDGPU::sub8_sub9, AMDGPU::sub10_sub11,
|
|
AMDGPU::sub12_sub13, AMDGPU::sub14_sub15,
|
|
};
|
|
|
|
static const int16_t Sub0_7[] = {
|
|
AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3,
|
|
AMDGPU::sub4, AMDGPU::sub5, AMDGPU::sub6, AMDGPU::sub7,
|
|
};
|
|
|
|
static const int16_t Sub0_7_64[] = {
|
|
AMDGPU::sub0_sub1, AMDGPU::sub2_sub3,
|
|
AMDGPU::sub4_sub5, AMDGPU::sub6_sub7,
|
|
};
|
|
|
|
static const int16_t Sub0_3[] = {
|
|
AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3,
|
|
};
|
|
|
|
static const int16_t Sub0_3_64[] = {
|
|
AMDGPU::sub0_sub1, AMDGPU::sub2_sub3,
|
|
};
|
|
|
|
static const int16_t Sub0_2[] = {
|
|
AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2,
|
|
};
|
|
|
|
static const int16_t Sub0_1[] = {
|
|
AMDGPU::sub0, AMDGPU::sub1,
|
|
};
|
|
|
|
unsigned Opcode;
|
|
ArrayRef<int16_t> SubIndices;
|
|
bool Forward;
|
|
|
|
if (AMDGPU::SReg_32RegClass.contains(DestReg)) {
|
|
assert(AMDGPU::SReg_32RegClass.contains(SrcReg));
|
|
BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), DestReg)
|
|
.addReg(SrcReg, getKillRegState(KillSrc));
|
|
return;
|
|
|
|
} else if (AMDGPU::SReg_64RegClass.contains(DestReg)) {
|
|
if (DestReg == AMDGPU::VCC) {
|
|
if (AMDGPU::SReg_64RegClass.contains(SrcReg)) {
|
|
BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B64), AMDGPU::VCC)
|
|
.addReg(SrcReg, getKillRegState(KillSrc));
|
|
} else {
|
|
// FIXME: Hack until VReg_1 removed.
|
|
assert(AMDGPU::VGPR_32RegClass.contains(SrcReg));
|
|
BuildMI(MBB, MI, DL, get(AMDGPU::V_CMP_NE_I32_e32))
|
|
.addImm(0)
|
|
.addReg(SrcReg, getKillRegState(KillSrc));
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
assert(AMDGPU::SReg_64RegClass.contains(SrcReg));
|
|
BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B64), DestReg)
|
|
.addReg(SrcReg, getKillRegState(KillSrc));
|
|
return;
|
|
|
|
} else if (AMDGPU::SReg_128RegClass.contains(DestReg)) {
|
|
assert(AMDGPU::SReg_128RegClass.contains(SrcReg));
|
|
Opcode = AMDGPU::S_MOV_B64;
|
|
SubIndices = Sub0_3_64;
|
|
|
|
} else if (AMDGPU::SReg_256RegClass.contains(DestReg)) {
|
|
assert(AMDGPU::SReg_256RegClass.contains(SrcReg));
|
|
Opcode = AMDGPU::S_MOV_B64;
|
|
SubIndices = Sub0_7_64;
|
|
|
|
} else if (AMDGPU::SReg_512RegClass.contains(DestReg)) {
|
|
assert(AMDGPU::SReg_512RegClass.contains(SrcReg));
|
|
Opcode = AMDGPU::S_MOV_B64;
|
|
SubIndices = Sub0_15_64;
|
|
|
|
} else if (AMDGPU::VGPR_32RegClass.contains(DestReg)) {
|
|
assert(AMDGPU::VGPR_32RegClass.contains(SrcReg) ||
|
|
AMDGPU::SReg_32RegClass.contains(SrcReg));
|
|
BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DestReg)
|
|
.addReg(SrcReg, getKillRegState(KillSrc));
|
|
return;
|
|
|
|
} else if (AMDGPU::VReg_64RegClass.contains(DestReg)) {
|
|
assert(AMDGPU::VReg_64RegClass.contains(SrcReg) ||
|
|
AMDGPU::SReg_64RegClass.contains(SrcReg));
|
|
Opcode = AMDGPU::V_MOV_B32_e32;
|
|
SubIndices = Sub0_1;
|
|
|
|
} else if (AMDGPU::VReg_96RegClass.contains(DestReg)) {
|
|
assert(AMDGPU::VReg_96RegClass.contains(SrcReg));
|
|
Opcode = AMDGPU::V_MOV_B32_e32;
|
|
SubIndices = Sub0_2;
|
|
|
|
} else if (AMDGPU::VReg_128RegClass.contains(DestReg)) {
|
|
assert(AMDGPU::VReg_128RegClass.contains(SrcReg) ||
|
|
AMDGPU::SReg_128RegClass.contains(SrcReg));
|
|
Opcode = AMDGPU::V_MOV_B32_e32;
|
|
SubIndices = Sub0_3;
|
|
|
|
} else if (AMDGPU::VReg_256RegClass.contains(DestReg)) {
|
|
assert(AMDGPU::VReg_256RegClass.contains(SrcReg) ||
|
|
AMDGPU::SReg_256RegClass.contains(SrcReg));
|
|
Opcode = AMDGPU::V_MOV_B32_e32;
|
|
SubIndices = Sub0_7;
|
|
|
|
} else if (AMDGPU::VReg_512RegClass.contains(DestReg)) {
|
|
assert(AMDGPU::VReg_512RegClass.contains(SrcReg) ||
|
|
AMDGPU::SReg_512RegClass.contains(SrcReg));
|
|
Opcode = AMDGPU::V_MOV_B32_e32;
|
|
SubIndices = Sub0_15;
|
|
|
|
} else {
|
|
llvm_unreachable("Can't copy register!");
|
|
}
|
|
|
|
if (RI.getHWRegIndex(DestReg) <= RI.getHWRegIndex(SrcReg))
|
|
Forward = true;
|
|
else
|
|
Forward = false;
|
|
|
|
for (unsigned Idx = 0; Idx < SubIndices.size(); ++Idx) {
|
|
unsigned SubIdx;
|
|
if (Forward)
|
|
SubIdx = SubIndices[Idx];
|
|
else
|
|
SubIdx = SubIndices[SubIndices.size() - Idx - 1];
|
|
|
|
MachineInstrBuilder Builder = BuildMI(MBB, MI, DL,
|
|
get(Opcode), RI.getSubReg(DestReg, SubIdx));
|
|
|
|
Builder.addReg(RI.getSubReg(SrcReg, SubIdx));
|
|
|
|
if (Idx == SubIndices.size() - 1)
|
|
Builder.addReg(SrcReg, getKillRegState(KillSrc) | RegState::Implicit);
|
|
|
|
if (Idx == 0)
|
|
Builder.addReg(DestReg, RegState::Define | RegState::Implicit);
|
|
}
|
|
}
|
|
|
|
int SIInstrInfo::commuteOpcode(const MachineInstr &MI) const {
|
|
const unsigned Opcode = MI.getOpcode();
|
|
|
|
int NewOpc;
|
|
|
|
// Try to map original to commuted opcode
|
|
NewOpc = AMDGPU::getCommuteRev(Opcode);
|
|
if (NewOpc != -1)
|
|
// Check if the commuted (REV) opcode exists on the target.
|
|
return pseudoToMCOpcode(NewOpc) != -1 ? NewOpc : -1;
|
|
|
|
// Try to map commuted to original opcode
|
|
NewOpc = AMDGPU::getCommuteOrig(Opcode);
|
|
if (NewOpc != -1)
|
|
// Check if the original (non-REV) opcode exists on the target.
|
|
return pseudoToMCOpcode(NewOpc) != -1 ? NewOpc : -1;
|
|
|
|
return Opcode;
|
|
}
|
|
|
|
unsigned SIInstrInfo::getMovOpcode(const TargetRegisterClass *DstRC) const {
|
|
|
|
if (DstRC->getSize() == 4) {
|
|
return RI.isSGPRClass(DstRC) ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32;
|
|
} else if (DstRC->getSize() == 8 && RI.isSGPRClass(DstRC)) {
|
|
return AMDGPU::S_MOV_B64;
|
|
} else if (DstRC->getSize() == 8 && !RI.isSGPRClass(DstRC)) {
|
|
return AMDGPU::V_MOV_B64_PSEUDO;
|
|
}
|
|
return AMDGPU::COPY;
|
|
}
|
|
|
|
static unsigned getSGPRSpillSaveOpcode(unsigned Size) {
|
|
switch (Size) {
|
|
case 4:
|
|
return AMDGPU::SI_SPILL_S32_SAVE;
|
|
case 8:
|
|
return AMDGPU::SI_SPILL_S64_SAVE;
|
|
case 16:
|
|
return AMDGPU::SI_SPILL_S128_SAVE;
|
|
case 32:
|
|
return AMDGPU::SI_SPILL_S256_SAVE;
|
|
case 64:
|
|
return AMDGPU::SI_SPILL_S512_SAVE;
|
|
default:
|
|
llvm_unreachable("unknown register size");
|
|
}
|
|
}
|
|
|
|
static unsigned getVGPRSpillSaveOpcode(unsigned Size) {
|
|
switch (Size) {
|
|
case 4:
|
|
return AMDGPU::SI_SPILL_V32_SAVE;
|
|
case 8:
|
|
return AMDGPU::SI_SPILL_V64_SAVE;
|
|
case 12:
|
|
return AMDGPU::SI_SPILL_V96_SAVE;
|
|
case 16:
|
|
return AMDGPU::SI_SPILL_V128_SAVE;
|
|
case 32:
|
|
return AMDGPU::SI_SPILL_V256_SAVE;
|
|
case 64:
|
|
return AMDGPU::SI_SPILL_V512_SAVE;
|
|
default:
|
|
llvm_unreachable("unknown register size");
|
|
}
|
|
}
|
|
|
|
void SIInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MI,
|
|
unsigned SrcReg, bool isKill,
|
|
int FrameIndex,
|
|
const TargetRegisterClass *RC,
|
|
const TargetRegisterInfo *TRI) const {
|
|
MachineFunction *MF = MBB.getParent();
|
|
SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
|
|
MachineFrameInfo *FrameInfo = MF->getFrameInfo();
|
|
DebugLoc DL = MBB.findDebugLoc(MI);
|
|
|
|
unsigned Size = FrameInfo->getObjectSize(FrameIndex);
|
|
unsigned Align = FrameInfo->getObjectAlignment(FrameIndex);
|
|
MachinePointerInfo PtrInfo
|
|
= MachinePointerInfo::getFixedStack(*MF, FrameIndex);
|
|
MachineMemOperand *MMO
|
|
= MF->getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore,
|
|
Size, Align);
|
|
|
|
if (RI.isSGPRClass(RC)) {
|
|
MFI->setHasSpilledSGPRs();
|
|
|
|
if (TargetRegisterInfo::isVirtualRegister(SrcReg) && RC->getSize() == 4) {
|
|
// m0 may not be allowed for readlane.
|
|
MachineRegisterInfo &MRI = MF->getRegInfo();
|
|
MRI.constrainRegClass(SrcReg, &AMDGPU::SReg_32_XM0RegClass);
|
|
}
|
|
|
|
// We are only allowed to create one new instruction when spilling
|
|
// registers, so we need to use pseudo instruction for spilling
|
|
// SGPRs.
|
|
unsigned Opcode = getSGPRSpillSaveOpcode(RC->getSize());
|
|
BuildMI(MBB, MI, DL, get(Opcode))
|
|
.addReg(SrcReg, getKillRegState(isKill)) // src
|
|
.addFrameIndex(FrameIndex) // frame_idx
|
|
.addMemOperand(MMO);
|
|
|
|
return;
|
|
}
|
|
|
|
if (!ST.isVGPRSpillingEnabled(*MF->getFunction())) {
|
|
LLVMContext &Ctx = MF->getFunction()->getContext();
|
|
Ctx.emitError("SIInstrInfo::storeRegToStackSlot - Do not know how to"
|
|
" spill register");
|
|
BuildMI(MBB, MI, DL, get(AMDGPU::KILL))
|
|
.addReg(SrcReg);
|
|
|
|
return;
|
|
}
|
|
|
|
assert(RI.hasVGPRs(RC) && "Only VGPR spilling expected");
|
|
|
|
unsigned Opcode = getVGPRSpillSaveOpcode(RC->getSize());
|
|
MFI->setHasSpilledVGPRs();
|
|
BuildMI(MBB, MI, DL, get(Opcode))
|
|
.addReg(SrcReg, getKillRegState(isKill)) // src
|
|
.addFrameIndex(FrameIndex) // frame_idx
|
|
.addReg(MFI->getScratchRSrcReg()) // scratch_rsrc
|
|
.addReg(MFI->getScratchWaveOffsetReg()) // scratch_offset
|
|
.addImm(0) // offset
|
|
.addMemOperand(MMO);
|
|
}
|
|
|
|
static unsigned getSGPRSpillRestoreOpcode(unsigned Size) {
|
|
switch (Size) {
|
|
case 4:
|
|
return AMDGPU::SI_SPILL_S32_RESTORE;
|
|
case 8:
|
|
return AMDGPU::SI_SPILL_S64_RESTORE;
|
|
case 16:
|
|
return AMDGPU::SI_SPILL_S128_RESTORE;
|
|
case 32:
|
|
return AMDGPU::SI_SPILL_S256_RESTORE;
|
|
case 64:
|
|
return AMDGPU::SI_SPILL_S512_RESTORE;
|
|
default:
|
|
llvm_unreachable("unknown register size");
|
|
}
|
|
}
|
|
|
|
static unsigned getVGPRSpillRestoreOpcode(unsigned Size) {
|
|
switch (Size) {
|
|
case 4:
|
|
return AMDGPU::SI_SPILL_V32_RESTORE;
|
|
case 8:
|
|
return AMDGPU::SI_SPILL_V64_RESTORE;
|
|
case 12:
|
|
return AMDGPU::SI_SPILL_V96_RESTORE;
|
|
case 16:
|
|
return AMDGPU::SI_SPILL_V128_RESTORE;
|
|
case 32:
|
|
return AMDGPU::SI_SPILL_V256_RESTORE;
|
|
case 64:
|
|
return AMDGPU::SI_SPILL_V512_RESTORE;
|
|
default:
|
|
llvm_unreachable("unknown register size");
|
|
}
|
|
}
|
|
|
|
void SIInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MI,
|
|
unsigned DestReg, int FrameIndex,
|
|
const TargetRegisterClass *RC,
|
|
const TargetRegisterInfo *TRI) const {
|
|
MachineFunction *MF = MBB.getParent();
|
|
const SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
|
|
MachineFrameInfo *FrameInfo = MF->getFrameInfo();
|
|
DebugLoc DL = MBB.findDebugLoc(MI);
|
|
unsigned Align = FrameInfo->getObjectAlignment(FrameIndex);
|
|
unsigned Size = FrameInfo->getObjectSize(FrameIndex);
|
|
|
|
MachinePointerInfo PtrInfo
|
|
= MachinePointerInfo::getFixedStack(*MF, FrameIndex);
|
|
|
|
MachineMemOperand *MMO = MF->getMachineMemOperand(
|
|
PtrInfo, MachineMemOperand::MOLoad, Size, Align);
|
|
|
|
if (RI.isSGPRClass(RC)) {
|
|
// FIXME: Maybe this should not include a memoperand because it will be
|
|
// lowered to non-memory instructions.
|
|
unsigned Opcode = getSGPRSpillRestoreOpcode(RC->getSize());
|
|
|
|
if (TargetRegisterInfo::isVirtualRegister(DestReg) && RC->getSize() == 4) {
|
|
// m0 may not be allowed for readlane.
