|
|
# -*- coding: utf-8 -*-
|
|
|
#
|
|
|
# Secret Labs' Regular Expression Engine
|
|
|
#
|
|
|
# convert template to internal format
|
|
|
#
|
|
|
# Copyright (c) 1997-2001 by Secret Labs AB. All rights reserved.
|
|
|
#
|
|
|
# See the sre.py file for information on usage and redistribution.
|
|
|
#
|
|
|
|
|
|
"""Internal support module for sre"""
|
|
|
|
|
|
import _sre, sys
|
|
|
import sre_parse
|
|
|
from sre_constants import *
|
|
|
|
|
|
assert _sre.MAGIC == MAGIC, "SRE module mismatch"
|
|
|
|
|
|
if _sre.CODESIZE == 2:
|
|
|
MAXCODE = 65535
|
|
|
else:
|
|
|
MAXCODE = 0xFFFFFFFFL
|
|
|
|
|
|
_LITERAL_CODES = set([LITERAL, NOT_LITERAL])
|
|
|
_REPEATING_CODES = set([REPEAT, MIN_REPEAT, MAX_REPEAT])
|
|
|
_SUCCESS_CODES = set([SUCCESS, FAILURE])
|
|
|
_ASSERT_CODES = set([ASSERT, ASSERT_NOT])
|
|
|
|
|
|
# Sets of lowercase characters which have the same uppercase.
|
|
|
_equivalences = (
|
|
|
# LATIN SMALL LETTER I, LATIN SMALL LETTER DOTLESS I
|
|
|
(0x69, 0x131), # iı
|
|
|
# LATIN SMALL LETTER S, LATIN SMALL LETTER LONG S
|
|
|
(0x73, 0x17f), # sſ
|
|
|
# MICRO SIGN, GREEK SMALL LETTER MU
|
|
|
(0xb5, 0x3bc), # µμ
|
|
|
# COMBINING GREEK YPOGEGRAMMENI, GREEK SMALL LETTER IOTA, GREEK PROSGEGRAMMENI
|
|
|
(0x345, 0x3b9, 0x1fbe), # \u0345ιι
|
|
|
# GREEK SMALL LETTER BETA, GREEK BETA SYMBOL
|
|
|
(0x3b2, 0x3d0), # βϐ
|
|
|
# GREEK SMALL LETTER EPSILON, GREEK LUNATE EPSILON SYMBOL
|
|
|
(0x3b5, 0x3f5), # εϵ
|
|
|
# GREEK SMALL LETTER THETA, GREEK THETA SYMBOL
|
|
|
(0x3b8, 0x3d1), # θϑ
|
|
|
# GREEK SMALL LETTER KAPPA, GREEK KAPPA SYMBOL
|
|
|
(0x3ba, 0x3f0), # κϰ
|
|
|
# GREEK SMALL LETTER PI, GREEK PI SYMBOL
|
|
|
(0x3c0, 0x3d6), # πϖ
|
|
|
# GREEK SMALL LETTER RHO, GREEK RHO SYMBOL
|
|
|
(0x3c1, 0x3f1), # ρϱ
|
|
|
# GREEK SMALL LETTER FINAL SIGMA, GREEK SMALL LETTER SIGMA
|
|
|
(0x3c2, 0x3c3), # ςσ
|
|
|
# GREEK SMALL LETTER PHI, GREEK PHI SYMBOL
|
|
|
(0x3c6, 0x3d5), # φϕ
|
|
|
# LATIN SMALL LETTER S WITH DOT ABOVE, LATIN SMALL LETTER LONG S WITH DOT ABOVE
|
|
|
(0x1e61, 0x1e9b), # ṡẛ
|
|
|
)
