You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

363 lines
9.6 KiB

/*
* Copyright (C) 2014 Andrew Duggan
* Copyright (C) 2014 Synaptics Inc
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdio.h>
#include <time.h>
#include <string.h>
#include <errno.h>
#include <stdlib.h>
#include "rmidevice.h"
#define RMI_DEVICE_PDT_ENTRY_SIZE 6
#define RMI_DEVICE_PAGE_SELECT_REGISTER 0xFF
#define RMI_DEVICE_MAX_PAGE 0xFF
#define RMI_DEVICE_PAGE_SIZE 0x100
#define RMI_DEVICE_PAGE_SCAN_START 0x00e9
#define RMI_DEVICE_PAGE_SCAN_END 0x0005
#define RMI_DEVICE_F01_BASIC_QUERY_LEN 11
#define RMI_DEVICE_F01_QRY5_YEAR_MASK 0x1f
#define RMI_DEVICE_F01_QRY6_MONTH_MASK 0x0f
#define RMI_DEVICE_F01_QRY7_DAY_MASK 0x1f
#define RMI_DEVICE_F01_QRY1_HAS_LTS (1 << 2)
#define RMI_DEVICE_F01_QRY1_HAS_SENSOR_ID (1 << 3)
#define RMI_DEVICE_F01_QRY1_HAS_CHARGER_INP (1 << 4)
#define RMI_DEVICE_F01_QRY1_HAS_ADJ_DOZE (1 << 5)
#define RMI_DEVICE_F01_QRY1_HAS_ADJ_DOZE_HOFF (1 << 6)
#define RMI_DEVICE_F01_QRY1_HAS_PROPS_2 (1 << 7)
#define RMI_DEVICE_F01_LTS_RESERVED_SIZE 19
#define RMI_DEVICE_F01_QRY42_DS4_QUERIES (1 << 0)
#define RMI_DEVICE_F01_QRY42_MULTI_PHYS (1 << 1)
#define RMI_DEVICE_F01_QRY43_01_PACKAGE_ID (1 << 0)
#define RMI_DEVICE_F01_QRY43_01_BUILD_ID (1 << 1)
#define PACKAGE_ID_BYTES 4
#define BUILD_ID_BYTES 3
#define RMI_F01_CMD_DEVICE_RESET 1
#define RMI_F01_DEFAULT_RESET_DELAY_MS 100
int RMIDevice::SetRMIPage(unsigned char page)
{
int rc;
if (m_page == page)
return 0;
m_page = page;
rc = Write(RMI_DEVICE_PAGE_SELECT_REGISTER, &page, 1);
if (rc < 0 || rc < 1) {
m_page = -1;
return rc;
}
return 0;
}
int RMIDevice::QueryBasicProperties()
{
int rc;
unsigned char basicQuery[RMI_DEVICE_F01_BASIC_QUERY_LEN];
unsigned short queryAddr;
unsigned char infoBuf[4];
unsigned short prodInfoAddr;
RMIFunction f01;
SetRMIPage(0x00);
if (GetFunction(f01, 1)) {
queryAddr = f01.GetQueryBase();
rc = Read(queryAddr, basicQuery, RMI_DEVICE_F01_BASIC_QUERY_LEN);
if (rc < 0 || rc < RMI_DEVICE_F01_BASIC_QUERY_LEN) {
fprintf(stderr, "Failed to read the basic query: %s\n", strerror(errno));
return rc;
}
m_manufacturerID = basicQuery[0];
m_hasLTS = basicQuery[1] & RMI_DEVICE_F01_QRY1_HAS_LTS;
m_hasSensorID = basicQuery[1] & RMI_DEVICE_F01_QRY1_HAS_SENSOR_ID;
m_hasAdjustableDoze = basicQuery[1] & RMI_DEVICE_F01_QRY1_HAS_ADJ_DOZE;
m_hasAdjustableDozeHoldoff = basicQuery[1] & RMI_DEVICE_F01_QRY1_HAS_ADJ_DOZE_HOFF;
m_hasQuery42 = basicQuery[1] & RMI_DEVICE_F01_QRY1_HAS_PROPS_2;
m_firmwareVersionMajor = basicQuery[2];
m_firmwareVersionMinor = basicQuery[3];
snprintf(m_dom, sizeof(m_dom), "20%02d/%02d/%02d",
basicQuery[5] & RMI_DEVICE_F01_QRY5_YEAR_MASK,
basicQuery[6] & RMI_DEVICE_F01_QRY6_MONTH_MASK,
basicQuery[7] & RMI_DEVICE_F01_QRY7_DAY_MASK);
queryAddr += 11;
rc = Read(queryAddr, m_productID, RMI_PRODUCT_ID_LENGTH);
if (rc < 0 || rc < RMI_PRODUCT_ID_LENGTH) {
fprintf(stderr, "Failed to read the product id: %s\n", strerror(errno));