|
|
MachineRegisterInfo &MRI = MF->getRegInfo();
|
|
MRI.constrainRegClass(DestReg, &AMDGPU::SReg_32_XM0RegClass);
|
|
}
|
|
|
|
BuildMI(MBB, MI, DL, get(Opcode), DestReg)
|
|
.addFrameIndex(FrameIndex) // frame_idx
|
|
.addMemOperand(MMO);
|
|
|
|
return;
|
|
}
|
|
|
|
if (!ST.isVGPRSpillingEnabled(*MF->getFunction())) {
|
|
LLVMContext &Ctx = MF->getFunction()->getContext();
|
|
Ctx.emitError("SIInstrInfo::loadRegFromStackSlot - Do not know how to"
|
|
" restore register");
|
|
BuildMI(MBB, MI, DL, get(AMDGPU::IMPLICIT_DEF), DestReg);
|
|
|
|
return;
|
|
}
|
|
|
|
assert(RI.hasVGPRs(RC) && "Only VGPR spilling expected");
|
|
|
|
unsigned Opcode = getVGPRSpillRestoreOpcode(RC->getSize());
|
|
BuildMI(MBB, MI, DL, get(Opcode), DestReg)
|
|
.addFrameIndex(FrameIndex) // frame_idx
|
|
.addReg(MFI->getScratchRSrcReg()) // scratch_rsrc
|
|
.addReg(MFI->getScratchWaveOffsetReg()) // scratch_offset
|
|
.addImm(0) // offset
|
|
.addMemOperand(MMO);
|
|
}
|
|
|
|
/// \param @Offset Offset in bytes of the FrameIndex being spilled
|
|
unsigned SIInstrInfo::calculateLDSSpillAddress(
|
|
MachineBasicBlock &MBB, MachineInstr &MI, RegScavenger *RS, unsigned TmpReg,
|
|
unsigned FrameOffset, unsigned Size) const {
|
|
MachineFunction *MF = MBB.getParent();
|
|
SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
|
|
const SISubtarget &ST = MF->getSubtarget<SISubtarget>();
|
|
const SIRegisterInfo *TRI = ST.getRegisterInfo();
|
|
DebugLoc DL = MBB.findDebugLoc(MI);
|
|
unsigned WorkGroupSize = MFI->getMaximumWorkGroupSize(*MF);
|
|
unsigned WavefrontSize = ST.getWavefrontSize();
|
|
|
|
unsigned TIDReg = MFI->getTIDReg();
|
|
if (!MFI->hasCalculatedTID()) {
|
|
MachineBasicBlock &Entry = MBB.getParent()->front();
|
|
MachineBasicBlock::iterator Insert = Entry.front();
|
|
DebugLoc DL = Insert->getDebugLoc();
|
|
|
|
TIDReg = RI.findUnusedRegister(MF->getRegInfo(), &AMDGPU::VGPR_32RegClass);
|
|
if (TIDReg == AMDGPU::NoRegister)
|
|
return TIDReg;
|
|
|
|
if (!AMDGPU::isShader(MF->getFunction()->getCallingConv()) &&
|
|
WorkGroupSize > WavefrontSize) {
|
|
|
|
unsigned TIDIGXReg
|
|
= TRI->getPreloadedValue(*MF, SIRegisterInfo::WORKGROUP_ID_X);
|
|
unsigned TIDIGYReg
|
|
= TRI->getPreloadedValue(*MF, SIRegisterInfo::WORKGROUP_ID_Y);
|
|
unsigned TIDIGZReg
|
|
= TRI->getPreloadedValue(*MF, SIRegisterInfo::WORKGROUP_ID_Z);
|
|
unsigned InputPtrReg =
|
|
TRI->getPreloadedValue(*MF, SIRegisterInfo::KERNARG_SEGMENT_PTR);
|
|
for (unsigned Reg : {TIDIGXReg, TIDIGYReg, TIDIGZReg}) {
|
|
if (!Entry.isLiveIn(Reg))
|
|
Entry.addLiveIn(Reg);
|
|
}
|
|
|
|
RS->enterBasicBlock(Entry);
|
|
// FIXME: Can we scavenge an SReg_64 and access the subregs?
|
|
unsigned STmp0 = RS->scavengeRegister(&AMDGPU::SGPR_32RegClass, 0);
|
|
unsigned STmp1 = RS->scavengeRegister(&AMDGPU::SGPR_32RegClass, 0);
|
|
BuildMI(Entry, Insert, DL, get(AMDGPU::S_LOAD_DWORD_IMM), STmp0)
|
|
.addReg(InputPtrReg)
|
|
.addImm(SI::KernelInputOffsets::NGROUPS_Z);
|
|
BuildMI(Entry, Insert, DL, get(AMDGPU::S_LOAD_DWORD_IMM), STmp1)
|
|
.addReg(InputPtrReg)
|
|
.addImm(SI::KernelInputOffsets::NGROUPS_Y);
|
|
|
|
// NGROUPS.X * NGROUPS.Y
|
|
BuildMI(Entry, Insert, DL, get(AMDGPU::S_MUL_I32), STmp1)
|
|
.addReg(STmp1)
|
|
.addReg(STmp0);
|
|
// (NGROUPS.X * NGROUPS.Y) * TIDIG.X
|
|
BuildMI(Entry, Insert, DL, get(AMDGPU::V_MUL_U32_U24_e32), TIDReg)
|
|
.addReg(STmp1)
|
|
.addReg(TIDIGXReg);
|
|
// NGROUPS.Z * TIDIG.Y + (NGROUPS.X * NGROPUS.Y * TIDIG.X)
|
|
BuildMI(Entry, Insert, DL, get(AMDGPU::V_MAD_U32_U24), TIDReg)
|
|
.addReg(STmp0)
|
|
.addReg(TIDIGYReg)
|
|
.addReg(TIDReg);
|
|
// (NGROUPS.Z * TIDIG.Y + (NGROUPS.X * NGROPUS.Y * TIDIG.X)) + TIDIG.Z
|
|
BuildMI(Entry, Insert, DL, get(AMDGPU::V_ADD_I32_e32), TIDReg)
|
|
.addReg(TIDReg)
|
|
.addReg(TIDIGZReg);
|
|
} else {
|
|
// Get the wave id
|
|
BuildMI(Entry, Insert, DL, get(AMDGPU::V_MBCNT_LO_U32_B32_e64),
|
|
TIDReg)
|
|
.addImm(-1)
|
|
.addImm(0);
|
|
|
|
BuildMI(Entry, Insert, DL, get(AMDGPU::V_MBCNT_HI_U32_B32_e64),
|
|
TIDReg)
|
|
.addImm(-1)
|
|
.addReg(TIDReg);
|
|
}
|
|
|
|
BuildMI(Entry, Insert, DL, get(AMDGPU::V_LSHLREV_B32_e32),
|
|
TIDReg)
|
|
.addImm(2)
|
|
.addReg(TIDReg);
|
|
MFI->setTIDReg(TIDReg);
|
|
}
|
|
|
|
// Add FrameIndex to LDS offset
|
|
unsigned LDSOffset = MFI->LDSSize + (FrameOffset * WorkGroupSize);
|
|
BuildMI(MBB, MI, DL, get(AMDGPU::V_ADD_I32_e32), TmpReg)
|
|
.addImm(LDSOffset)
|
|
.addReg(TIDReg);
|
|
|
|
return TmpReg;
|
|
}
|
|
|
|
void SIInstrInfo::insertWaitStates(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MI,
|
|
int Count) const {
|
|
DebugLoc DL = MBB.findDebugLoc(MI);
|
|
while (Count > 0) {
|
|
int Arg;
|
|
if (Count >= 8)
|
|
Arg = 7;
|
|
else
|
|
Arg = Count - 1;
|
|
Count -= 8;
|
|
BuildMI(MBB, MI, DL, get(AMDGPU::S_NOP))
|
|
.addImm(Arg);
|
|
}
|
|
}
|
|
|
|
void SIInstrInfo::insertNoop(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MI) const {
|
|
insertWaitStates(MBB, MI, 1);
|
|
}
|
|
|
|
unsigned SIInstrInfo::getNumWaitStates(const MachineInstr &MI) const {
|
|
switch (MI.getOpcode()) {
|
|
default: return 1; // FIXME: Do wait states equal cycles?
|
|
|
|
case AMDGPU::S_NOP:
|
|
return MI.getOperand(0).getImm() + 1;
|
|
}
|
|
}
|
|
|
|
bool SIInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
|
|
MachineBasicBlock &MBB = *MI.getParent();
|
|
DebugLoc DL = MBB.findDebugLoc(MI);
|
|
switch (MI.getOpcode()) {
|
|
default: return AMDGPUInstrInfo::expandPostRAPseudo(MI);
|
|
|
|
case AMDGPU::V_MOV_B64_PSEUDO: {
|
|
unsigned Dst = MI.getOperand(0).getReg();
|
|
unsigned DstLo = RI.getSubReg(Dst, AMDGPU::sub0);
|
|
unsigned DstHi = RI.getSubReg(Dst, AMDGPU::sub1);
|
|
|
|
const MachineOperand &SrcOp = MI.getOperand(1);
|
|
// FIXME: Will this work for 64-bit floating point immediates?
|
|
assert(!SrcOp.isFPImm());
|
|
if (SrcOp.isImm()) {
|
|
APInt Imm(64, SrcOp.getImm());
|
|
BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstLo)
|
|
.addImm(Imm.getLoBits(32).getZExtValue())
|
|
.addReg(Dst, RegState::Implicit | RegState::Define);
|
|
BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstHi)
|
|
.addImm(Imm.getHiBits(32).getZExtValue())
|
|
.addReg(Dst, RegState::Implicit | RegState::Define);
|
|
} else {
|
|
assert(SrcOp.isReg());
|
|
BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstLo)
|
|
.addReg(RI.getSubReg(SrcOp.getReg(), AMDGPU::sub0))
|
|
.addReg(Dst, RegState::Implicit | RegState::Define);
|
|
BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstHi)
|
|
.addReg(RI.getSubReg(SrcOp.getReg(), AMDGPU::sub1))
|
|
.addReg(Dst, RegState::Implicit | RegState::Define);
|
|
}
|
|
MI.eraseFromParent();
|
|
break;
|
|
}
|
|
|
|
case AMDGPU::V_CNDMASK_B64_PSEUDO: {
|
|
unsigned Dst = MI.getOperand(0).getReg();
|
|
unsigned DstLo = RI.getSubReg(Dst, AMDGPU::sub0);
|
|
unsigned DstHi = RI.getSubReg(Dst, AMDGPU::sub1);
|
|
unsigned Src0 = MI.getOperand(1).getReg();
|
|
unsigned Src1 = MI.getOperand(2).getReg();
|
|
const MachineOperand &SrcCond = MI.getOperand(3);
|
|
|
|
BuildMI(MBB, MI, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstLo)
|
|
.addReg(RI.getSubReg(Src0, AMDGPU::sub0))
|
|
.addReg(RI.getSubReg(Src1, AMDGPU::sub0))
|
|
.addReg(SrcCond.getReg())
|
|
.addReg(Dst, RegState::Implicit | RegState::Define);
|
|
BuildMI(MBB, MI, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstHi)
|
|
.addReg(RI.getSubReg(Src0, AMDGPU::sub1))
|
|
.addReg(RI.getSubReg(Src1, AMDGPU::sub1))
|
|
.addReg(SrcCond.getReg(), getKillRegState(SrcCond.isKill()))
|
|
.addReg(Dst, RegState::Implicit | RegState::Define);
|
|
MI.eraseFromParent();
|
|
break;
|
|
}
|
|
|
|
case AMDGPU::SI_PC_ADD_REL_OFFSET: {
|
|
const SIRegisterInfo *TRI
|
|
= static_cast<const SIRegisterInfo *>(ST.getRegisterInfo());
|
|
MachineFunction &MF = *MBB.getParent();
|
|
unsigned Reg = MI.getOperand(0).getReg();
|
|
unsigned RegLo = TRI->getSubReg(Reg, AMDGPU::sub0);
|
|
unsigned RegHi = TRI->getSubReg(Reg, AMDGPU::sub1);
|
|
|
|
// Create a bundle so these instructions won't be re-ordered by the
|
|
// post-RA scheduler.
|
|
MIBundleBuilder Bundler(MBB, MI);
|
|
Bundler.append(BuildMI(MF, DL, get(AMDGPU::S_GETPC_B64), Reg));
|
|
|
|
// Add 32-bit offset from this instruction to the start of the
|
|
// constant data.
|
|
Bundler.append(BuildMI(MF, DL, get(AMDGPU::S_ADD_U32), RegLo)
|
|
.addReg(RegLo)
|
|
.addOperand(MI.getOperand(1)));
|
|
Bundler.append(BuildMI(MF, DL, get(AMDGPU::S_ADDC_U32), RegHi)
|
|
.addReg(RegHi)
|
|
.addImm(0));
|
|
|
|
llvm::finalizeBundle(MBB, Bundler.begin());
|
|
|
|
MI.eraseFromParent();
|
|
break;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Commutes the operands in the given instruction.
|
|
/// The commutable operands are specified by their indices OpIdx0 and OpIdx1.
|
|
///
|
|
/// Do not call this method for a non-commutable instruction or for
|
|
/// non-commutable pair of operand indices OpIdx0 and OpIdx1.
|
|
/// Even though the instruction is commutable, the method may still
|
|
/// fail to commute the operands, null pointer is returned in such cases.
|
|
MachineInstr *SIInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
|
|
unsigned OpIdx0,
|
|
unsigned OpIdx1) const {
|
|
int CommutedOpcode = commuteOpcode(MI);
|
|
if (CommutedOpcode == -1)
|
|
return nullptr;
|
|
|
|
int Src0Idx =
|
|
AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src0);
|
|
MachineOperand &Src0 = MI.getOperand(Src0Idx);
|
|
if (!Src0.isReg())
|
|
return nullptr;
|
|
|
|
int Src1Idx =
|
|
AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src1);
|
|
|
|
if ((OpIdx0 != static_cast<unsigned>(Src0Idx) ||
|
|
OpIdx1 != static_cast<unsigned>(Src1Idx)) &&
|
|
(OpIdx0 != static_cast<unsigned>(Src1Idx) ||
|
|
OpIdx1 != static_cast<unsigned>(Src0Idx)))
|
|
return nullptr;
|
|
|
|
MachineOperand &Src1 = MI.getOperand(Src1Idx);
|
|
|
|
if (isVOP2(MI) || isVOPC(MI)) {
|
|
const MCInstrDesc &InstrDesc = MI.getDesc();
|
|
// For VOP2 and VOPC instructions, any operand type is valid to use for
|
|
// src0. Make sure we can use the src0 as src1.
|
|
//
|
|
// We could be stricter here and only allow commuting if there is a reason
|
|
// to do so. i.e. if both operands are VGPRs there is no real benefit,
|
|
// although MachineCSE attempts to find matches by commuting.
|
|
const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
|
|
if (!isLegalRegOperand(MRI, InstrDesc.OpInfo[Src1Idx], Src0))
|
|
return nullptr;
|
|
}
|
|
|
|
MachineInstr *CommutedMI = &MI;
|
|
if (!Src1.isReg()) {
|
|
// Allow commuting instructions with Imm operands.
|
|
if (NewMI || !Src1.isImm() || (!isVOP2(MI) && !isVOP3(MI))) {
|
|
return nullptr;
|
|
}
|
|
// Be sure to copy the source modifiers to the right place.
|
|
if (MachineOperand *Src0Mods =
|
|
getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)) {
|
|
MachineOperand *Src1Mods =
|
|
getNamedOperand(MI, AMDGPU::OpName::src1_modifiers);
|
|
|
|
int Src0ModsVal = Src0Mods->getImm();
|
|
if (!Src1Mods && Src0ModsVal != 0)
|
|
return nullptr;
|
|
|
|
// XXX - This assert might be a lie. It might be useful to have a neg
|
|
// modifier with 0.0.
|
|
int Src1ModsVal = Src1Mods->getImm();
|
|
assert((Src1ModsVal == 0) && "Not expecting modifiers with immediates");
|
|
|
|
Src1Mods->setImm(Src0ModsVal);
|
|
Src0Mods->setImm(Src1ModsVal);
|
|
}
|
|
|
|
unsigned Reg = Src0.getReg();
|
|
unsigned SubReg = Src0.getSubReg();
|
|
if (Src1.isImm())
|
|
Src0.ChangeToImmediate(Src1.getImm());
|
|
else
|
|
llvm_unreachable("Should only have immediates");
|
|
|
|
Src1.ChangeToRegister(Reg, false);
|
|
Src1.setSubReg(SubReg);
|
|
} else {
|
|
CommutedMI =
|
|
TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx0, OpIdx1);
|
|
}
|
|
|
|
if (CommutedMI)
|
|
CommutedMI->setDesc(get(CommutedOpcode));
|
|
|
|
return CommutedMI;
|
|
}
|
|
|
|
// This needs to be implemented because the source modifiers may be inserted
|
|
// between the true commutable operands, and the base
|
|
// TargetInstrInfo::commuteInstruction uses it.
|
|
bool SIInstrInfo::findCommutedOpIndices(MachineInstr &MI, unsigned &SrcOpIdx0,
|
|
unsigned &SrcOpIdx1) const {
|
|
const MCInstrDesc &MCID = MI.getDesc();
|
|
if (!MCID.isCommutable())
|
|
return false;
|
|
|
|
unsigned Opc = MI.getOpcode();
|
|
int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0);
|
|
if (Src0Idx == -1)
|
|
return false;
|
|
|
|
// FIXME: Workaround TargetInstrInfo::commuteInstruction asserting on
|
|
// immediate. Also, immediate src0 operand is not handled in
|
|
// SIInstrInfo::commuteInstruction();
|
|
if (!MI.getOperand(Src0Idx).isReg())
|
|
return false;
|
|
|
|
int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1);
|
|
if (Src1Idx == -1)
|
|
return false;
|
|
|
|
MachineOperand &Src1 = MI.getOperand(Src1Idx);
|
|
if (Src1.isImm()) {
|
|
// SIInstrInfo::commuteInstruction() does support commuting the immediate
|
|
// operand src1 in 2 and 3 operand instructions.