|
|
|
|
|
|
# Maps the lowercase code to lowercase codes which have the same uppercase.
|
|
|
_ignorecase_fixes = {i: tuple(j for j in t if i != j)
|
|
|
for t in _equivalences for i in t}
|
|
|
|
|
|
def _compile(code, pattern, flags):
|
|
|
# internal: compile a (sub)pattern
|
|
|
emit = code.append
|
|
|
_len = len
|
|
|
LITERAL_CODES = _LITERAL_CODES
|
|
|
REPEATING_CODES = _REPEATING_CODES
|
|
|
SUCCESS_CODES = _SUCCESS_CODES
|
|
|
ASSERT_CODES = _ASSERT_CODES
|
|
|
if (flags & SRE_FLAG_IGNORECASE and
|
|
|
not (flags & SRE_FLAG_LOCALE) and
|
|
|
flags & SRE_FLAG_UNICODE):
|
|
|
fixes = _ignorecase_fixes
|
|
|
else:
|
|
|
fixes = None
|
|
|
for op, av in pattern:
|
|
|
if op in LITERAL_CODES:
|
|
|
if flags & SRE_FLAG_IGNORECASE:
|
|
|
lo = _sre.getlower(av, flags)
|
|
|
if fixes and lo in fixes:
|
|
|
emit(OPCODES[IN_IGNORE])
|
|
|
skip = _len(code); emit(0)
|
|
|
if op is NOT_LITERAL:
|
|
|
emit(OPCODES[NEGATE])
|
|
|
for k in (lo,) + fixes[lo]:
|
|
|
emit(OPCODES[LITERAL])
|
|
|
emit(k)
|
|
|
emit(OPCODES[FAILURE])
|
|
|
code[skip] = _len(code) - skip
|
|
|
else:
|
|
|
emit(OPCODES[OP_IGNORE[op]])
|
|
|
emit(lo)
|
|
|
else:
|
|
|
emit(OPCODES[op])
|
|
|
emit(av)
|
|
|
elif op is IN:
|
|
|
if flags & SRE_FLAG_IGNORECASE:
|
|
|
emit(OPCODES[OP_IGNORE[op]])
|
|
|
def fixup(literal, flags=flags):
|
|
|
return _sre.getlower(literal, flags)
|
|
|
else:
|
|
|
emit(OPCODES[op])
|
|
|
fixup = None
|
|
|
skip = _len(code); emit(0)
|
|
|
_compile_charset(av, flags, code, fixup, fixes)
|
|
|
code[skip] = _len(code) - skip
|
|
|
elif op is ANY:
|
|
|
if flags & SRE_FLAG_DOTALL:
|
|
|
emit(OPCODES[ANY_ALL])
|
|
|
else:
|
|
|
emit(OPCODES[ANY])
|
|
|
elif op in REPEATING_CODES:
|
|
|
if flags & SRE_FLAG_TEMPLATE:
|
|
|
raise error, "internal: unsupported template operator"
|
|
|
emit(OPCODES[REPEAT])
|
|
|
skip = _len(code); emit(0)
|
|
|
emit(av[0])
|
|
|
emit(av[1])
|
|
|
_compile(code, av[2], flags)
|
|
|
emit(OPCODES[SUCCESS])
|
|
|
code[skip] = _len(code) - skip
|
|
|
elif _simple(av) and op is not REPEAT:
|
|
|
if op is MAX_REPEAT:
|
|
|
emit(OPCODES[REPEAT_ONE])
|
|
|
else:
|
|
|
emit(OPCODES[MIN_REPEAT_ONE])
|
|
|
skip = _len(code); emit(0)
|
|
|
emit(av[0])
|
|
|
emit(av[1])
|
|
|
_compile(code, av[2], flags)
|
|
|
emit(OPCODES[SUCCESS])
|
|
|