return rc;
}
m_productID[RMI_PRODUCT_ID_LENGTH] = '\0';
prodInfoAddr = queryAddr + 6;
queryAddr += 10;
if (m_hasLTS)
++queryAddr;
if (m_hasSensorID) {
rc = Read(queryAddr++, &m_sensorID, 1);
if (rc < 0 || rc < 1) {
fprintf(stderr, "Failed to read sensor id: %s\n", strerror(errno));
return rc;
}
}
if (m_hasLTS)
queryAddr += RMI_DEVICE_F01_LTS_RESERVED_SIZE;
if (m_hasQuery42) {
rc = Read(queryAddr++, infoBuf, 1);
if (rc < 0 || rc < 1) {
fprintf(stderr, "Failed to read query 42: %s\n", strerror(errno));
return rc;
}
m_hasDS4Queries = infoBuf[0] & RMI_DEVICE_F01_QRY42_DS4_QUERIES;
m_hasMultiPhysical = infoBuf[0] & RMI_DEVICE_F01_QRY42_MULTI_PHYS;
}
if (m_hasDS4Queries) {
rc = Read(queryAddr++, &m_ds4QueryLength, 1);
if (rc < 0 || rc < 1) {
fprintf(stderr, "Failed to read DS4 query length: %s\n", strerror(errno));
return rc;
}
}
for (int i = 1; i <= m_ds4QueryLength; ++i) {
unsigned char val;
rc = Read(queryAddr++, &val, 1);
if (rc < 0 || rc < 1) {
fprintf(stderr, "Failed to read F01 Query43.%02d: %s\n", i, strerror(errno));
continue;
}
switch(i) {
case 1:
m_hasPackageIDQuery = val & RMI_DEVICE_F01_QRY43_01_PACKAGE_ID;
m_hasBuildIDQuery = val & RMI_DEVICE_F01_QRY43_01_BUILD_ID;
break;
case 2:
case 3:
default:
break;
}
}
if (m_hasPackageIDQuery) {
rc = Read(prodInfoAddr++, infoBuf, PACKAGE_ID_BYTES);
if (rc >= PACKAGE_ID_BYTES) {
unsigned short *val = (unsigned short *)infoBuf;
m_packageID = *val;
val = (unsigned short *)(infoBuf + 2);
m_packageRev = *val;
}
}
if (m_hasBuildIDQuery) {
rc = Read(prodInfoAddr, infoBuf, BUILD_ID_BYTES);
if (rc >= BUILD_ID_BYTES) {
unsigned short *val = (unsigned short *)infoBuf;
m_buildID = *val;
m_buildID += infoBuf[2] * 65536;
}
}
}
return 0;
}
void RMIDevice::PrintProperties()
{
fprintf(stdout, "manufacturerID:\t\t%d\n", m_manufacturerID);
fprintf(stdout, "Has LTS?:\t\t%d\n", m_hasLTS);
fprintf(stdout, "Has Sensor ID?:\t\t%d\n", m_hasSensorID);
fprintf(stdout, "Has Adjustable Doze?:\t%d\n", m_hasAdjustableDoze);
fprintf(stdout, "Has Query 42?:\t\t%d\n", m_hasQuery42);
fprintf(stdout, "Date of Manufacturer:\t%s\n", m_dom);
fprintf(stdout, "Product ID:\t\t%s\n", m_productID);
fprintf(stdout, "Firmware Version:\t%d.%d\n", m_firmwareVersionMajor, m_firmwareVersionMinor);
fprintf(stdout, "Package ID:\t\t%d\n", m_packageID);
fprintf(stdout, "Package Rev:\t\t%d\n", m_packageRev);
fprintf(stdout, "Build ID:\t\t%ld\n", m_buildID);
fprintf(stdout, "Sensor ID:\t\t%d\n", m_sensorID);
fprintf(stdout, "Has DS4 Queries?:\t%d\n", m_hasDS4Queries);
fprintf(stdout, "Has Multi Phys?:\t%d\n", m_hasMultiPhysical);
fprintf(stdout, "\n");
}
int RMIDevice::Reset()
{
int rc;
RMIFunction f01;
const unsigned char deviceReset = RMI_F01_CMD_DEVICE_RESET;
if (!GetFunction(f01, 1))
return -1;
fprintf(stdout, "Resetting...\n");
rc = Write(f01.GetCommandBase(), &deviceReset, 1);
if (rc < 0 || rc < 1)
return rc;
rc = Sleep(RMI_F01_DEFAULT_RESET_DELAY_MS);