|
|
if (!isVOP2(MI.getOpcode()) && !isVOP3(MI.getOpcode()))
|
|
return false;
|
|
} else if (Src1.isReg()) {
|
|
// If any source modifiers are set, the generic instruction commuting won't
|
|
// understand how to copy the source modifiers.
|
|
if (hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) ||
|
|
hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers))
|
|
return false;
|
|
} else
|
|
return false;
|
|
|
|
return fixCommutedOpIndices(SrcOpIdx0, SrcOpIdx1, Src0Idx, Src1Idx);
|
|
}
|
|
|
|
unsigned SIInstrInfo::getBranchOpcode(SIInstrInfo::BranchPredicate Cond) {
|
|
switch (Cond) {
|
|
case SIInstrInfo::SCC_TRUE:
|
|
return AMDGPU::S_CBRANCH_SCC1;
|
|
case SIInstrInfo::SCC_FALSE:
|
|
return AMDGPU::S_CBRANCH_SCC0;
|
|
case SIInstrInfo::VCCNZ:
|
|
return AMDGPU::S_CBRANCH_VCCNZ;
|
|
case SIInstrInfo::VCCZ:
|
|
return AMDGPU::S_CBRANCH_VCCZ;
|
|
case SIInstrInfo::EXECNZ:
|
|
return AMDGPU::S_CBRANCH_EXECNZ;
|
|
case SIInstrInfo::EXECZ:
|
|
return AMDGPU::S_CBRANCH_EXECZ;
|
|
default:
|
|
llvm_unreachable("invalid branch predicate");
|
|
}
|
|
}
|
|
|
|
SIInstrInfo::BranchPredicate SIInstrInfo::getBranchPredicate(unsigned Opcode) {
|
|
switch (Opcode) {
|
|
case AMDGPU::S_CBRANCH_SCC0:
|
|
return SCC_FALSE;
|
|
case AMDGPU::S_CBRANCH_SCC1:
|
|
return SCC_TRUE;
|
|
case AMDGPU::S_CBRANCH_VCCNZ:
|
|
return VCCNZ;
|
|
case AMDGPU::S_CBRANCH_VCCZ:
|
|
return VCCZ;
|
|
case AMDGPU::S_CBRANCH_EXECNZ:
|
|
return EXECNZ;
|
|
case AMDGPU::S_CBRANCH_EXECZ:
|
|
return EXECZ;
|
|
default:
|
|
return INVALID_BR;
|
|
}
|
|
}
|
|
|
|
bool SIInstrInfo::analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
|
|
MachineBasicBlock *&FBB,
|
|
SmallVectorImpl<MachineOperand> &Cond,
|
|
bool AllowModify) const {
|
|
MachineBasicBlock::iterator I = MBB.getFirstTerminator();
|
|
|
|
if (I == MBB.end())
|
|
return false;
|
|
|
|
if (I->getOpcode() == AMDGPU::S_BRANCH) {
|
|
// Unconditional Branch
|
|
TBB = I->getOperand(0).getMBB();
|
|
return false;
|
|
}
|
|
|
|
BranchPredicate Pred = getBranchPredicate(I->getOpcode());
|
|
if (Pred == INVALID_BR)
|
|
return true;
|
|
|
|
MachineBasicBlock *CondBB = I->getOperand(0).getMBB();
|
|
Cond.push_back(MachineOperand::CreateImm(Pred));
|
|
|
|
++I;
|
|
|
|
if (I == MBB.end()) {
|
|
// Conditional branch followed by fall-through.
|
|
TBB = CondBB;
|
|
return false;
|
|
}
|
|
|
|
if (I->getOpcode() == AMDGPU::S_BRANCH) {
|
|
TBB = CondBB;
|
|
FBB = I->getOperand(0).getMBB();
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
unsigned SIInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
|
|
MachineBasicBlock::iterator I = MBB.getFirstTerminator();
|
|
|
|
unsigned Count = 0;
|
|
while (I != MBB.end()) {
|
|
MachineBasicBlock::iterator Next = std::next(I);
|
|
I->eraseFromParent();
|
|
++Count;
|
|
I = Next;
|
|
}
|
|
|
|
return Count;
|
|
}
|
|
|
|
unsigned SIInstrInfo::InsertBranch(MachineBasicBlock &MBB,
|
|
MachineBasicBlock *TBB,
|
|
MachineBasicBlock *FBB,
|
|
ArrayRef<MachineOperand> Cond,
|
|
const DebugLoc &DL) const {
|
|
|
|
if (!FBB && Cond.empty()) {
|
|
BuildMI(&MBB, DL, get(AMDGPU::S_BRANCH))
|
|
.addMBB(TBB);
|
|
return 1;
|
|
}
|
|
|
|
assert(TBB && Cond[0].isImm());
|
|
|
|
unsigned Opcode
|
|
= getBranchOpcode(static_cast<BranchPredicate>(Cond[0].getImm()));
|
|
|
|
if (!FBB) {
|
|
BuildMI(&MBB, DL, get(Opcode))
|
|
.addMBB(TBB);
|
|
return 1;
|
|
}
|
|
|
|
assert(TBB && FBB);
|
|
|
|
BuildMI(&MBB, DL, get(Opcode))
|
|
.addMBB(TBB);
|
|
BuildMI(&MBB, DL, get(AMDGPU::S_BRANCH))
|
|
.addMBB(FBB);
|
|
|
|
return 2;
|
|
}
|
|
|
|
bool SIInstrInfo::ReverseBranchCondition(
|
|
SmallVectorImpl<MachineOperand> &Cond) const {
|
|
assert(Cond.size() == 1);
|
|
Cond[0].setImm(-Cond[0].getImm());
|
|
return false;
|
|
}
|
|
|
|
static void removeModOperands(MachineInstr &MI) {
|
|
unsigned Opc = MI.getOpcode();
|
|
int Src0ModIdx = AMDGPU::getNamedOperandIdx(Opc,
|
|
AMDGPU::OpName::src0_modifiers);
|
|
int Src1ModIdx = AMDGPU::getNamedOperandIdx(Opc,
|
|
AMDGPU::OpName::src1_modifiers);
|
|
int Src2ModIdx = AMDGPU::getNamedOperandIdx(Opc,
|
|
AMDGPU::OpName::src2_modifiers);
|
|
|
|
MI.RemoveOperand(Src2ModIdx);
|
|
MI.RemoveOperand(Src1ModIdx);
|
|
MI.RemoveOperand(Src0ModIdx);
|
|
}
|
|
|
|
// TODO: Maybe this should be removed this and custom fold everything in
|
|
// SIFoldOperands?
|
|
bool SIInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
|
|
unsigned Reg, MachineRegisterInfo *MRI) const {
|
|
if (!MRI->hasOneNonDBGUse(Reg))
|
|
return false;
|
|
|
|
unsigned Opc = UseMI.getOpcode();
|
|
if (Opc == AMDGPU::V_MAD_F32 || Opc == AMDGPU::V_MAC_F32_e64) {
|
|
// Don't fold if we are using source modifiers. The new VOP2 instructions
|
|
// don't have them.
|
|
if (hasModifiersSet(UseMI, AMDGPU::OpName::src0_modifiers) ||
|
|
hasModifiersSet(UseMI, AMDGPU::OpName::src1_modifiers) ||
|
|
hasModifiersSet(UseMI, AMDGPU::OpName::src2_modifiers)) {
|
|
return false;
|
|
}
|
|
|
|
const MachineOperand &ImmOp = DefMI.getOperand(1);
|
|
|
|
// If this is a free constant, there's no reason to do this.
|
|
// TODO: We could fold this here instead of letting SIFoldOperands do it
|
|
// later.
|
|
if (isInlineConstant(ImmOp, 4))
|
|
return false;
|
|
|
|
MachineOperand *Src0 = getNamedOperand(UseMI, AMDGPU::OpName::src0);
|
|
MachineOperand *Src1 = getNamedOperand(UseMI, AMDGPU::OpName::src1);
|
|
MachineOperand *Src2 = getNamedOperand(UseMI, AMDGPU::OpName::src2);
|
|
|
|
// Multiplied part is the constant: Use v_madmk_f32
|
|
// We should only expect these to be on src0 due to canonicalizations.
|
|
if (Src0->isReg() && Src0->getReg() == Reg) {
|
|
if (!Src1->isReg() || RI.isSGPRClass(MRI->getRegClass(Src1->getReg())))
|
|
return false;
|
|
|
|
if (!Src2->isReg() || RI.isSGPRClass(MRI->getRegClass(Src2->getReg())))
|
|
return false;
|
|
|
|
// We need to swap operands 0 and 1 since madmk constant is at operand 1.
|
|
|
|
const int64_t Imm = DefMI.getOperand(1).getImm();
|
|
|
|
// FIXME: This would be a lot easier if we could return a new instruction
|
|
// instead of having to modify in place.
|
|
|
|
// Remove these first since they are at the end.
|
|
UseMI.RemoveOperand(
|
|
AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::omod));
|
|
UseMI.RemoveOperand(
|
|
AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::clamp));
|
|
|
|
unsigned Src1Reg = Src1->getReg();
|
|
unsigned Src1SubReg = Src1->getSubReg();
|
|
Src0->setReg(Src1Reg);
|
|
Src0->setSubReg(Src1SubReg);
|
|
Src0->setIsKill(Src1->isKill());
|
|
|
|
if (Opc == AMDGPU::V_MAC_F32_e64) {
|
|
UseMI.untieRegOperand(
|
|
AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2));
|
|
}
|
|
|
|
Src1->ChangeToImmediate(Imm);
|
|
|
|
removeModOperands(UseMI);
|
|
UseMI.setDesc(get(AMDGPU::V_MADMK_F32));
|
|
|
|
bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
|
|
if (DeleteDef)
|
|
DefMI.eraseFromParent();
|
|
|
|
return true;
|
|
}
|
|
|
|
// Added part is the constant: Use v_madak_f32
|
|
if (Src2->isReg() && Src2->getReg() == Reg) {
|
|
// Not allowed to use constant bus for another operand.
|
|
// We can however allow an inline immediate as src0.
|
|
if (!Src0->isImm() &&
|
|
(Src0->isReg() && RI.isSGPRClass(MRI->getRegClass(Src0->getReg()))))
|
|
return false;
|
|
|
|
if (!Src1->isReg() || RI.isSGPRClass(MRI->getRegClass(Src1->getReg())))
|
|
return false;
|
|
|
|
const int64_t Imm = DefMI.getOperand(1).getImm();
|
|
|
|
// FIXME: This would be a lot easier if we could return a new instruction
|
|
// instead of having to modify in place.
|
|
|
|
// Remove these first since they are at the end.
|
|
UseMI.RemoveOperand(
|
|
AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::omod));
|
|
UseMI.RemoveOperand(
|
|
AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::clamp));
|
|
|
|
if (Opc == AMDGPU::V_MAC_F32_e64) {
|
|
UseMI.untieRegOperand(
|
|
AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2));
|
|
}
|
|
|
|
// ChangingToImmediate adds Src2 back to the instruction.
|
|
Src2->ChangeToImmediate(Imm);
|
|
|
|
// These come before src2.
|
|
removeModOperands(UseMI);
|
|
UseMI.setDesc(get(AMDGPU::V_MADAK_F32));
|
|
|
|
bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
|
|
if (DeleteDef)
|
|
DefMI.eraseFromParent();
|
|
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool offsetsDoNotOverlap(int WidthA, int OffsetA,
|
|
int WidthB, int OffsetB) {
|
|
int LowOffset = OffsetA < OffsetB ? OffsetA : OffsetB;
|
|
int HighOffset = OffsetA < OffsetB ? OffsetB : OffsetA;
|
|
int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
|
|
return LowOffset + LowWidth <= HighOffset;
|
|
}
|
|
|
|
bool SIInstrInfo::checkInstOffsetsDoNotOverlap(MachineInstr &MIa,
|
|
MachineInstr &MIb) const {
|
|
unsigned BaseReg0, BaseReg1;
|
|
int64_t Offset0, Offset1;
|
|
|
|
if (getMemOpBaseRegImmOfs(MIa, BaseReg0, Offset0, &RI) &&
|
|
getMemOpBaseRegImmOfs(MIb, BaseReg1, Offset1, &RI)) {
|
|
|
|
if (!MIa.hasOneMemOperand() || !MIb.hasOneMemOperand()) {
|
|
// FIXME: Handle ds_read2 / ds_write2.
|
|
return false;
|
|
}
|
|
unsigned Width0 = (*MIa.memoperands_begin())->getSize();
|
|
unsigned Width1 = (*MIb.memoperands_begin())->getSize();
|
|
if (BaseReg0 == BaseReg1 &&
|
|
offsetsDoNotOverlap(Width0, Offset0, Width1, Offset1)) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool SIInstrInfo::areMemAccessesTriviallyDisjoint(MachineInstr &MIa,
|
|
MachineInstr &MIb,
|
|
AliasAnalysis *AA) const {
|
|
assert((MIa.mayLoad() || MIa.mayStore()) &&
|
|
"MIa must load from or modify a memory location");
|
|
assert((MIb.mayLoad() || MIb.mayStore()) &&
|
|
"MIb must load from or modify a memory location");
|
|
|
|
if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects())
|
|
return false;
|
|
|
|
// XXX - Can we relax this between address spaces?
|
|
if (MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef())
|
|
return false;
|
|
|
|
// TODO: Should we check the address space from the MachineMemOperand? That
|
|
// would allow us to distinguish objects we know don't alias based on the
|
|
// underlying address space, even if it was lowered to a different one,
|
|
// e.g. private accesses lowered to use MUBUF instructions on a scratch
|
|
// buffer.
|
|
if (isDS(MIa)) {
|
|
if (isDS(MIb))
|
|
return checkInstOffsetsDoNotOverlap(MIa, MIb);
|
|
|
|
return !isFLAT(MIb);
|
|
}
|
|
|
|
if (isMUBUF(MIa) || isMTBUF(MIa)) {
|
|
if (isMUBUF(MIb) || isMTBUF(MIb))
|
|
return checkInstOffsetsDoNotOverlap(MIa, MIb);
|
|
|
|
return !isFLAT(MIb) && !isSMRD(MIb);
|
|
}
|
|
|
|
if (isSMRD(MIa)) {
|
|
if (isSMRD(MIb))
|
|
return checkInstOffsetsDoNotOverlap(MIa, MIb);
|
|
|
|
return !isFLAT(MIb) && !isMUBUF(MIa) && !isMTBUF(MIa);
|
|
}
|
|
|
|
if (isFLAT(MIa)) {
|
|
if (isFLAT(MIb))
|
|
return checkInstOffsetsDoNotOverlap(MIa, MIb);
|
|
|
|
return false;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
MachineInstr *SIInstrInfo::convertToThreeAddress(MachineFunction::iterator &MBB,
|
|
MachineInstr &MI,
|
|
LiveVariables *LV) const {
|
|
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
return nullptr;
|
|
case AMDGPU::V_MAC_F32_e64:
|
|
break;
|
|
case AMDGPU::V_MAC_F32_e32: {
|
|
const MachineOperand *Src0 = getNamedOperand(MI, AMDGPU::OpName::src0);
|
|
if (Src0->isImm() && !isInlineConstant(*Src0, 4))
|
|
return nullptr;
|
|
break;
|
|
}
|
|
}
|
|
|
|
const MachineOperand *Dst = getNamedOperand(MI, AMDGPU::OpName::vdst);
|
|
const MachineOperand *Src0 = getNamedOperand(MI, AMDGPU::OpName::src0);
|
|
const MachineOperand *Src1 = getNamedOperand(MI, AMDGPU::OpName::src1);
|
|
const MachineOperand *Src2 = getNamedOperand(MI, AMDGPU::OpName::src2);
|
|
|
|
return BuildMI(*MBB, MI, MI.getDebugLoc(), get(AMDGPU::V_MAD_F32))
|
|
.addOperand(*Dst)
|
|
.addImm(0) // Src0 mods
|
|
.addOperand(*Src0)
|
|
.addImm(0) // Src1 mods
|
|
.addOperand(*Src1)
|
|
.addImm(0) // Src mods
|
|
.addOperand(*Src2)
|
|
.addImm(0) // clamp
|
|
.addImm(0); // omod
|
|
}
|
|
|
|
bool SIInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
|
|
const MachineBasicBlock *MBB,
|
|
const MachineFunction &MF) const {
|
|
// XXX - Do we want the SP check in the base implementation?