code[skip] = _len(code) - skip
|
|
|
else:
|
|
|
emit(OPCODES[REPEAT])
|
|
|
skip = _len(code); emit(0)
|
|
|
emit(av[0])
|
|
|
emit(av[1])
|
|
|
_compile(code, av[2], flags)
|
|
|
code[skip] = _len(code) - skip
|
|
|
if op is MAX_REPEAT:
|
|
|
emit(OPCODES[MAX_UNTIL])
|
|
|
else:
|
|
|
emit(OPCODES[MIN_UNTIL])
|
|
|
elif op is SUBPATTERN:
|
|
|
if av[0]:
|
|
|
emit(OPCODES[MARK])
|
|
|
emit((av[0]-1)*2)
|
|
|
# _compile_info(code, av[1], flags)
|
|
|
_compile(code, av[1], flags)
|
|
|
if av[0]:
|
|
|
emit(OPCODES[MARK])
|
|
|
emit((av[0]-1)*2+1)
|
|
|
elif op in SUCCESS_CODES:
|
|
|
emit(OPCODES[op])
|
|
|
elif op in ASSERT_CODES:
|
|
|
emit(OPCODES[op])
|
|
|
skip = _len(code); emit(0)
|
|
|
if av[0] >= 0:
|
|
|
emit(0) # look ahead
|
|
|
else:
|
|
|
lo, hi = av[1].getwidth()
|
|
|
if lo != hi:
|
|
|
raise error, "look-behind requires fixed-width pattern"
|
|
|
emit(lo) # look behind
|
|
|
_compile(code, av[1], flags)
|
|
|
emit(OPCODES[SUCCESS])
|
|
|
code[skip] = _len(code) - skip
|
|
|
elif op is CALL:
|
|
|
emit(OPCODES[op])
|
|
|
skip = _len(code); emit(0)
|
|
|
_compile(code, av, flags)
|
|
|
emit(OPCODES[SUCCESS])
|
|
|
code[skip] = _len(code) - skip
|
|
|
elif op is AT:
|
|
|
emit(OPCODES[op])
|
|
|
if flags & SRE_FLAG_MULTILINE:
|
|
|
av = AT_MULTILINE.get(av, av)
|
|
|
if flags & SRE_FLAG_LOCALE:
|
|
|
av = AT_LOCALE.get(av, av)
|
|
|
elif flags & SRE_FLAG_UNICODE:
|
|
|
av = AT_UNICODE.get(av, av)
|
|
|
emit(ATCODES[av])
|
|
|
elif op is BRANCH:
|
|
|
emit(OPCODES[op])
|
|
|
tail = []
|
|
|
tailappend = tail.append
|
|
|
for av in av[1]:
|
|
|
skip = _len(code); emit(0)
|
|
|
# _compile_info(code, av, flags)
|
|
|
_compile(code, av, flags)
|
|
|
emit(OPCODES[JUMP])
|
|
|
tailappend(_len(code)); emit(0)
|
|
|
code[skip] = _len(code) - skip
|
|
|
emit(0) # end of branch
|
|
|
for tail in tail:
|
|
|
code[tail] = _len(code) - tail
|
|
|
elif op is CATEGORY:
|
|
|
emit(OPCODES[op])
|
|
|
if flags & SRE_FLAG_LOCALE:
|
|
|
av = CH_LOCALE[av]
|
|
|
elif flags & SRE_FLAG_UNICODE:
|
|
|
av = CH_UNICODE[av]
|
|
|
emit(CHCODES[av])
|
|
|
elif op is GROUPREF:
|
|
|
if flags & SRE_FLAG_IGNORECASE:
|
|
|
emit(OPCODES[OP_IGNORE[op]])
|
|
|
else:
|
|
|
emit(OPCODES[op])
|
|
|
emit(av-1)
|
|
|
elif op is GROUPREF_EXISTS:
|
|
|
emit(OPCODES[op])
|
|
|