if (rc < 0)
return -1;
fprintf(stdout, "Reset completed.\n");
return 0;
}
bool RMIDevice::GetFunction(RMIFunction &func, int functionNumber)
{
std::vector<RMIFunction>::iterator funcIter;
for (funcIter = m_functionList.begin(); funcIter != m_functionList.end(); ++funcIter) {
if (funcIter->GetFunctionNumber() == functionNumber) {
func = *funcIter;
return true;
}
}
return false;
}
void RMIDevice::PrintFunctions()
{
std::vector<RMIFunction>::iterator funcIter;
for (funcIter = m_functionList.begin(); funcIter != m_functionList.end(); ++funcIter)
fprintf(stdout, "0x%02x (%d) (%d) (0x%x): 0x%02x 0x%02x 0x%02x 0x%02x\n",
funcIter->GetFunctionNumber(), funcIter->GetFunctionVersion(),
funcIter->GetInterruptSourceCount(),
funcIter->GetInterruptMask(),
funcIter->GetDataBase(),
funcIter->GetControlBase(), funcIter->GetCommandBase(),
funcIter->GetQueryBase());
}
int RMIDevice::ScanPDT(int endFunc, int endPage)
{
int rc;
unsigned int page;
unsigned int maxPage;
unsigned int addr;
unsigned char entry[RMI_DEVICE_PDT_ENTRY_SIZE];
unsigned int interruptCount = 0;
maxPage = (unsigned int)((endPage < 0) ? RMI_DEVICE_MAX_PAGE : endPage);
m_functionList.clear();
for (page = 0; page < maxPage; ++page) {
unsigned int page_start = RMI_DEVICE_PAGE_SIZE * page;
unsigned int pdt_start = page_start + RMI_DEVICE_PAGE_SCAN_START;
unsigned int pdt_end = page_start + RMI_DEVICE_PAGE_SCAN_END;
bool found = false;
SetRMIPage(page);
for (addr = pdt_start; addr >= pdt_end; addr -= RMI_DEVICE_PDT_ENTRY_SIZE) {
rc = Read(addr, entry, RMI_DEVICE_PDT_ENTRY_SIZE);
if (rc < 0 || rc < RMI_DEVICE_PDT_ENTRY_SIZE) {
fprintf(stderr, "Failed to read PDT entry at address (0x%04x)\n", addr);
return rc;
}
RMIFunction func(entry, page_start, interruptCount);
if (func.GetFunctionNumber() == 0)
break;
m_functionList.push_back(func);
interruptCount += func.GetInterruptSourceCount();
found = true;
if (func.GetFunctionNumber() == endFunc)
return 0;
}
if (!found && (endPage < 0))
break;
}
m_numInterruptRegs = (interruptCount + 7) / 8;
return 0;
}
bool RMIDevice::InBootloader()
{
RMIFunction f01;
if (GetFunction(f01, 0x01)) {
int rc;
unsigned char status;
rc = Read(f01.GetDataBase(), &status, 1);
if (rc < 0 || rc < 1)
return true;
return !!(status & 0x40);
}
return true;
}
long long diff_time(struct timespec *start, struct timespec *end)
{
long long diff;
diff = (end->tv_sec - start->tv_sec) * 1000 * 1000;
diff += (end->tv_nsec - start->tv_nsec) / 1000;
return diff;
}
int Sleep(int ms)
{
struct timespec ts;
struct timespec rem;
ts.tv_sec = ms / 1000;
ts.tv_nsec = (ms % 1000) * 1000 * 1000;
for (;;) {
if (nanosleep(&ts, &rem) == 0) {
break;
} else {
if (errno == EINTR) {
ts = rem;
continue;
}
return -1;
}
}
return 0;
}
void print_buffer(const unsigned char *buf, unsigned int len)
{
for (unsigned int i = 0; i < len; ++i) {
fprintf(stdout, "0x%02X ", buf[i]);
if (i % 8 == 7)
fprintf(stdout, "\n");
}
fprintf(stdout, "\n");
}