|
|
|
|
// Target-independent instructions do not have an implicit-use of EXEC, even
|
|
// when they operate on VGPRs. Treating EXEC modifications as scheduling
|
|
// boundaries prevents incorrect movements of such instructions.
|
|
return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF) ||
|
|
MI.modifiesRegister(AMDGPU::EXEC, &RI);
|
|
}
|
|
|
|
bool SIInstrInfo::isInlineConstant(const APInt &Imm) const {
|
|
int64_t SVal = Imm.getSExtValue();
|
|
if (SVal >= -16 && SVal <= 64)
|
|
return true;
|
|
|
|
if (Imm.getBitWidth() == 64) {
|
|
uint64_t Val = Imm.getZExtValue();
|
|
return (DoubleToBits(0.0) == Val) ||
|
|
(DoubleToBits(1.0) == Val) ||
|
|
(DoubleToBits(-1.0) == Val) ||
|
|
(DoubleToBits(0.5) == Val) ||
|
|
(DoubleToBits(-0.5) == Val) ||
|
|
(DoubleToBits(2.0) == Val) ||
|
|
(DoubleToBits(-2.0) == Val) ||
|
|
(DoubleToBits(4.0) == Val) ||
|
|
(DoubleToBits(-4.0) == Val);
|
|
}
|
|
|
|
// The actual type of the operand does not seem to matter as long
|
|
// as the bits match one of the inline immediate values. For example:
|
|
//
|
|
// -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal,
|
|
// so it is a legal inline immediate.
|
|
//
|
|
// 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in
|
|
// floating-point, so it is a legal inline immediate.
|
|
uint32_t Val = Imm.getZExtValue();
|
|
|
|
return (FloatToBits(0.0f) == Val) ||
|
|
(FloatToBits(1.0f) == Val) ||
|
|
(FloatToBits(-1.0f) == Val) ||
|
|
(FloatToBits(0.5f) == Val) ||
|
|
(FloatToBits(-0.5f) == Val) ||
|
|
(FloatToBits(2.0f) == Val) ||
|
|
(FloatToBits(-2.0f) == Val) ||
|
|
(FloatToBits(4.0f) == Val) ||
|
|
(FloatToBits(-4.0f) == Val);
|
|
}
|
|
|
|
bool SIInstrInfo::isInlineConstant(const MachineOperand &MO,
|
|
unsigned OpSize) const {
|
|
if (MO.isImm()) {
|
|
// MachineOperand provides no way to tell the true operand size, since it
|
|
// only records a 64-bit value. We need to know the size to determine if a
|
|
// 32-bit floating point immediate bit pattern is legal for an integer
|
|
// immediate. It would be for any 32-bit integer operand, but would not be
|
|
// for a 64-bit one.
|
|
|
|
unsigned BitSize = 8 * OpSize;
|
|
return isInlineConstant(APInt(BitSize, MO.getImm(), true));
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool SIInstrInfo::isLiteralConstant(const MachineOperand &MO,
|
|
unsigned OpSize) const {
|
|
return MO.isImm() && !isInlineConstant(MO, OpSize);
|
|
}
|
|
|
|
static bool compareMachineOp(const MachineOperand &Op0,
|
|
const MachineOperand &Op1) {
|
|
if (Op0.getType() != Op1.getType())
|
|
return false;
|
|
|
|
switch (Op0.getType()) {
|
|
case MachineOperand::MO_Register:
|
|
return Op0.getReg() == Op1.getReg();
|
|
case MachineOperand::MO_Immediate:
|
|
return Op0.getImm() == Op1.getImm();
|
|
default:
|
|
llvm_unreachable("Didn't expect to be comparing these operand types");
|
|
}
|
|
}
|
|
|
|
bool SIInstrInfo::isImmOperandLegal(const MachineInstr &MI, unsigned OpNo,
|
|
const MachineOperand &MO) const {
|
|
const MCOperandInfo &OpInfo = get(MI.getOpcode()).OpInfo[OpNo];
|
|
|
|
assert(MO.isImm() || MO.isTargetIndex() || MO.isFI());
|
|
|
|
if (OpInfo.OperandType == MCOI::OPERAND_IMMEDIATE)
|
|
return true;
|
|
|
|
if (OpInfo.RegClass < 0)
|
|
return false;
|
|
|
|
unsigned OpSize = RI.getRegClass(OpInfo.RegClass)->getSize();
|
|
if (isLiteralConstant(MO, OpSize))
|
|
return RI.opCanUseLiteralConstant(OpInfo.OperandType);
|
|
|
|
return RI.opCanUseInlineConstant(OpInfo.OperandType);
|
|
}
|
|
|
|
bool SIInstrInfo::hasVALU32BitEncoding(unsigned Opcode) const {
|
|
int Op32 = AMDGPU::getVOPe32(Opcode);
|
|
if (Op32 == -1)
|
|
return false;
|
|
|
|
return pseudoToMCOpcode(Op32) != -1;
|
|
}
|
|
|
|
bool SIInstrInfo::hasModifiers(unsigned Opcode) const {
|
|
// The src0_modifier operand is present on all instructions
|
|
// that have modifiers.
|
|
|
|
return AMDGPU::getNamedOperandIdx(Opcode,
|
|
AMDGPU::OpName::src0_modifiers) != -1;
|
|
}
|
|
|
|
bool SIInstrInfo::hasModifiersSet(const MachineInstr &MI,
|
|
unsigned OpName) const {
|
|
const MachineOperand *Mods = getNamedOperand(MI, OpName);
|
|
return Mods && Mods->getImm();
|
|
}
|
|
|
|
bool SIInstrInfo::usesConstantBus(const MachineRegisterInfo &MRI,
|
|
const MachineOperand &MO,
|
|
unsigned OpSize) const {
|
|
// Literal constants use the constant bus.
|
|
if (isLiteralConstant(MO, OpSize))
|
|
return true;
|
|
|
|
if (!MO.isReg() || !MO.isUse())
|
|
return false;
|
|
|
|
if (TargetRegisterInfo::isVirtualRegister(MO.getReg()))
|
|
return RI.isSGPRClass(MRI.getRegClass(MO.getReg()));
|
|
|
|
// FLAT_SCR is just an SGPR pair.
|
|
if (!MO.isImplicit() && (MO.getReg() == AMDGPU::FLAT_SCR))
|
|
return true;
|
|
|
|
// EXEC register uses the constant bus.
|
|
if (!MO.isImplicit() && MO.getReg() == AMDGPU::EXEC)
|
|
return true;
|
|
|
|
// SGPRs use the constant bus
|
|
return (MO.getReg() == AMDGPU::VCC || MO.getReg() == AMDGPU::M0 ||
|
|
(!MO.isImplicit() &&
|
|
(AMDGPU::SGPR_32RegClass.contains(MO.getReg()) ||
|
|
AMDGPU::SGPR_64RegClass.contains(MO.getReg()))));
|
|
}
|
|
|
|
static unsigned findImplicitSGPRRead(const MachineInstr &MI) {
|
|
for (const MachineOperand &MO : MI.implicit_operands()) {
|
|
// We only care about reads.
|
|
if (MO.isDef())
|
|
continue;
|
|
|
|
switch (MO.getReg()) {
|
|
case AMDGPU::VCC:
|
|
case AMDGPU::M0:
|
|
case AMDGPU::FLAT_SCR:
|
|
return MO.getReg();
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
return AMDGPU::NoRegister;
|
|
}
|
|
|
|
static bool shouldReadExec(const MachineInstr &MI) {
|
|
if (SIInstrInfo::isVALU(MI)) {
|
|
switch (MI.getOpcode()) {
|
|
case AMDGPU::V_READLANE_B32:
|
|
case AMDGPU::V_READLANE_B32_si:
|
|
case AMDGPU::V_READLANE_B32_vi:
|
|
case AMDGPU::V_WRITELANE_B32:
|
|
case AMDGPU::V_WRITELANE_B32_si:
|
|
case AMDGPU::V_WRITELANE_B32_vi:
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
if (SIInstrInfo::isGenericOpcode(MI.getOpcode()) ||
|
|
SIInstrInfo::isSALU(MI) ||
|
|
SIInstrInfo::isSMRD(MI))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool SIInstrInfo::verifyInstruction(const MachineInstr &MI,
|
|
StringRef &ErrInfo) const {
|
|
uint16_t Opcode = MI.getOpcode();
|
|
const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
|
|
int Src0Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0);
|
|
int Src1Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1);
|
|
int Src2Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2);
|
|
|
|
// Make sure the number of operands is correct.
|
|
const MCInstrDesc &Desc = get(Opcode);
|
|
if (!Desc.isVariadic() &&
|
|
Desc.getNumOperands() != MI.getNumExplicitOperands()) {
|
|
ErrInfo = "Instruction has wrong number of operands.";
|
|
return false;
|
|
}
|
|
|
|
// Make sure the register classes are correct.
|
|
for (int i = 0, e = Desc.getNumOperands(); i != e; ++i) {
|
|
if (MI.getOperand(i).isFPImm()) {
|
|
ErrInfo = "FPImm Machine Operands are not supported. ISel should bitcast "
|
|
"all fp values to integers.";
|
|
return false;
|
|
}
|
|
|
|
int RegClass = Desc.OpInfo[i].RegClass;
|
|
|
|
switch (Desc.OpInfo[i].OperandType) {
|
|
case MCOI::OPERAND_REGISTER:
|
|
if (MI.getOperand(i).isImm()) {
|
|
ErrInfo = "Illegal immediate value for operand.";
|
|
return false;
|
|
}
|
|
break;
|
|
case AMDGPU::OPERAND_REG_IMM32:
|
|
break;
|
|
case AMDGPU::OPERAND_REG_INLINE_C:
|
|
if (isLiteralConstant(MI.getOperand(i),
|
|
RI.getRegClass(RegClass)->getSize())) {
|
|
ErrInfo = "Illegal immediate value for operand.";
|
|
return false;
|
|
}
|
|
break;
|
|
case MCOI::OPERAND_IMMEDIATE:
|
|
case AMDGPU::OPERAND_KIMM32:
|
|
// Check if this operand is an immediate.
|
|
// FrameIndex operands will be replaced by immediates, so they are
|
|
// allowed.
|
|
if (!MI.getOperand(i).isImm() && !MI.getOperand(i).isFI()) {
|
|
ErrInfo = "Expected immediate, but got non-immediate";
|
|
return false;
|
|
}
|
|
// Fall-through
|
|
default:
|
|
continue;
|
|
}
|
|
|
|
if (!MI.getOperand(i).isReg())
|
|
continue;
|
|
|
|
if (RegClass != -1) {
|
|
unsigned Reg = MI.getOperand(i).getReg();
|
|
if (Reg == AMDGPU::NoRegister ||
|
|
TargetRegisterInfo::isVirtualRegister(Reg))
|
|
continue;
|
|
|
|
const TargetRegisterClass *RC = RI.getRegClass(RegClass);
|
|
if (!RC->contains(Reg)) {
|
|
ErrInfo = "Operand has incorrect register class.";
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Verify VOP*
|
|
if (isVOP1(MI) || isVOP2(MI) || isVOP3(MI) || isVOPC(MI)) {
|
|
// Only look at the true operands. Only a real operand can use the constant
|
|
// bus, and we don't want to check pseudo-operands like the source modifier
|
|
// flags.
|
|
const int OpIndices[] = { Src0Idx, Src1Idx, Src2Idx };
|
|
|
|
unsigned ConstantBusCount = 0;
|
|
|
|
if (AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::imm) != -1)
|
|
++ConstantBusCount;
|
|
|
|
unsigned SGPRUsed = findImplicitSGPRRead(MI);
|
|
if (SGPRUsed != AMDGPU::NoRegister)
|
|
++ConstantBusCount;
|
|
|
|
for (int OpIdx : OpIndices) {
|
|
if (OpIdx == -1)
|
|
break;
|
|
const MachineOperand &MO = MI.getOperand(OpIdx);
|
|
if (usesConstantBus(MRI, MO, getOpSize(Opcode, OpIdx))) {
|
|
if (MO.isReg()) {
|
|
if (MO.getReg() != SGPRUsed)
|
|
++ConstantBusCount;
|
|
SGPRUsed = MO.getReg();
|
|
} else {
|
|
++ConstantBusCount;
|
|
}
|
|
}
|
|
}
|
|
if (ConstantBusCount > 1) {
|
|
ErrInfo = "VOP* instruction uses the constant bus more than once";
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Verify misc. restrictions on specific instructions.
|
|
if (Desc.getOpcode() == AMDGPU::V_DIV_SCALE_F32 ||
|
|
Desc.getOpcode() == AMDGPU::V_DIV_SCALE_F64) {
|
|
const MachineOperand &Src0 = MI.getOperand(Src0Idx);
|
|
const MachineOperand &Src1 = MI.getOperand(Src1Idx);
|
|
const MachineOperand &Src2 = MI.getOperand(Src2Idx);
|
|
if (Src0.isReg() && Src1.isReg() && Src2.isReg()) {
|
|
if (!compareMachineOp(Src0, Src1) &&
|
|
!compareMachineOp(Src0, Src2)) {
|
|
ErrInfo = "v_div_scale_{f32|f64} require src0 = src1 or src2";
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Make sure we aren't losing exec uses in the td files. This mostly requires
|
|
// being careful when using let Uses to try to add other use registers.
|
|
if (shouldReadExec(MI)) {
|
|
if (!MI.hasRegisterImplicitUseOperand(AMDGPU::EXEC)) {
|
|
ErrInfo = "VALU instruction does not implicitly read exec mask";
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
unsigned SIInstrInfo::getVALUOp(const MachineInstr &MI) {
|
|
switch (MI.getOpcode()) {
|
|
default: return AMDGPU::INSTRUCTION_LIST_END;
|
|
case AMDGPU::REG_SEQUENCE: return AMDGPU::REG_SEQUENCE;
|
|
case AMDGPU::COPY: return AMDGPU::COPY;
|
|
case AMDGPU::PHI: return AMDGPU::PHI;
|
|
case AMDGPU::INSERT_SUBREG: return AMDGPU::INSERT_SUBREG;
|
|
case AMDGPU::S_MOV_B32:
|
|
return MI.getOperand(1).isReg() ?