emit(av[0]-1)
|
|
|
skipyes = _len(code); emit(0)
|
|
|
_compile(code, av[1], flags)
|
|
|
if av[2]:
|
|
|
emit(OPCODES[JUMP])
|
|
|
skipno = _len(code); emit(0)
|
|
|
code[skipyes] = _len(code) - skipyes + 1
|
|
|
_compile(code, av[2], flags)
|
|
|
code[skipno] = _len(code) - skipno
|
|
|
else:
|
|
|
code[skipyes] = _len(code) - skipyes + 1
|
|
|
else:
|
|
|
raise ValueError, ("unsupported operand type", op)
|
|
|
|
|
|
def _compile_charset(charset, flags, code, fixup=None, fixes=None):
|
|
|
# compile charset subprogram
|
|
|
emit = code.append
|
|
|
for op, av in _optimize_charset(charset, fixup, fixes,
|
|
|
flags & SRE_FLAG_UNICODE):
|
|
|
emit(OPCODES[op])
|
|
|
if op is NEGATE:
|
|
|
pass
|
|
|
elif op is LITERAL:
|
|
|
emit(av)
|
|
|
elif op is RANGE:
|
|
|
emit(av[0])
|
|
|
emit(av[1])
|
|
|
elif op is CHARSET:
|
|
|
code.extend(av)
|
|
|
elif op is BIGCHARSET:
|
|
|
code.extend(av)
|
|
|
elif op is CATEGORY:
|
|
|
if flags & SRE_FLAG_LOCALE:
|
|
|
emit(CHCODES[CH_LOCALE[av]])
|
|
|
elif flags & SRE_FLAG_UNICODE:
|
|
|
emit(CHCODES[CH_UNICODE[av]])
|
|
|
else:
|
|
|
emit(CHCODES[av])
|
|
|
else:
|
|
|
raise error, "internal: unsupported set operator"
|
|
|
emit(OPCODES[FAILURE])
|
|
|
|
|
|
def _optimize_charset(charset, fixup, fixes, isunicode):
|
|
|
# internal: optimize character set
|
|
|
out = []
|
|
|
tail = []
|
|
|
charmap = bytearray(256)
|
|
|
for op, av in charset:
|
|
|
while True:
|
|
|
try:
|
|
|
if op is LITERAL:
|
|
|
if fixup:
|
|
|
i = fixup(av)
|
|
|
charmap[i] = 1
|
|
|
if fixes and i in fixes:
|
|
|
for k in fixes[i]:
|
|
|
charmap[k] = 1
|
|
|
else:
|
|
|
charmap[av] = 1
|
|
|
elif op is RANGE:
|
|
|
r = range(av[0], av[1]+1)
|
|
|
if fixup:
|
|
|
r = map(fixup, r)
|
|
|
if fixup and fixes:
|
|
|
for i in r:
|
|
|
charmap[i] = 1
|
|
|
if i in fixes:
|
|
|
for k in fixes[i]:
|
|
|
charmap[k] = 1
|
|
|
else:
|
|
|
for i in r:
|
|
|
charmap[i] = 1
|
|
|
elif op is NEGATE:
|
|
|
out.append((op, av))
|
|
|
else:
|
|
|
tail.append((op, av))
|
|
|
except IndexError:
|
|
|
if len(charmap) == 256:
|
|
|
# character set contains non-UCS1 character codes
|
|
|
charmap += b'\0' * 0xff00
|
|
|
continue
|
|
|
# character set contains non-BMP character codes
|
|
|
if fixup and isunicode and op is RANGE:
|
|
|
lo, hi = av
|
|
|
ranges = [av]