|
|
AMDGPU::COPY : AMDGPU::V_MOV_B32_e32;
|
|
case AMDGPU::S_ADD_I32:
|
|
case AMDGPU::S_ADD_U32: return AMDGPU::V_ADD_I32_e32;
|
|
case AMDGPU::S_ADDC_U32: return AMDGPU::V_ADDC_U32_e32;
|
|
case AMDGPU::S_SUB_I32:
|
|
case AMDGPU::S_SUB_U32: return AMDGPU::V_SUB_I32_e32;
|
|
case AMDGPU::S_SUBB_U32: return AMDGPU::V_SUBB_U32_e32;
|
|
case AMDGPU::S_MUL_I32: return AMDGPU::V_MUL_LO_I32;
|
|
case AMDGPU::S_AND_B32: return AMDGPU::V_AND_B32_e32;
|
|
case AMDGPU::S_OR_B32: return AMDGPU::V_OR_B32_e32;
|
|
case AMDGPU::S_XOR_B32: return AMDGPU::V_XOR_B32_e32;
|
|
case AMDGPU::S_MIN_I32: return AMDGPU::V_MIN_I32_e32;
|
|
case AMDGPU::S_MIN_U32: return AMDGPU::V_MIN_U32_e32;
|
|
case AMDGPU::S_MAX_I32: return AMDGPU::V_MAX_I32_e32;
|
|
case AMDGPU::S_MAX_U32: return AMDGPU::V_MAX_U32_e32;
|
|
case AMDGPU::S_ASHR_I32: return AMDGPU::V_ASHR_I32_e32;
|
|
case AMDGPU::S_ASHR_I64: return AMDGPU::V_ASHR_I64;
|
|
case AMDGPU::S_LSHL_B32: return AMDGPU::V_LSHL_B32_e32;
|
|
case AMDGPU::S_LSHL_B64: return AMDGPU::V_LSHL_B64;
|
|
case AMDGPU::S_LSHR_B32: return AMDGPU::V_LSHR_B32_e32;
|
|
case AMDGPU::S_LSHR_B64: return AMDGPU::V_LSHR_B64;
|
|
case AMDGPU::S_SEXT_I32_I8: return AMDGPU::V_BFE_I32;
|
|
case AMDGPU::S_SEXT_I32_I16: return AMDGPU::V_BFE_I32;
|
|
case AMDGPU::S_BFE_U32: return AMDGPU::V_BFE_U32;
|
|
case AMDGPU::S_BFE_I32: return AMDGPU::V_BFE_I32;
|
|
case AMDGPU::S_BFM_B32: return AMDGPU::V_BFM_B32_e64;
|
|
case AMDGPU::S_BREV_B32: return AMDGPU::V_BFREV_B32_e32;
|
|
case AMDGPU::S_NOT_B32: return AMDGPU::V_NOT_B32_e32;
|
|
case AMDGPU::S_NOT_B64: return AMDGPU::V_NOT_B32_e32;
|
|
case AMDGPU::S_CMP_EQ_I32: return AMDGPU::V_CMP_EQ_I32_e32;
|
|
case AMDGPU::S_CMP_LG_I32: return AMDGPU::V_CMP_NE_I32_e32;
|
|
case AMDGPU::S_CMP_GT_I32: return AMDGPU::V_CMP_GT_I32_e32;
|
|
case AMDGPU::S_CMP_GE_I32: return AMDGPU::V_CMP_GE_I32_e32;
|
|
case AMDGPU::S_CMP_LT_I32: return AMDGPU::V_CMP_LT_I32_e32;
|
|
case AMDGPU::S_CMP_LE_I32: return AMDGPU::V_CMP_LE_I32_e32;
|
|
case AMDGPU::S_CMP_EQ_U32: return AMDGPU::V_CMP_EQ_U32_e32;
|
|
case AMDGPU::S_CMP_LG_U32: return AMDGPU::V_CMP_NE_U32_e32;
|
|
case AMDGPU::S_CMP_GT_U32: return AMDGPU::V_CMP_GT_U32_e32;
|
|
case AMDGPU::S_CMP_GE_U32: return AMDGPU::V_CMP_GE_U32_e32;
|
|
case AMDGPU::S_CMP_LT_U32: return AMDGPU::V_CMP_LT_U32_e32;
|
|
case AMDGPU::S_CMP_LE_U32: return AMDGPU::V_CMP_LE_U32_e32;
|
|
case AMDGPU::S_BCNT1_I32_B32: return AMDGPU::V_BCNT_U32_B32_e64;
|
|
case AMDGPU::S_FF1_I32_B32: return AMDGPU::V_FFBL_B32_e32;
|
|
case AMDGPU::S_FLBIT_I32_B32: return AMDGPU::V_FFBH_U32_e32;
|
|
case AMDGPU::S_FLBIT_I32: return AMDGPU::V_FFBH_I32_e64;
|
|
case AMDGPU::S_CBRANCH_SCC0: return AMDGPU::S_CBRANCH_VCCZ;
|
|
case AMDGPU::S_CBRANCH_SCC1: return AMDGPU::S_CBRANCH_VCCNZ;
|
|
}
|
|
}
|
|
|
|
bool SIInstrInfo::isSALUOpSupportedOnVALU(const MachineInstr &MI) const {
|
|
return getVALUOp(MI) != AMDGPU::INSTRUCTION_LIST_END;
|
|
}
|
|
|
|
const TargetRegisterClass *SIInstrInfo::getOpRegClass(const MachineInstr &MI,
|
|
unsigned OpNo) const {
|
|
const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
|
|
const MCInstrDesc &Desc = get(MI.getOpcode());
|
|
if (MI.isVariadic() || OpNo >= Desc.getNumOperands() ||
|
|
Desc.OpInfo[OpNo].RegClass == -1) {
|
|
unsigned Reg = MI.getOperand(OpNo).getReg();
|
|
|
|
if (TargetRegisterInfo::isVirtualRegister(Reg))
|
|
return MRI.getRegClass(Reg);
|
|
return RI.getPhysRegClass(Reg);
|
|
}
|
|
|
|
unsigned RCID = Desc.OpInfo[OpNo].RegClass;
|
|
return RI.getRegClass(RCID);
|
|
}
|
|
|
|
bool SIInstrInfo::canReadVGPR(const MachineInstr &MI, unsigned OpNo) const {
|
|
switch (MI.getOpcode()) {
|
|
case AMDGPU::COPY:
|
|
case AMDGPU::REG_SEQUENCE:
|
|
case AMDGPU::PHI:
|
|
case AMDGPU::INSERT_SUBREG:
|
|
return RI.hasVGPRs(getOpRegClass(MI, 0));
|
|
default:
|
|
return RI.hasVGPRs(getOpRegClass(MI, OpNo));
|
|
}
|
|
}
|
|
|
|
void SIInstrInfo::legalizeOpWithMove(MachineInstr &MI, unsigned OpIdx) const {
|
|
MachineBasicBlock::iterator I = MI;
|
|
MachineBasicBlock *MBB = MI.getParent();
|
|
MachineOperand &MO = MI.getOperand(OpIdx);
|
|
MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
|
|
unsigned RCID = get(MI.getOpcode()).OpInfo[OpIdx].RegClass;
|
|
const TargetRegisterClass *RC = RI.getRegClass(RCID);
|
|
unsigned Opcode = AMDGPU::V_MOV_B32_e32;
|
|
if (MO.isReg())
|
|
Opcode = AMDGPU::COPY;
|
|
else if (RI.isSGPRClass(RC))
|
|
Opcode = AMDGPU::S_MOV_B32;
|
|
|
|
const TargetRegisterClass *VRC = RI.getEquivalentVGPRClass(RC);
|
|
if (RI.getCommonSubClass(&AMDGPU::VReg_64RegClass, VRC))
|
|
VRC = &AMDGPU::VReg_64RegClass;
|
|
else
|
|
VRC = &AMDGPU::VGPR_32RegClass;
|
|
|
|
unsigned Reg = MRI.createVirtualRegister(VRC);
|
|
DebugLoc DL = MBB->findDebugLoc(I);
|
|
BuildMI(*MI.getParent(), I, DL, get(Opcode), Reg).addOperand(MO);
|
|
MO.ChangeToRegister(Reg, false);
|
|
}
|
|
|
|
unsigned SIInstrInfo::buildExtractSubReg(MachineBasicBlock::iterator MI,
|
|
MachineRegisterInfo &MRI,
|
|
MachineOperand &SuperReg,
|
|
const TargetRegisterClass *SuperRC,
|
|
unsigned SubIdx,
|
|
const TargetRegisterClass *SubRC)
|
|
const {
|
|
MachineBasicBlock *MBB = MI->getParent();
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
unsigned SubReg = MRI.createVirtualRegister(SubRC);
|
|
|
|
if (SuperReg.getSubReg() == AMDGPU::NoSubRegister) {
|
|
BuildMI(*MBB, MI, DL, get(TargetOpcode::COPY), SubReg)
|
|
.addReg(SuperReg.getReg(), 0, SubIdx);
|
|
return SubReg;
|
|
}
|
|
|
|
// Just in case the super register is itself a sub-register, copy it to a new
|
|
// value so we don't need to worry about merging its subreg index with the
|
|
// SubIdx passed to this function. The register coalescer should be able to
|
|
// eliminate this extra copy.
|
|
unsigned NewSuperReg = MRI.createVirtualRegister(SuperRC);
|
|
|
|
BuildMI(*MBB, MI, DL, get(TargetOpcode::COPY), NewSuperReg)
|
|
.addReg(SuperReg.getReg(), 0, SuperReg.getSubReg());
|
|
|
|
BuildMI(*MBB, MI, DL, get(TargetOpcode::COPY), SubReg)
|
|
.addReg(NewSuperReg, 0, SubIdx);
|
|
|
|
return SubReg;
|
|
}
|
|
|
|
MachineOperand SIInstrInfo::buildExtractSubRegOrImm(
|
|
MachineBasicBlock::iterator MII,
|
|
MachineRegisterInfo &MRI,
|
|
MachineOperand &Op,
|
|
const TargetRegisterClass *SuperRC,
|
|
unsigned SubIdx,
|
|
const TargetRegisterClass *SubRC) const {
|
|
if (Op.isImm()) {
|
|
// XXX - Is there a better way to do this?
|
|
if (SubIdx == AMDGPU::sub0)
|
|
return MachineOperand::CreateImm(Op.getImm() & 0xFFFFFFFF);
|
|
if (SubIdx == AMDGPU::sub1)
|
|
return MachineOperand::CreateImm(Op.getImm() >> 32);
|
|
|
|
llvm_unreachable("Unhandled register index for immediate");
|
|
}
|
|
|
|
unsigned SubReg = buildExtractSubReg(MII, MRI, Op, SuperRC,
|
|
SubIdx, SubRC);
|
|
return MachineOperand::CreateReg(SubReg, false);
|
|
}
|
|
|
|
// Change the order of operands from (0, 1, 2) to (0, 2, 1)
|
|
void SIInstrInfo::swapOperands(MachineInstr &Inst) const {
|
|
assert(Inst.getNumExplicitOperands() == 3);
|
|
MachineOperand Op1 = Inst.getOperand(1);
|
|
Inst.RemoveOperand(1);
|
|
Inst.addOperand(Op1);
|
|
}
|
|
|
|
bool SIInstrInfo::isLegalRegOperand(const MachineRegisterInfo &MRI,
|
|
const MCOperandInfo &OpInfo,
|
|
const MachineOperand &MO) const {
|
|
if (!MO.isReg())
|
|
return false;
|
|
|
|
unsigned Reg = MO.getReg();
|
|
const TargetRegisterClass *RC =
|
|
TargetRegisterInfo::isVirtualRegister(Reg) ?
|
|
MRI.getRegClass(Reg) :
|
|
RI.getPhysRegClass(Reg);
|
|
|
|
const SIRegisterInfo *TRI =
|
|
static_cast<const SIRegisterInfo*>(MRI.getTargetRegisterInfo());
|
|
RC = TRI->getSubRegClass(RC, MO.getSubReg());
|
|
|
|
// In order to be legal, the common sub-class must be equal to the
|
|
// class of the current operand. For example:
|
|
//
|
|
// v_mov_b32 s0 ; Operand defined as vsrc_32
|
|
// ; RI.getCommonSubClass(s0,vsrc_32) = sgpr ; LEGAL
|
|
//
|
|
// s_sendmsg 0, s0 ; Operand defined as m0reg
|
|
// ; RI.getCommonSubClass(s0,m0reg) = m0reg ; NOT LEGAL
|
|
|
|
return RI.getCommonSubClass(RC, RI.getRegClass(OpInfo.RegClass)) == RC;
|
|
}
|
|
|
|
bool SIInstrInfo::isLegalVSrcOperand(const MachineRegisterInfo &MRI,
|
|
const MCOperandInfo &OpInfo,
|
|
const MachineOperand &MO) const {
|
|
if (MO.isReg())
|
|
return isLegalRegOperand(MRI, OpInfo, MO);
|
|
|
|
// Handle non-register types that are treated like immediates.
|
|
assert(MO.isImm() || MO.isTargetIndex() || MO.isFI());
|
|
return true;
|
|
}
|
|
|
|
bool SIInstrInfo::isOperandLegal(const MachineInstr &MI, unsigned OpIdx,
|
|
const MachineOperand *MO) const {
|
|
const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
|
|
const MCInstrDesc &InstDesc = MI.getDesc();
|
|
const MCOperandInfo &OpInfo = InstDesc.OpInfo[OpIdx];
|
|
const TargetRegisterClass *DefinedRC =
|
|
OpInfo.RegClass != -1 ? RI.getRegClass(OpInfo.RegClass) : nullptr;
|
|
if (!MO)
|
|
MO = &MI.getOperand(OpIdx);
|
|
|
|
if (isVALU(MI) && usesConstantBus(MRI, *MO, DefinedRC->getSize())) {
|
|
|
|
RegSubRegPair SGPRUsed;
|
|
if (MO->isReg())
|
|
SGPRUsed = RegSubRegPair(MO->getReg(), MO->getSubReg());
|
|
|
|
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
|
|
if (i == OpIdx)
|
|
continue;
|
|
const MachineOperand &Op = MI.getOperand(i);
|
|
if (Op.isReg()) {
|
|
if ((Op.getReg() != SGPRUsed.Reg || Op.getSubReg() != SGPRUsed.SubReg) &&
|
|
usesConstantBus(MRI, Op, getOpSize(MI, i))) {
|
|
return false;
|
|
}
|
|
} else if (InstDesc.OpInfo[i].OperandType == AMDGPU::OPERAND_KIMM32) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (MO->isReg()) {
|
|
assert(DefinedRC);
|
|
return isLegalRegOperand(MRI, OpInfo, *MO);
|
|
}
|
|
|
|
// Handle non-register types that are treated like immediates.
|
|
assert(MO->isImm() || MO->isTargetIndex() || MO->isFI());
|
|
|
|
if (!DefinedRC) {
|
|
// This operand expects an immediate.
|
|
return true;
|
|
}
|
|
|
|
return isImmOperandLegal(MI, OpIdx, *MO);
|
|
}
|
|
|
|
void SIInstrInfo::legalizeOperandsVOP2(MachineRegisterInfo &MRI,
|
|
MachineInstr &MI) const {
|
|
unsigned Opc = MI.getOpcode();
|
|
const MCInstrDesc &InstrDesc = get(Opc);
|
|
|
|
int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1);
|
|
MachineOperand &Src1 = MI.getOperand(Src1Idx);
|
|
|
|
// If there is an implicit SGPR use such as VCC use for v_addc_u32/v_subb_u32
|
|
// we need to only have one constant bus use.
|
|
//
|
|
// Note we do not need to worry about literal constants here. They are
|
|
// disabled for the operand type for instructions because they will always
|
|
// violate the one constant bus use rule.
|
|
bool HasImplicitSGPR = findImplicitSGPRRead(MI) != AMDGPU::NoRegister;
|
|
if (HasImplicitSGPR) {
|
|
int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0);
|
|
MachineOperand &Src0 = MI.getOperand(Src0Idx);
|
|
|
|
if (Src0.isReg() && RI.isSGPRReg(MRI, Src0.getReg()))
|
|
legalizeOpWithMove(MI, Src0Idx);
|
|
}
|
|
|
|
// VOP2 src0 instructions support all operand types, so we don't need to check
|
|
// their legality. If src1 is already legal, we don't need to do anything.
|
|
if (isLegalRegOperand(MRI, InstrDesc.OpInfo[Src1Idx], Src1))
|
|
return;
|
|
|
|
// We do not use commuteInstruction here because it is too aggressive and will
|
|
// commute if it is possible. We only want to commute here if it improves
|
|
// legality. This can be called a fairly large number of times so don't waste
|
|
// compile time pointlessly swapping and checking legality again.
|
|
if (HasImplicitSGPR || !MI.isCommutable()) {
|
|
legalizeOpWithMove(MI, Src1Idx);
|
|
return;
|
|
}
|
|
|
|
int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0);
|
|
MachineOperand &Src0 = MI.getOperand(Src0Idx);
|
|
|
|
// If src0 can be used as src1, commuting will make the operands legal.
|
|
// Otherwise we have to give up and insert a move.
|
|
//
|
|
// TODO: Other immediate-like operand kinds could be commuted if there was a
|
|
// MachineOperand::ChangeTo* for them.
|
|
if ((!Src1.isImm() && !Src1.isReg()) ||
|
|
!isLegalRegOperand(MRI, InstrDesc.OpInfo[Src1Idx], Src0)) {
|
|
legalizeOpWithMove(MI, Src1Idx);
|
|
return;
|
|
}
|
|
|
|
int CommutedOpc = commuteOpcode(MI);
|
|
if (CommutedOpc == -1) {
|
|
legalizeOpWithMove(MI, Src1Idx);
|
|
return;
|
|
}
|
|
|
|
MI.setDesc(get(CommutedOpc));
|
|
|
|
unsigned Src0Reg = Src0.getReg();
|
|
unsigned Src0SubReg = Src0.getSubReg();
|
|
bool Src0Kill = Src0.isKill();
|
|
|
|
if (Src1.isImm())
|
|
Src0.ChangeToImmediate(Src1.getImm());
|
|
else if (Src1.isReg()) {
|
|
Src0.ChangeToRegister(Src1.getReg(), false, false, Src1.isKill());
|
|
Src0.setSubReg(Src1.getSubReg());
|
|
} else
|
|
llvm_unreachable("Should only have register or immediate operands");
|
|
|
|
Src1.ChangeToRegister(Src0Reg, false, false, Src0Kill);
|
|
Src1.setSubReg(Src0SubReg);
|
|
}
|
|
|
|
// Legalize VOP3 operands. Because all operand types are supported for any
|
|
// operand, and since literal constants are not allowed and should never be
|
|
// seen, we only need to worry about inserting copies if we use multiple SGPR
|
|
// operands.
|
|
void SIInstrInfo::legalizeOperandsVOP3(MachineRegisterInfo &MRI,
|
|
MachineInstr &MI) const {
|
|
unsigned Opc = MI.getOpcode();
|
|
|
|
int VOP3Idx[3] = {
|
|
AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0),
|
|
AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1),
|
|
AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)
|
|
};
|
|
|
|
// Find the one SGPR operand we are allowed to use.
|
|
unsigned SGPRReg = findUsedSGPR(MI, VOP3Idx);
|
|
|
|
for (unsigned i = 0; i < 3; ++i) {
|
|
int Idx = VOP3Idx[i];
|
|
if (Idx == -1)
|
|
break;
|
|
MachineOperand &MO = MI.getOperand(Idx);
|
|
|
|
// We should never see a VOP3 instruction with an illegal immediate operand.
|
|
if (!MO.isReg())
|
|
continue;
|
|
|
|
if (!RI.isSGPRClass(MRI.getRegClass(MO.getReg())))
|
|
continue; // VGPRs are legal
|
|
|
|
if (SGPRReg == AMDGPU::NoRegister || SGPRReg == MO.getReg()) {
|
|
SGPRReg = MO.getReg();
|
|
// We can use one SGPR in each VOP3 instruction.
|
|
continue;
|
|
}
|
|
|
|
// If we make it this far, then the operand is not legal and we must
|
|
// legalize it.
|
|
legalizeOpWithMove(MI, Idx);
|
|
}
|
|
}
|
|
|
|
unsigned SIInstrInfo::readlaneVGPRToSGPR(unsigned SrcReg, MachineInstr &UseMI,
|
|
MachineRegisterInfo &MRI) const {
|
|
const TargetRegisterClass *VRC = MRI.getRegClass(SrcReg);
|
|
const TargetRegisterClass *SRC = RI.getEquivalentSGPRClass(VRC);
|
|
unsigned DstReg = MRI.createVirtualRegister(SRC);
|
|
unsigned SubRegs = VRC->getSize() / 4;
|
|
|
|
SmallVector<unsigned, 8> SRegs;
|
|
for (unsigned i = 0; i < SubRegs; ++i) {
|
|
unsigned SGPR = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
|
|
BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(),
|
|
get(AMDGPU::V_READFIRSTLANE_B32), SGPR)
|
|
.addReg(SrcReg, 0, RI.getSubRegFromChannel(i));
|
|
SRegs.push_back(SGPR);
|
|
}
|
|
|
|
MachineInstrBuilder MIB =
|
|
BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(),
|
|
get(AMDGPU::REG_SEQUENCE), DstReg);
|
|
for (unsigned i = 0; i < SubRegs; ++i) {
|
|
MIB.addReg(SRegs[i]);
|
|
MIB.addImm(RI.getSubRegFromChannel(i));
|
|
}
|
|
return DstReg;
|
|
}
|
|
|
|
void SIInstrInfo::legalizeOperandsSMRD(MachineRegisterInfo &MRI,
|
|
MachineInstr &MI) const {
|
|
|
|
// If the pointer is store in VGPRs, then we need to move them to
|
|
// SGPRs using v_readfirstlane. This is safe because we only select
|
|
// loads with uniform pointers to SMRD instruction so we know the
|
|
// pointer value is uniform.
|
|
MachineOperand *SBase = getNamedOperand(MI, AMDGPU::OpName::sbase);
|
|
if (SBase && !RI.isSGPRClass(MRI.getRegClass(SBase->getReg()))) {
|
|
unsigned SGPR = readlaneVGPRToSGPR(SBase->getReg(), MI, MRI);
|
|
SBase->setReg(SGPR);
|
|
}
|
|
}
|
|
|
|
void SIInstrInfo::legalizeOperands(MachineInstr &MI) const {
|
|
MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
|
|
|
|
// Legalize VOP2
|
|
if (isVOP2(MI) || isVOPC(MI)) {
|
|
legalizeOperandsVOP2(MRI, MI);
|
|
return;
|
|
}
|
|
|
|
// Legalize VOP3
|
|
if (isVOP3(MI)) {
|
|
legalizeOperandsVOP3(MRI, MI);
|
|
return;
|
|
}
|
|
|
|
// Legalize SMRD
|
|
if (isSMRD(MI)) {
|
|
legalizeOperandsSMRD(MRI, MI);
|
|
return;
|
|
}
|
|
|
|
// Legalize REG_SEQUENCE and PHI
|
|
// The register class of the operands much be the same type as the register
|
|
// class of the output.
|
|
if (MI.getOpcode() == AMDGPU::PHI) {
|
|
const TargetRegisterClass *RC = nullptr, *SRC = nullptr, *VRC = nullptr;
|
|
for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) {
|
|
if (!MI.getOperand(i).isReg() ||
|
|
!TargetRegisterInfo::isVirtualRegister(MI.getOperand(i).getReg()))
|
|
continue;
|
|
const TargetRegisterClass *OpRC =
|
|
MRI.getRegClass(MI.getOperand(i).getReg());
|
|
if (RI.hasVGPRs(OpRC)) {
|
|
VRC = OpRC;
|
|
} else {
|
|
SRC = OpRC;
|
|
}
|
|
}
|
|
|
|
// If any of the operands are VGPR registers, then they all most be
|
|
// otherwise we will create illegal VGPR->SGPR copies when legalizing
|
|
// them.
|
|
if (VRC || !RI.isSGPRClass(getOpRegClass(MI, 0))) {
|
|
if (!VRC) {
|
|
assert(SRC);
|
|
VRC = RI.getEquivalentVGPRClass(SRC);
|
|
}
|
|
RC = VRC;
|
|
} else {
|
|
RC = SRC;
|
|
}
|
|
|
|
// Update all the operands so they have the same type.
|
|
for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
|
|
MachineOperand &Op = MI.getOperand(I);
|
|
if (!Op.isReg() || !TargetRegisterInfo::isVirtualRegister(Op.getReg()))
|
|
continue;
|
|
unsigned DstReg = MRI.createVirtualRegister(RC);
|
|
|
|
// MI is a PHI instruction.
|
|
MachineBasicBlock *InsertBB = MI.getOperand(I + 1).getMBB();
|
|
MachineBasicBlock::iterator Insert = InsertBB->getFirstTerminator();
|
|
|
|
BuildMI(*InsertBB, Insert, MI.getDebugLoc(), get(AMDGPU::COPY), DstReg)
|
|
.addOperand(Op);
|
|
Op.setReg(DstReg);
|
|
}
|
|
}
|
|
|
|
// REG_SEQUENCE doesn't really require operand legalization, but if one has a
|
|
// VGPR dest type and SGPR sources, insert copies so all operands are
|
|
// VGPRs. This seems to help operand folding / the register coalescer.
|
|
if (MI.getOpcode() == AMDGPU::REG_SEQUENCE) {
|
|
MachineBasicBlock *MBB = MI.getParent();
|
|
const TargetRegisterClass *DstRC = getOpRegClass(MI, 0);
|
|
if (RI.hasVGPRs(DstRC)) {
|
|
// Update all the operands so they are VGPR register classes. These may
|
|
// not be the same register class because REG_SEQUENCE supports mixing
|
|
// subregister index types e.g. sub0_sub1 + sub2 + sub3
|
|
for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
|
|
MachineOperand &Op = MI.getOperand(I);
|
|
if (!Op.isReg() || !TargetRegisterInfo::isVirtualRegister(Op.getReg()))
|
|
continue;
|
|
|
|
const TargetRegisterClass *OpRC = MRI.getRegClass(Op.getReg());
|
|
const TargetRegisterClass *VRC = RI.getEquivalentVGPRClass(OpRC);
|
|
if (VRC == OpRC)
|
|
continue;
|
|
|
|
unsigned DstReg = MRI.createVirtualRegister(VRC);
|
|
|
|
BuildMI(*MBB, MI, MI.getDebugLoc(), get(AMDGPU::COPY), DstReg)
|
|
.addOperand(Op);
|
|
|
|
Op.setReg(DstReg);
|
|
Op.setIsKill();
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
// Legalize INSERT_SUBREG
|
|
// src0 must have the same register class as dst
|
|
if (MI.getOpcode() == AMDGPU::INSERT_SUBREG) {
|
|
unsigned Dst = MI.getOperand(0).getReg();
|
|
unsigned Src0 = MI.getOperand(1).getReg();
|
|
const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
|
|
const TargetRegisterClass *Src0RC = MRI.getRegClass(Src0);
|
|
if (DstRC != Src0RC) {
|
|
MachineBasicBlock &MBB = *MI.getParent();
|
|
unsigned NewSrc0 = MRI.createVirtualRegister(DstRC);
|
|
BuildMI(MBB, MI, MI.getDebugLoc(), get(AMDGPU::COPY), NewSrc0)
|
|
.addReg(Src0);
|
|
MI.getOperand(1).setReg(NewSrc0);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Legalize MIMG
|
|
if (isMIMG(MI)) {
|
|
MachineOperand *SRsrc = getNamedOperand(MI, AMDGPU::OpName::srsrc);
|
|
if (SRsrc && !RI.isSGPRClass(MRI.getRegClass(SRsrc->getReg()))) {
|
|
unsigned SGPR = readlaneVGPRToSGPR(SRsrc->getReg(), MI, MRI);
|
|
SRsrc->setReg(SGPR);
|
|
}
|
|
|
|
MachineOperand *SSamp = getNamedOperand(MI, AMDGPU::OpName::ssamp);
|
|
if (SSamp && !RI.isSGPRClass(MRI.getRegClass(SSamp->getReg()))) {
|
|
unsigned SGPR = readlaneVGPRToSGPR(SSamp->getReg(), MI, MRI);
|
|
SSamp->setReg(SGPR);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Legalize MUBUF* instructions
|
|
// FIXME: If we start using the non-addr64 instructions for compute, we
|
|
// may need to legalize them here.
|
|
int SRsrcIdx =
|
|
AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
|
|
if (SRsrcIdx != -1) {
|
|
// We have an MUBUF instruction
|
|
MachineOperand *SRsrc = &MI.getOperand(SRsrcIdx);
|
|
unsigned SRsrcRC = get(MI.getOpcode()).OpInfo[SRsrcIdx].RegClass;
|
|
if (RI.getCommonSubClass(MRI.getRegClass(SRsrc->getReg()),
|
|
RI.getRegClass(SRsrcRC))) {
|
|
// The operands are legal.
|
|
// FIXME: We may need to legalize operands besided srsrc.
|
|
return;
|
|
}
|
|
|
|
MachineBasicBlock &MBB = *MI.getParent();
|
|
|
|
// Extract the ptr from the resource descriptor.
|
|
unsigned SRsrcPtr = buildExtractSubReg(MI, MRI, *SRsrc,
|
|
&AMDGPU::VReg_128RegClass, AMDGPU::sub0_sub1, &AMDGPU::VReg_64RegClass);
|
|
|
|
// Create an empty resource descriptor
|
|
unsigned Zero64 = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
|
|
unsigned SRsrcFormatLo = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
|
|
unsigned SRsrcFormatHi = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
|
|
unsigned NewSRsrc = MRI.createVirtualRegister(&AMDGPU::SReg_128RegClass);
|
|
uint64_t RsrcDataFormat = getDefaultRsrcDataFormat();
|
|
|
|
// Zero64 = 0
|
|
BuildMI(MBB, MI, MI.getDebugLoc(), get(AMDGPU::S_MOV_B64), Zero64)
|
|
.addImm(0);
|
|
|
|
// SRsrcFormatLo = RSRC_DATA_FORMAT{31-0}
|
|
BuildMI(MBB, MI, MI.getDebugLoc(), get(AMDGPU::S_MOV_B32), SRsrcFormatLo)
|
|
.addImm(RsrcDataFormat & 0xFFFFFFFF);
|
|
|
|
// SRsrcFormatHi = RSRC_DATA_FORMAT{63-32}
|
|
BuildMI(MBB, MI, MI.getDebugLoc(), get(AMDGPU::S_MOV_B32), SRsrcFormatHi)
|
|
.addImm(RsrcDataFormat >> 32);
|
|
|
|
// NewSRsrc = {Zero64, SRsrcFormat}
|
|
BuildMI(MBB, MI, MI.getDebugLoc(), get(AMDGPU::REG_SEQUENCE), NewSRsrc)
|
|
.addReg(Zero64)
|
|
.addImm(AMDGPU::sub0_sub1)
|
|
.addReg(SRsrcFormatLo)
|
|
.addImm(AMDGPU::sub2)
|
|
.addReg(SRsrcFormatHi)
|
|
.addImm(AMDGPU::sub3);
|
|
|
|
MachineOperand *VAddr = getNamedOperand(MI, AMDGPU::OpName::vaddr);
|
|
unsigned NewVAddr = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass);
|
|
if (VAddr) {
|
|
// This is already an ADDR64 instruction so we need to add the pointer
|
|
// extracted from the resource descriptor to the current value of VAddr.
|
|
unsigned NewVAddrLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
|
|
unsigned NewVAddrHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
|
|
|
|
// NewVaddrLo = SRsrcPtr:sub0 + VAddr:sub0
|
|
DebugLoc DL = MI.getDebugLoc();
|
|
BuildMI(MBB, MI, DL, get(AMDGPU::V_ADD_I32_e32), NewVAddrLo)
|
|
.addReg(SRsrcPtr, 0, AMDGPU::sub0)
|
|
.addReg(VAddr->getReg(), 0, AMDGPU::sub0);
|
|
|
|
// NewVaddrHi = SRsrcPtr:sub1 + VAddr:sub1
|
|
BuildMI(MBB, MI, DL, get(AMDGPU::V_ADDC_U32_e32), NewVAddrHi)
|
|
.addReg(SRsrcPtr, 0, AMDGPU::sub1)
|
|
.addReg(VAddr->getReg(), 0, AMDGPU::sub1);
|
|
|
|
// NewVaddr = {NewVaddrHi, NewVaddrLo}
|
|
BuildMI(MBB, MI, MI.getDebugLoc(), get(AMDGPU::REG_SEQUENCE), NewVAddr)
|
|
.addReg(NewVAddrLo)
|
|
.addImm(AMDGPU::sub0)
|
|
.addReg(NewVAddrHi)
|
|
.addImm(AMDGPU::sub1);
|
|
} else {
|
|
// This instructions is the _OFFSET variant, so we need to convert it to
|
|
// ADDR64.
|
|
assert(MBB.getParent()->getSubtarget<SISubtarget>().getGeneration()
|
|
< SISubtarget::VOLCANIC_ISLANDS &&
|
|
"FIXME: Need to emit flat atomics here");
|
|
|
|
MachineOperand *VData = getNamedOperand(MI, AMDGPU::OpName::vdata);
|
|
MachineOperand *Offset = getNamedOperand(MI, AMDGPU::OpName::offset);
|
|
MachineOperand *SOffset = getNamedOperand(MI, AMDGPU::OpName::soffset);
|
|
unsigned Addr64Opcode = AMDGPU::getAddr64Inst(MI.getOpcode());
|
|
|
|
// Atomics rith return have have an additional tied operand and are
|
|
// missing some of the special bits.
|
|
MachineOperand *VDataIn = getNamedOperand(MI, AMDGPU::OpName::vdata_in);
|
|
MachineInstr *Addr64;
|
|
|
|
if (!VDataIn) {
|
|
// Regular buffer load / store.
|
|
MachineInstrBuilder MIB =
|
|
BuildMI(MBB, MI, MI.getDebugLoc(), get(Addr64Opcode))
|
|
.addOperand(*VData)
|
|
.addReg(AMDGPU::NoRegister) // Dummy value for vaddr.
|
|
// This will be replaced later
|
|
// with the new value of vaddr.
|
|
.addOperand(*SRsrc)
|
|
.addOperand(*SOffset)
|
|
.addOperand(*Offset);
|
|
|
|
// Atomics do not have this operand.
|
|
if (const MachineOperand *GLC =
|
|
getNamedOperand(MI, AMDGPU::OpName::glc)) {
|
|
MIB.addImm(GLC->getImm());
|
|
}
|
|
|
|
MIB.addImm(getNamedImmOperand(MI, AMDGPU::OpName::slc));
|
|
|
|
if (const MachineOperand *TFE =
|
|
getNamedOperand(MI, AMDGPU::OpName::tfe)) {
|
|
MIB.addImm(TFE->getImm());
|
|
}
|
|
|
|
MIB.setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
|
|
Addr64 = MIB;
|
|
} else {
|
|
// Atomics with return.
|
|
Addr64 = BuildMI(MBB, MI, MI.getDebugLoc(), get(Addr64Opcode))
|
|
.addOperand(*VData)
|
|
.addOperand(*VDataIn)
|
|
.addReg(AMDGPU::NoRegister) // Dummy value for vaddr.