|
|
|
# There are only two ranges of cased astral characters:
|
|
|
# 10400-1044F (Deseret) and 118A0-118DF (Warang Citi).
|
|
|
_fixup_range(max(0x10000, lo), min(0x11fff, hi),
|
|
|
ranges, fixup)
|
|
|
for lo, hi in ranges:
|
|
|
if lo == hi:
|
|
|
tail.append((LITERAL, hi))
|
|
|
else:
|
|
|
tail.append((RANGE, (lo, hi)))
|
|
|
else:
|
|
|
tail.append((op, av))
|
|
|
break
|
|
|
|
|
|
# compress character map
|
|
|
runs = []
|
|
|
q = 0
|
|
|
while True:
|
|
|
p = charmap.find(b'\1', q)
|
|
|
if p < 0:
|
|
|
break
|
|
|
if len(runs) >= 2:
|
|
|
runs = None
|
|
|
break
|
|
|
q = charmap.find(b'\0', p)
|
|
|
if q < 0:
|
|
|
runs.append((p, len(charmap)))
|
|
|
break
|
|
|
runs.append((p, q))
|
|
|
if runs is not None:
|
|
|
# use literal/range
|
|
|
for p, q in runs:
|
|
|
if q - p == 1:
|
|
|
out.append((LITERAL, p))
|
|
|
else:
|
|
|
out.append((RANGE, (p, q - 1)))
|
|
|
out += tail
|
|
|
# if the case was changed or new representation is more compact
|
|
|
if fixup or len(out) < len(charset):
|
|
|
return out
|
|
|
# else original character set is good enough
|
|
|
return charset
|
|
|
|
|
|
# use bitmap
|
|
|
if len(charmap) == 256:
|
|
|
data = _mk_bitmap(charmap)
|
|
|
out.append((CHARSET, data))
|
|
|
out += tail
|
|
|
return out
|
|
|
|
|
|
# To represent a big charset, first a bitmap of all characters in the
|
|
|
# set is constructed. Then, this bitmap is sliced into chunks of 256
|
|
|
# characters, duplicate chunks are eliminated, and each chunk is
|
|
|
# given a number. In the compiled expression, the charset is
|
|
|
# represented by a 32-bit word sequence, consisting of one word for
|
|
|
# the number of different chunks, a sequence of 256 bytes (64 words)
|
|
|
# of chunk numbers indexed by their original chunk position, and a
|
|
|
# sequence of 256-bit chunks (8 words each).
|
|
|
|
|
|
# Compression is normally good: in a typical charset, large ranges of
|
|
|
# Unicode will be either completely excluded (e.g. if only cyrillic
|
|
|
# letters are to be matched), or completely included (e.g. if large
|
|
|
# subranges of Kanji match). These ranges will be represented by
|
|
|
# chunks of all one-bits or all zero-bits.
|
|
|
|
|
|
# Matching can be also done efficiently: the more significant byte of
|
|
|
# the Unicode character is an index into the chunk number, and the
|
|
|
# less significant byte is a bit index in the chunk (just like the
|
|
|
# CHARSET matching).
|
|
|
|
|
|
# In UCS-4 mode, the BIGCHARSET opcode still supports only subsets
|
|
|
# of the basic multilingual plane; an efficient representation
|
|
|
# for all of Unicode has not yet been developed.
|
|
|
|
|
|
charmap = bytes(charmap) # should be hashable
|
|
|
comps = {}
|
|
|
mapping = bytearray(256)
|
|
|
block = 0
|
|
|
data = bytearray()
|
|
|
for i in range(0, 65536, 256):
|
|
|
chunk = charmap[i: i + 256]
|
|
|
if chunk in comps:
|
|
|
mapping[i // 256] = comps[chunk]
|
|
|
else:
|
|
|
mapping[i // 256] = comps[chunk] = block
|
|
|
block += 1
|
|
|
data += chunk
|
|
|
data = _mk_bitmap(data)
|
|
|
data[0:0] = [block] + _bytes_to_codes(mapping)
|
|
|
out.append((BIGCHARSET, data))
|
|
|
out += tail
|
|
|
return out
|
|
|
|
|
|
def _fixup_range(lo, hi, ranges, fixup):
|
|
|
for i in map(fixup, range(lo, hi+1)):
|
|
|
for k, (lo, hi) in enumerate(ranges):
|
|
|
if i < lo:
|
|
|
if l == lo - 1:
|
|
|
ranges[k] = (i, hi)
|
|
|
else:
|
|
|
ranges.insert(k, (i, i))
|
|
|
break
|
|
|
elif i > hi:
|
|
|
if i == hi + 1:
|
|
|
ranges[k] = (lo, i)
|
|
|
break
|
|
|
else:
|
|
|
break
|
|
|
else:
|
|
|
ranges.append((i, i))
|
|
|
|
|
|
_CODEBITS = _sre.CODESIZE * 8
|
|
|
_BITS_TRANS = b'0' + b'1' * 255
|
|
|
def _mk_bitmap(bits, _CODEBITS=_CODEBITS, _int=int):
|
|
|
s = bytes(bits).translate(_BITS_TRANS)[::-1]
|
|
|
return [_int(s[i - _CODEBITS: i], 2)
|
|
|
for i in range(len(s), 0, -_CODEBITS)]
|
|
|
|
|
|
def _bytes_to_codes(b):
|
|
|
# Convert block indices to word array
|
|
|
import array
|
|
|
if _sre.CODESIZE == 2:
|
|
|
code = 'H'
|
|
|
else:
|
|
|
code = 'I'
|
|
|
a = array.array(code, bytes(b))
|
|
|
assert a.itemsize == _sre.CODESIZE
|
|
|
assert len(a) * a.itemsize == len(b)
|
|
|
return a.tolist()
|
|
|
|
|
|
def _simple(av):
|
|
|
# check if av is a "simple" operator
|
|
|
lo, hi = av[2].getwidth()
|
|
|
return lo == hi == 1 and av[2][0][0] != SUBPATTERN
|
|
|
|
|
|
def _compile_info(code, pattern, flags):
|
|
|
# internal: compile an info block. in the current version,
|
|
|
# this contains min/max pattern width, and an optional literal
|
|
|
# prefix or a character map
|
|
|
lo, hi = pattern.getwidth()
|
|
|
if not lo and hi:
|
|
|
return # not worth it
|
|
|
# look for a literal prefix
|
|
|
prefix = []
|
|
|
prefixappend = prefix.append
|
|
|
prefix_skip = 0
|
|
|
charset = [] # not used
|
|
|
charsetappend = charset.append
|
|
|
if not (flags & SRE_FLAG_IGNORECASE):
|
|
|
# look for literal prefix
|
|
|
for op, av in pattern.data:
|
|
|
if op is LITERAL:
|
|
|
if len(prefix) == prefix_skip:
|
|
|
prefix_skip = prefix_skip + 1
|
|
|
prefixappend(av)
|
|
|
elif op is SUBPATTERN and len(av[1]) == 1:
|
|
|
op, av = av[1][0]
|
|
|
if op is LITERAL:
|
|
|
prefixappend(av)
|
|
|
else:
|
|
|
break
|
|
|
else:
|
|
|
break
|
|
|
# if no prefix, look for charset prefix
|
|
|
if not prefix and pattern.data:
|
|
|
op, av = pattern.data[0]
|
|
|
if op is SUBPATTERN and av[1]:
|
|
|
op, av = av[1][0]
|
|
|
if op is LITERAL:
|
|
|
charsetappend((op, av))
|
|
|
elif op is BRANCH:
|
|
|
c = []
|
|
|
cappend = c.append
|
|
|
for p in av[1]:
|
|
|
if not p:
|
|
|
break
|
|
|
op, av = p[0]
|
|
|
if op is LITERAL:
|
|
|
cappend((op, av))
|
|
|
else:
|
|
|
break
|
|
|
else:
|
|
|
charset = c