|
|
// This will be replaced later
|
|
// with the new value of vaddr.
|
|
.addOperand(*SRsrc)
|
|
.addOperand(*SOffset)
|
|
.addOperand(*Offset)
|
|
.addImm(getNamedImmOperand(MI, AMDGPU::OpName::slc))
|
|
.setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
|
|
}
|
|
|
|
MI.removeFromParent();
|
|
|
|
// NewVaddr = {NewVaddrHi, NewVaddrLo}
|
|
BuildMI(MBB, Addr64, Addr64->getDebugLoc(), get(AMDGPU::REG_SEQUENCE),
|
|
NewVAddr)
|
|
.addReg(SRsrcPtr, 0, AMDGPU::sub0)
|
|
.addImm(AMDGPU::sub0)
|
|
.addReg(SRsrcPtr, 0, AMDGPU::sub1)
|
|
.addImm(AMDGPU::sub1);
|
|
|
|
VAddr = getNamedOperand(*Addr64, AMDGPU::OpName::vaddr);
|
|
SRsrc = getNamedOperand(*Addr64, AMDGPU::OpName::srsrc);
|
|
}
|
|
|
|
// Update the instruction to use NewVaddr
|
|
VAddr->setReg(NewVAddr);
|
|
// Update the instruction to use NewSRsrc
|
|
SRsrc->setReg(NewSRsrc);
|
|
}
|
|
}
|
|
|
|
void SIInstrInfo::moveToVALU(MachineInstr &TopInst) const {
|
|
SmallVector<MachineInstr *, 128> Worklist;
|
|
Worklist.push_back(&TopInst);
|
|
|
|
while (!Worklist.empty()) {
|
|
MachineInstr &Inst = *Worklist.pop_back_val();
|
|
MachineBasicBlock *MBB = Inst.getParent();
|
|
MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
|
|
|
|
unsigned Opcode = Inst.getOpcode();
|
|
unsigned NewOpcode = getVALUOp(Inst);
|
|
|
|
// Handle some special cases
|
|
switch (Opcode) {
|
|
default:
|
|
break;
|
|
case AMDGPU::S_AND_B64:
|
|
splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::V_AND_B32_e64);
|
|
Inst.eraseFromParent();
|
|
continue;
|
|
|
|
case AMDGPU::S_OR_B64:
|
|
splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::V_OR_B32_e64);
|
|
Inst.eraseFromParent();
|
|
continue;
|
|
|
|
case AMDGPU::S_XOR_B64:
|
|
splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::V_XOR_B32_e64);
|
|
Inst.eraseFromParent();
|
|
continue;
|
|
|
|
case AMDGPU::S_NOT_B64:
|
|
splitScalar64BitUnaryOp(Worklist, Inst, AMDGPU::V_NOT_B32_e32);
|
|
Inst.eraseFromParent();
|
|
continue;
|
|
|
|
case AMDGPU::S_BCNT1_I32_B64:
|
|
splitScalar64BitBCNT(Worklist, Inst);
|
|
Inst.eraseFromParent();
|
|
continue;
|
|
|
|
case AMDGPU::S_BFE_I64: {
|
|
splitScalar64BitBFE(Worklist, Inst);
|
|
Inst.eraseFromParent();
|
|
continue;
|
|
}
|
|
|
|
case AMDGPU::S_LSHL_B32:
|
|
if (ST.getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) {
|
|
NewOpcode = AMDGPU::V_LSHLREV_B32_e64;
|
|
swapOperands(Inst);
|
|
}
|
|
break;
|
|
case AMDGPU::S_ASHR_I32:
|
|
if (ST.getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) {
|
|
NewOpcode = AMDGPU::V_ASHRREV_I32_e64;
|
|
swapOperands(Inst);
|
|
}
|
|
break;
|
|
case AMDGPU::S_LSHR_B32:
|
|
if (ST.getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) {
|
|
NewOpcode = AMDGPU::V_LSHRREV_B32_e64;
|
|
swapOperands(Inst);
|
|
}
|
|
break;
|
|
case AMDGPU::S_LSHL_B64:
|
|
if (ST.getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) {
|
|
NewOpcode = AMDGPU::V_LSHLREV_B64;
|
|
swapOperands(Inst);
|
|
}
|
|
break;
|
|
case AMDGPU::S_ASHR_I64:
|
|
if (ST.getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) {
|
|
NewOpcode = AMDGPU::V_ASHRREV_I64;
|
|
swapOperands(Inst);
|
|
}
|
|
break;
|
|
case AMDGPU::S_LSHR_B64:
|
|
if (ST.getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) {
|
|
NewOpcode = AMDGPU::V_LSHRREV_B64;
|
|
swapOperands(Inst);
|
|
}
|
|
break;
|
|
|
|
case AMDGPU::S_ABS_I32:
|
|
lowerScalarAbs(Worklist, Inst);
|
|
Inst.eraseFromParent();
|
|
continue;
|
|
|
|
case AMDGPU::S_CBRANCH_SCC0:
|
|
case AMDGPU::S_CBRANCH_SCC1:
|
|
// Clear unused bits of vcc
|
|
BuildMI(*MBB, Inst, Inst.getDebugLoc(), get(AMDGPU::S_AND_B64),
|
|
AMDGPU::VCC)
|
|
.addReg(AMDGPU::EXEC)
|
|
.addReg(AMDGPU::VCC);
|
|
break;
|
|
|
|
case AMDGPU::S_BFE_U64:
|
|
case AMDGPU::S_BFM_B64:
|
|
llvm_unreachable("Moving this op to VALU not implemented");
|
|
}
|
|
|
|
if (NewOpcode == AMDGPU::INSTRUCTION_LIST_END) {
|
|
// We cannot move this instruction to the VALU, so we should try to
|
|
// legalize its operands instead.
|
|
legalizeOperands(Inst);
|
|
continue;
|
|
}
|
|
|
|
// Use the new VALU Opcode.
|
|
const MCInstrDesc &NewDesc = get(NewOpcode);
|
|
Inst.setDesc(NewDesc);
|
|
|
|
// Remove any references to SCC. Vector instructions can't read from it, and
|
|
// We're just about to add the implicit use / defs of VCC, and we don't want
|
|
// both.
|
|
for (unsigned i = Inst.getNumOperands() - 1; i > 0; --i) {
|
|
MachineOperand &Op = Inst.getOperand(i);
|
|
if (Op.isReg() && Op.getReg() == AMDGPU::SCC) {
|
|
Inst.RemoveOperand(i);
|
|
addSCCDefUsersToVALUWorklist(Inst, Worklist);
|
|
}
|
|
}
|
|
|
|
if (Opcode == AMDGPU::S_SEXT_I32_I8 || Opcode == AMDGPU::S_SEXT_I32_I16) {
|
|
// We are converting these to a BFE, so we need to add the missing
|
|
// operands for the size and offset.
|
|
unsigned Size = (Opcode == AMDGPU::S_SEXT_I32_I8) ? 8 : 16;
|
|
Inst.addOperand(MachineOperand::CreateImm(0));
|
|
Inst.addOperand(MachineOperand::CreateImm(Size));
|
|
|
|
} else if (Opcode == AMDGPU::S_BCNT1_I32_B32) {
|
|
// The VALU version adds the second operand to the result, so insert an
|
|
// extra 0 operand.
|
|
Inst.addOperand(MachineOperand::CreateImm(0));
|
|
}
|
|
|
|
Inst.addImplicitDefUseOperands(*Inst.getParent()->getParent());
|
|
|
|
if (Opcode == AMDGPU::S_BFE_I32 || Opcode == AMDGPU::S_BFE_U32) {
|
|
const MachineOperand &OffsetWidthOp = Inst.getOperand(2);
|
|
// If we need to move this to VGPRs, we need to unpack the second operand
|
|
// back into the 2 separate ones for bit offset and width.
|
|
assert(OffsetWidthOp.isImm() &&
|
|
"Scalar BFE is only implemented for constant width and offset");
|
|
uint32_t Imm = OffsetWidthOp.getImm();
|
|
|
|
uint32_t Offset = Imm & 0x3f; // Extract bits [5:0].
|
|
uint32_t BitWidth = (Imm & 0x7f0000) >> 16; // Extract bits [22:16].
|
|
Inst.RemoveOperand(2); // Remove old immediate.
|
|
Inst.addOperand(MachineOperand::CreateImm(Offset));
|
|
Inst.addOperand(MachineOperand::CreateImm(BitWidth));
|
|
}
|
|
|
|
bool HasDst = Inst.getOperand(0).isReg() && Inst.getOperand(0).isDef();
|
|
unsigned NewDstReg = AMDGPU::NoRegister;
|
|
if (HasDst) {
|
|
// Update the destination register class.
|
|
const TargetRegisterClass *NewDstRC = getDestEquivalentVGPRClass(Inst);
|
|
if (!NewDstRC)
|
|
continue;
|
|
|
|
unsigned DstReg = Inst.getOperand(0).getReg();
|
|
NewDstReg = MRI.createVirtualRegister(NewDstRC);
|
|
MRI.replaceRegWith(DstReg, NewDstReg);
|
|
}
|
|
|
|
// Legalize the operands
|
|
legalizeOperands(Inst);
|
|
|
|
if (HasDst)
|
|
addUsersToMoveToVALUWorklist(NewDstReg, MRI, Worklist);
|
|
}
|
|
}
|
|
|
|
void SIInstrInfo::lowerScalarAbs(SmallVectorImpl<MachineInstr *> &Worklist,
|
|
MachineInstr &Inst) const {
|
|
MachineBasicBlock &MBB = *Inst.getParent();
|
|
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
|
|
MachineBasicBlock::iterator MII = Inst;
|
|
DebugLoc DL = Inst.getDebugLoc();
|
|
|
|
MachineOperand &Dest = Inst.getOperand(0);
|
|
MachineOperand &Src = Inst.getOperand(1);
|
|
unsigned TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
|
|
unsigned ResultReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
|
|
|
|
BuildMI(MBB, MII, DL, get(AMDGPU::V_SUB_I32_e32), TmpReg)
|
|
.addImm(0)
|
|
.addReg(Src.getReg());
|
|
|
|
BuildMI(MBB, MII, DL, get(AMDGPU::V_MAX_I32_e64), ResultReg)
|
|
.addReg(Src.getReg())
|
|
.addReg(TmpReg);
|
|
|
|
MRI.replaceRegWith(Dest.getReg(), ResultReg);
|
|
addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist);
|
|
}
|
|
|
|
void SIInstrInfo::splitScalar64BitUnaryOp(
|
|
SmallVectorImpl<MachineInstr *> &Worklist, MachineInstr &Inst,
|
|
unsigned Opcode) const {
|
|
MachineBasicBlock &MBB = *Inst.getParent();
|
|
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
|
|
|
|
MachineOperand &Dest = Inst.getOperand(0);
|
|
MachineOperand &Src0 = Inst.getOperand(1);
|
|
DebugLoc DL = Inst.getDebugLoc();
|
|
|
|
MachineBasicBlock::iterator MII = Inst;
|
|
|
|
const MCInstrDesc &InstDesc = get(Opcode);
|
|
const TargetRegisterClass *Src0RC = Src0.isReg() ?
|
|
MRI.getRegClass(Src0.getReg()) :
|
|
&AMDGPU::SGPR_32RegClass;
|
|
|
|
const TargetRegisterClass *Src0SubRC = RI.getSubRegClass(Src0RC, AMDGPU::sub0);
|
|
|
|
MachineOperand SrcReg0Sub0 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC,
|
|
AMDGPU::sub0, Src0SubRC);
|
|
|
|
const TargetRegisterClass *DestRC = MRI.getRegClass(Dest.getReg());
|
|
const TargetRegisterClass *NewDestRC = RI.getEquivalentVGPRClass(DestRC);
|
|
const TargetRegisterClass *NewDestSubRC = RI.getSubRegClass(NewDestRC, AMDGPU::sub0);
|
|
|
|
unsigned DestSub0 = MRI.createVirtualRegister(NewDestSubRC);
|
|
BuildMI(MBB, MII, DL, InstDesc, DestSub0)
|
|
.addOperand(SrcReg0Sub0);
|
|
|
|
MachineOperand SrcReg0Sub1 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC,
|
|
AMDGPU::sub1, Src0SubRC);
|
|
|
|
unsigned DestSub1 = MRI.createVirtualRegister(NewDestSubRC);
|
|
BuildMI(MBB, MII, DL, InstDesc, DestSub1)
|
|
.addOperand(SrcReg0Sub1);
|
|
|
|
unsigned FullDestReg = MRI.createVirtualRegister(NewDestRC);
|
|
BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), FullDestReg)
|
|
.addReg(DestSub0)
|
|
.addImm(AMDGPU::sub0)
|
|
.addReg(DestSub1)
|
|
.addImm(AMDGPU::sub1);
|
|
|
|
MRI.replaceRegWith(Dest.getReg(), FullDestReg);
|
|
|
|
// We don't need to legalizeOperands here because for a single operand, src0
|
|
// will support any kind of input.
|
|
|
|
// Move all users of this moved value.
|
|
addUsersToMoveToVALUWorklist(FullDestReg, MRI, Worklist);
|
|
}
|
|
|
|
void SIInstrInfo::splitScalar64BitBinaryOp(
|
|
SmallVectorImpl<MachineInstr *> &Worklist, MachineInstr &Inst,
|
|
unsigned Opcode) const {
|
|
MachineBasicBlock &MBB = *Inst.getParent();
|
|
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
|
|
|
|
MachineOperand &Dest = Inst.getOperand(0);
|
|
MachineOperand &Src0 = Inst.getOperand(1);
|
|
MachineOperand &Src1 = Inst.getOperand(2);
|
|
DebugLoc DL = Inst.getDebugLoc();
|
|
|
|
MachineBasicBlock::iterator MII = Inst;
|
|
|
|
const MCInstrDesc &InstDesc = get(Opcode);
|
|
const TargetRegisterClass *Src0RC = Src0.isReg() ?
|
|
MRI.getRegClass(Src0.getReg()) :
|
|
&AMDGPU::SGPR_32RegClass;
|
|
|
|
const TargetRegisterClass *Src0SubRC = RI.getSubRegClass(Src0RC, AMDGPU::sub0);
|
|
const TargetRegisterClass *Src1RC = Src1.isReg() ?
|
|
MRI.getRegClass(Src1.getReg()) :
|
|
&AMDGPU::SGPR_32RegClass;
|
|
|
|
const TargetRegisterClass *Src1SubRC = RI.getSubRegClass(Src1RC, AMDGPU::sub0);
|
|
|
|
MachineOperand SrcReg0Sub0 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC,
|
|
AMDGPU::sub0, Src0SubRC);
|
|
MachineOperand SrcReg1Sub0 = buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC,
|
|
AMDGPU::sub0, Src1SubRC);
|
|
|
|
const TargetRegisterClass *DestRC = MRI.getRegClass(Dest.getReg());
|
|
const TargetRegisterClass *NewDestRC = RI.getEquivalentVGPRClass(DestRC);
|
|
const TargetRegisterClass *NewDestSubRC = RI.getSubRegClass(NewDestRC, AMDGPU::sub0);
|
|
|
|
unsigned DestSub0 = MRI.createVirtualRegister(NewDestSubRC);
|
|
MachineInstr &LoHalf = *BuildMI(MBB, MII, DL, InstDesc, DestSub0)
|
|
.addOperand(SrcReg0Sub0)
|
|
.addOperand(SrcReg1Sub0);
|
|
|
|
MachineOperand SrcReg0Sub1 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC,
|
|
AMDGPU::sub1, Src0SubRC);
|
|
MachineOperand SrcReg1Sub1 = buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC,
|
|
AMDGPU::sub1, Src1SubRC);
|
|
|
|
unsigned DestSub1 = MRI.createVirtualRegister(NewDestSubRC);
|
|
MachineInstr &HiHalf = *BuildMI(MBB, MII, DL, InstDesc, DestSub1)
|
|
.addOperand(SrcReg0Sub1)
|
|
.addOperand(SrcReg1Sub1);
|
|
|
|
unsigned FullDestReg = MRI.createVirtualRegister(NewDestRC);
|
|
BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), FullDestReg)
|
|
.addReg(DestSub0)
|
|
.addImm(AMDGPU::sub0)
|
|
.addReg(DestSub1)
|
|
.addImm(AMDGPU::sub1);
|
|
|
|
MRI.replaceRegWith(Dest.getReg(), FullDestReg);
|
|
|
|
// Try to legalize the operands in case we need to swap the order to keep it
|
|
// valid.
|
|
legalizeOperands(LoHalf);
|
|
legalizeOperands(HiHalf);
|
|
|
|
// Move all users of this moved vlaue.