|
|
|
elif op is BRANCH:
|
|
|
c = []
|
|
|
cappend = c.append
|
|
|
for p in av[1]:
|
|
|
if not p:
|
|
|
break
|
|
|
op, av = p[0]
|
|
|
if op is LITERAL:
|
|
|
cappend((op, av))
|
|
|
else:
|
|
|
break
|
|
|
else:
|
|
|
charset = c
|
|
|
elif op is IN:
|
|
|
charset = av
|
|
|
## if prefix:
|
|
|
## print "*** PREFIX", prefix, prefix_skip
|
|
|
## if charset:
|
|
|
## print "*** CHARSET", charset
|
|
|
# add an info block
|
|
|
emit = code.append
|
|
|
emit(OPCODES[INFO])
|
|
|
skip = len(code); emit(0)
|
|
|
# literal flag
|
|
|
mask = 0
|
|
|
if prefix:
|
|
|
mask = SRE_INFO_PREFIX
|
|
|
if len(prefix) == prefix_skip == len(pattern.data):
|
|
|
mask = mask + SRE_INFO_LITERAL
|
|
|
elif charset:
|
|
|
mask = mask + SRE_INFO_CHARSET
|
|
|
emit(mask)
|
|
|
# pattern length
|
|
|
if lo < MAXCODE:
|
|
|
emit(lo)
|
|
|
else:
|
|
|
emit(MAXCODE)
|
|
|
prefix = prefix[:MAXCODE]
|
|
|
if hi < MAXCODE:
|
|
|
emit(hi)
|
|
|
else:
|
|
|
emit(0)
|
|
|
# add literal prefix
|
|
|
if prefix:
|
|
|
emit(len(prefix)) # length
|
|
|
emit(prefix_skip) # skip
|
|
|
code.extend(prefix)
|
|
|
# generate overlap table
|
|
|
table = [-1] + ([0]*len(prefix))
|
|
|
for i in xrange(len(prefix)):
|
|
|
table[i+1] = table[i]+1
|
|
|
while table[i+1] > 0 and prefix[i] != prefix[table[i+1]-1]:
|
|
|
table[i+1] = table[table[i+1]-1]+1
|
|
|
code.extend(table[1:]) # don't store first entry
|
|
|
elif charset:
|
|
|
_compile_charset(charset, flags, code)
|
|
|
code[skip] = len(code) - skip
|
|
|
|
|
|
try:
|
|
|
unicode
|
|
|
except NameError:
|
|
|
STRING_TYPES = (type(""),)
|
|
|
else:
|
|
|
STRING_TYPES = (type(""), type(unicode("")))
|
|
|
|
|
|
def isstring(obj):
|
|
|
for tp in STRING_TYPES:
|
|
|
if isinstance(obj, tp):
|
|
|
return 1
|
|
|
return 0
|
|
|
|
|
|
def _code(p, flags):
|
|
|
|
|
|
flags = p.pattern.flags | flags
|
|
|
code = []
|
|
|
|
|
|
# compile info block
|
|
|
_compile_info(code, p, flags)
|
|
|
|
|
|
# compile the pattern
|
|
|
_compile(code, p.data, flags)
|
|
|
|
|
|
code.append(OPCODES[SUCCESS])
|
|
|
|
|
|
return code
|
|
|
|
|
|
def compile(p, flags=0):
|
|
|
# internal: convert pattern list to internal format
|
|
|
|
|
|
if isstring(p):
|
|
|
pattern = p
|
|
|
p = sre_parse.parse(p, flags)
|
|
|
else:
|
|
|
pattern = None
|
|
|
|
|
|
code = _code(p, flags)
|
|
|
|
|
|
# print code
|
|
|
|
|
|
# XXX: <fl> get rid of this limitation!
|
|
|
if p.pattern.groups > 100:
|
|
|
raise AssertionError(
|
|
|
"sorry, but this version only supports 100 named groups"
|
|
|
)
|
|
|
|
|
|
# map in either direction
|
|
|
groupindex = p.pattern.groupdict
|
|
|
indexgroup = [None] * p.pattern.groups
|
|
|
for k, i in groupindex.items():
|
|
|
indexgroup[i] = k
|
|
|
|
|
|
return _sre.compile(
|
|
|
pattern, flags | p.pattern.flags, code,
|
|
|
p.pattern.groups-1,
|
|
|
groupindex, indexgroup
|
|
|
)
|