|
|
addUsersToMoveToVALUWorklist(FullDestReg, MRI, Worklist);
|
|
}
|
|
|
|
void SIInstrInfo::splitScalar64BitBCNT(
|
|
SmallVectorImpl<MachineInstr *> &Worklist, MachineInstr &Inst) const {
|
|
MachineBasicBlock &MBB = *Inst.getParent();
|
|
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
|
|
|
|
MachineBasicBlock::iterator MII = Inst;
|
|
DebugLoc DL = Inst.getDebugLoc();
|
|
|
|
MachineOperand &Dest = Inst.getOperand(0);
|
|
MachineOperand &Src = Inst.getOperand(1);
|
|
|
|
const MCInstrDesc &InstDesc = get(AMDGPU::V_BCNT_U32_B32_e64);
|
|
const TargetRegisterClass *SrcRC = Src.isReg() ?
|
|
MRI.getRegClass(Src.getReg()) :
|
|
&AMDGPU::SGPR_32RegClass;
|
|
|
|
unsigned MidReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
|
|
unsigned ResultReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
|
|
|
|
const TargetRegisterClass *SrcSubRC = RI.getSubRegClass(SrcRC, AMDGPU::sub0);
|
|
|
|
MachineOperand SrcRegSub0 = buildExtractSubRegOrImm(MII, MRI, Src, SrcRC,
|
|
AMDGPU::sub0, SrcSubRC);
|
|
MachineOperand SrcRegSub1 = buildExtractSubRegOrImm(MII, MRI, Src, SrcRC,
|
|
AMDGPU::sub1, SrcSubRC);
|
|
|
|
BuildMI(MBB, MII, DL, InstDesc, MidReg)
|
|
.addOperand(SrcRegSub0)
|
|
.addImm(0);
|
|
|
|
BuildMI(MBB, MII, DL, InstDesc, ResultReg)
|
|
.addOperand(SrcRegSub1)
|
|
.addReg(MidReg);
|
|
|
|
MRI.replaceRegWith(Dest.getReg(), ResultReg);
|
|
|
|
// We don't need to legalize operands here. src0 for etiher instruction can be
|
|
// an SGPR, and the second input is unused or determined here.
|
|
addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist);
|
|
}
|
|
|
|
void SIInstrInfo::splitScalar64BitBFE(SmallVectorImpl<MachineInstr *> &Worklist,
|
|
MachineInstr &Inst) const {
|
|
MachineBasicBlock &MBB = *Inst.getParent();
|
|
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
|
|
MachineBasicBlock::iterator MII = Inst;
|
|
DebugLoc DL = Inst.getDebugLoc();
|
|
|
|
MachineOperand &Dest = Inst.getOperand(0);
|
|
uint32_t Imm = Inst.getOperand(2).getImm();
|
|
uint32_t Offset = Imm & 0x3f; // Extract bits [5:0].
|
|
uint32_t BitWidth = (Imm & 0x7f0000) >> 16; // Extract bits [22:16].
|
|
|
|
(void) Offset;
|
|
|
|
// Only sext_inreg cases handled.
|
|
assert(Inst.getOpcode() == AMDGPU::S_BFE_I64 && BitWidth <= 32 &&
|
|
Offset == 0 && "Not implemented");
|
|
|
|
if (BitWidth < 32) {
|
|
unsigned MidRegLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
|
|
unsigned MidRegHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
|
|
unsigned ResultReg = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass);
|
|
|
|
BuildMI(MBB, MII, DL, get(AMDGPU::V_BFE_I32), MidRegLo)
|
|
.addReg(Inst.getOperand(1).getReg(), 0, AMDGPU::sub0)
|
|
.addImm(0)
|
|
.addImm(BitWidth);
|
|
|
|
BuildMI(MBB, MII, DL, get(AMDGPU::V_ASHRREV_I32_e32), MidRegHi)
|
|
.addImm(31)
|
|
.addReg(MidRegLo);
|
|
|
|
BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), ResultReg)
|
|
.addReg(MidRegLo)
|
|
.addImm(AMDGPU::sub0)
|
|
.addReg(MidRegHi)
|
|
.addImm(AMDGPU::sub1);
|
|
|
|
MRI.replaceRegWith(Dest.getReg(), ResultReg);
|
|
addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist);
|
|
return;
|
|
}
|
|
|
|
MachineOperand &Src = Inst.getOperand(1);
|
|
unsigned TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
|
|
unsigned ResultReg = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass);
|
|
|
|
BuildMI(MBB, MII, DL, get(AMDGPU::V_ASHRREV_I32_e64), TmpReg)
|
|
.addImm(31)
|
|
.addReg(Src.getReg(), 0, AMDGPU::sub0);
|
|
|
|
BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), ResultReg)
|
|
.addReg(Src.getReg(), 0, AMDGPU::sub0)
|
|
.addImm(AMDGPU::sub0)
|
|
.addReg(TmpReg)
|
|
.addImm(AMDGPU::sub1);
|
|
|
|
MRI.replaceRegWith(Dest.getReg(), ResultReg);
|
|
addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist);
|
|
}
|
|
|
|
void SIInstrInfo::addUsersToMoveToVALUWorklist(
|
|
unsigned DstReg,
|
|
MachineRegisterInfo &MRI,
|
|
SmallVectorImpl<MachineInstr *> &Worklist) const {
|
|
for (MachineRegisterInfo::use_iterator I = MRI.use_begin(DstReg),
|
|
E = MRI.use_end(); I != E; ++I) {
|
|
MachineInstr &UseMI = *I->getParent();
|
|
if (!canReadVGPR(UseMI, I.getOperandNo())) {
|
|
Worklist.push_back(&UseMI);
|
|
}
|
|
}
|
|
}
|
|
|
|
void SIInstrInfo::addSCCDefUsersToVALUWorklist(
|
|
MachineInstr &SCCDefInst, SmallVectorImpl<MachineInstr *> &Worklist) const {
|
|
// This assumes that all the users of SCC are in the same block
|
|
// as the SCC def.
|
|
for (MachineInstr &MI :
|
|
llvm::make_range(MachineBasicBlock::iterator(SCCDefInst),
|
|
SCCDefInst.getParent()->end())) {
|
|
// Exit if we find another SCC def.
|
|
if (MI.findRegisterDefOperandIdx(AMDGPU::SCC) != -1)
|
|
return;
|
|
|
|
if (MI.findRegisterUseOperandIdx(AMDGPU::SCC) != -1)
|
|
Worklist.push_back(&MI);
|
|
}
|
|
}
|
|
|
|
const TargetRegisterClass *SIInstrInfo::getDestEquivalentVGPRClass(
|
|
const MachineInstr &Inst) const {
|
|
const TargetRegisterClass *NewDstRC = getOpRegClass(Inst, 0);
|
|
|
|
switch (Inst.getOpcode()) {
|
|
// For target instructions, getOpRegClass just returns the virtual register
|
|
// class associated with the operand, so we need to find an equivalent VGPR
|
|
// register class in order to move the instruction to the VALU.
|
|
case AMDGPU::COPY:
|
|
case AMDGPU::PHI:
|
|
case AMDGPU::REG_SEQUENCE:
|
|
case AMDGPU::INSERT_SUBREG:
|
|
if (RI.hasVGPRs(NewDstRC))
|
|
return nullptr;
|
|
|
|
NewDstRC = RI.getEquivalentVGPRClass(NewDstRC);
|
|
if (!NewDstRC)
|
|
return nullptr;
|
|
return NewDstRC;
|
|
default:
|
|
return NewDstRC;
|
|
}
|
|
}
|
|
|
|
// Find the one SGPR operand we are allowed to use.
|
|
unsigned SIInstrInfo::findUsedSGPR(const MachineInstr &MI,
|
|
int OpIndices[3]) const {
|
|
const MCInstrDesc &Desc = MI.getDesc();
|
|
|
|
// Find the one SGPR operand we are allowed to use.
|
|
//
|
|
// First we need to consider the instruction's operand requirements before
|
|
// legalizing. Some operands are required to be SGPRs, such as implicit uses
|
|
// of VCC, but we are still bound by the constant bus requirement to only use
|
|
// one.
|
|
//
|
|
// If the operand's class is an SGPR, we can never move it.
|
|
|
|
unsigned SGPRReg = findImplicitSGPRRead(MI);
|
|
if (SGPRReg != AMDGPU::NoRegister)
|
|
return SGPRReg;
|
|
|
|
unsigned UsedSGPRs[3] = { AMDGPU::NoRegister };
|
|
const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
|
|
|
|
for (unsigned i = 0; i < 3; ++i) {
|
|
int Idx = OpIndices[i];
|
|
if (Idx == -1)
|
|
break;
|
|
|
|
const MachineOperand &MO = MI.getOperand(Idx);
|
|
if (!MO.isReg())
|
|
continue;
|
|
|
|
// Is this operand statically required to be an SGPR based on the operand
|
|
// constraints?
|
|
const TargetRegisterClass *OpRC = RI.getRegClass(Desc.OpInfo[Idx].RegClass);
|
|
bool IsRequiredSGPR = RI.isSGPRClass(OpRC);
|
|
if (IsRequiredSGPR)
|
|
return MO.getReg();
|
|
|
|
// If this could be a VGPR or an SGPR, Check the dynamic register class.
|
|
unsigned Reg = MO.getReg();
|
|
const TargetRegisterClass *RegRC = MRI.getRegClass(Reg);
|
|
if (RI.isSGPRClass(RegRC))
|
|
UsedSGPRs[i] = Reg;
|
|
}
|
|
|
|
// We don't have a required SGPR operand, so we have a bit more freedom in
|
|
// selecting operands to move.
|
|
|
|
// Try to select the most used SGPR. If an SGPR is equal to one of the
|
|
// others, we choose that.
|
|
//
|
|
// e.g.
|
|
// V_FMA_F32 v0, s0, s0, s0 -> No moves
|
|
// V_FMA_F32 v0, s0, s1, s0 -> Move s1
|
|
|
|
// TODO: If some of the operands are 64-bit SGPRs and some 32, we should
|
|
// prefer those.
|
|
|
|
if (UsedSGPRs[0] != AMDGPU::NoRegister) {
|
|
if (UsedSGPRs[0] == UsedSGPRs[1] || UsedSGPRs[0] == UsedSGPRs[2])
|
|
SGPRReg = UsedSGPRs[0];
|
|
}
|
|
|
|
if (SGPRReg == AMDGPU::NoRegister && UsedSGPRs[1] != AMDGPU::NoRegister) {
|
|
if (UsedSGPRs[1] == UsedSGPRs[2])
|
|
SGPRReg = UsedSGPRs[1];
|
|
}
|
|
|
|
return SGPRReg;
|
|
}
|
|
|
|
MachineOperand *SIInstrInfo::getNamedOperand(MachineInstr &MI,
|
|
unsigned OperandName) const {
|
|
int Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), OperandName);
|
|
if (Idx == -1)
|
|
return nullptr;
|
|
|
|
return &MI.getOperand(Idx);
|
|
}
|
|
|
|
uint64_t SIInstrInfo::getDefaultRsrcDataFormat() const {
|
|
uint64_t RsrcDataFormat = AMDGPU::RSRC_DATA_FORMAT;
|
|
if (ST.isAmdHsaOS()) {
|
|
RsrcDataFormat |= (1ULL << 56);
|
|
|
|
if (ST.getGeneration() >= SISubtarget::VOLCANIC_ISLANDS)
|
|
// Set MTYPE = 2
|
|
RsrcDataFormat |= (2ULL << 59);
|
|
}
|
|
|
|
return RsrcDataFormat;
|
|
}
|
|
|
|
uint64_t SIInstrInfo::getScratchRsrcWords23() const {
|
|
uint64_t Rsrc23 = getDefaultRsrcDataFormat() |
|
|
AMDGPU::RSRC_TID_ENABLE |
|
|
0xffffffff; // Size;
|
|
|
|
uint64_t EltSizeValue = Log2_32(ST.getMaxPrivateElementSize()) - 1;
|
|
|
|
Rsrc23 |= (EltSizeValue << AMDGPU::RSRC_ELEMENT_SIZE_SHIFT) |
|
|
// IndexStride = 64
|
|
(UINT64_C(3) << AMDGPU::RSRC_INDEX_STRIDE_SHIFT);
|
|
|
|
// If TID_ENABLE is set, DATA_FORMAT specifies stride bits [14:17].
|
|
// Clear them unless we want a huge stride.
|
|
if (ST.getGeneration() >= SISubtarget::VOLCANIC_ISLANDS)
|
|
Rsrc23 &= ~AMDGPU::RSRC_DATA_FORMAT;
|
|
|
|
return Rsrc23;
|
|
}
|
|
|
|
bool SIInstrInfo::isLowLatencyInstruction(const MachineInstr &MI) const {
|
|
unsigned Opc = MI.getOpcode();
|
|
|
|
return isSMRD(Opc);
|
|
}
|
|
|
|
bool SIInstrInfo::isHighLatencyInstruction(const MachineInstr &MI) const {
|
|
unsigned Opc = MI.getOpcode();
|
|
|
|
return isMUBUF(Opc) || isMTBUF(Opc) || isMIMG(Opc);
|
|
}
|
|
|
|
unsigned SIInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
|
|
unsigned Opc = MI.getOpcode();
|
|
const MCInstrDesc &Desc = getMCOpcodeFromPseudo(Opc);
|
|
unsigned DescSize = Desc.getSize();
|
|
|
|
// If we have a definitive size, we can use it. Otherwise we need to inspect
|
|
// the operands to know the size.
|
|
if (DescSize == 8 || DescSize == 4)
|
|
return DescSize;
|
|
|
|
assert(DescSize == 0);
|
|
|
|
// 4-byte instructions may have a 32-bit literal encoded after them. Check
|
|
// operands that coud ever be literals.
|
|
if (isVALU(MI) || isSALU(MI)) {
|
|
int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0);
|
|
if (Src0Idx == -1)
|
|
return 4; // No operands.
|
|
|
|
if (isLiteralConstant(MI.getOperand(Src0Idx), getOpSize(MI, Src0Idx)))
|
|
return 8;
|
|
|
|
int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1);
|
|
if (Src1Idx == -1)
|
|
return 4;
|
|
|
|
if (isLiteralConstant(MI.getOperand(Src1Idx), getOpSize(MI, Src1Idx)))
|
|
return 8;
|
|
|
|
return 4;
|
|
}
|
|
|
|
switch (Opc) {
|
|
case TargetOpcode::IMPLICIT_DEF:
|
|
case TargetOpcode::KILL:
|
|
case TargetOpcode::DBG_VALUE:
|
|
case TargetOpcode::BUNDLE:
|
|
case TargetOpcode::EH_LABEL:
|
|
return 0;
|
|
case TargetOpcode::INLINEASM: {
|
|
const MachineFunction *MF = MI.getParent()->getParent();
|
|
const char *AsmStr = MI.getOperand(0).getSymbolName();
|
|
return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
|
|
}
|
|
default:
|
|
llvm_unreachable("unable to find instruction size");
|
|
}
|
|
}
|
|
|
|
ArrayRef<std::pair<int, const char *>>
|
|
SIInstrInfo::getSerializableTargetIndices() const {
|
|
static const std::pair<int, const char *> TargetIndices[] = {
|
|
{AMDGPU::TI_CONSTDATA_START, "amdgpu-constdata-start"},
|
|
{AMDGPU::TI_SCRATCH_RSRC_DWORD0, "amdgpu-scratch-rsrc-dword0"},
|
|
{AMDGPU::TI_SCRATCH_RSRC_DWORD1, "amdgpu-scratch-rsrc-dword1"},
|
|
{AMDGPU::TI_SCRATCH_RSRC_DWORD2, "amdgpu-scratch-rsrc-dword2"},
|
|
{AMDGPU::TI_SCRATCH_RSRC_DWORD3, "amdgpu-scratch-rsrc-dword3"}};
|
|
return makeArrayRef(TargetIndices);
|
|
}
|
|
|
|
/// This is used by the post-RA scheduler (SchedulePostRAList.cpp). The
|
|
/// post-RA version of misched uses CreateTargetMIHazardRecognizer.
|
|
ScheduleHazardRecognizer *
|
|
SIInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
|
|
const ScheduleDAG *DAG) const {
|
|
return new GCNHazardRecognizer(DAG->MF);
|
|
}
|
|
|
|
/// This is the hazard recognizer used at -O0 by the PostRAHazardRecognizer
|
|
/// pass.
|
|
ScheduleHazardRecognizer *
|
|
SIInstrInfo::CreateTargetPostRAHazardRecognizer(const MachineFunction &MF) const {
|
|
return new GCNHazardRecognizer(MF);
|
|
}
|