You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1804 lines
95 KiB

#!/usr/bin/python3 -i
#
# Copyright (c) 2015-2019 The Khronos Group Inc.
# Copyright (c) 2015-2019 Valve Corporation
# Copyright (c) 2015-2019 LunarG, Inc.
# Copyright (c) 2015-2019 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Author: Tobin Ehlis <tobine@google.com>
# Author: Mark Lobodzinski <mark@lunarg.com>
import os,re,sys
import xml.etree.ElementTree as etree
from generator import *
from collections import namedtuple
from common_codegen import *
# LayerChassisDispatchGeneratorOptions - subclass of GeneratorOptions.
#
# Adds options used by LayerChassisDispatchOutputGenerator objects during
# layer chassis dispatch file generation.
#
# Additional members
# prefixText - list of strings to prefix generated header with
# (usually a copyright statement + calling convention macros).
# protectFile - True if multiple inclusion protection should be
# generated (based on the filename) around the entire header.
# protectFeature - True if #ifndef..#endif protection should be
# generated around a feature interface in the header file.
# genFuncPointers - True if function pointer typedefs should be
# generated
# protectProto - If conditional protection should be generated
# around prototype declarations, set to either '#ifdef'
# to require opt-in (#ifdef protectProtoStr) or '#ifndef'
# to require opt-out (#ifndef protectProtoStr). Otherwise
# set to None.
# protectProtoStr - #ifdef/#ifndef symbol to use around prototype
# declarations, if protectProto is set
# apicall - string to use for the function declaration prefix,
# such as APICALL on Windows.
# apientry - string to use for the calling convention macro,
# in typedefs, such as APIENTRY.
# apientryp - string to use for the calling convention macro
# in function pointer typedefs, such as APIENTRYP.
# indentFuncProto - True if prototype declarations should put each
# parameter on a separate line
# indentFuncPointer - True if typedefed function pointers should put each
# parameter on a separate line
# alignFuncParam - if nonzero and parameters are being put on a
# separate line, align parameter names at the specified column
class LayerChassisDispatchGeneratorOptions(GeneratorOptions):
def __init__(self,
conventions = None,
filename = None,
directory = '.',
apiname = None,
profile = None,
versions = '.*',
emitversions = '.*',
defaultExtensions = None,
addExtensions = None,
removeExtensions = None,
emitExtensions = None,
sortProcedure = regSortFeatures,
prefixText = "",
genFuncPointers = True,
protectFile = True,
protectFeature = True,
apicall = '',
apientry = '',
apientryp = '',
indentFuncProto = True,
indentFuncPointer = False,
alignFuncParam = 0,
expandEnumerants = True):
GeneratorOptions.__init__(self, conventions, filename, directory, apiname, profile,
versions, emitversions, defaultExtensions,
addExtensions, removeExtensions, emitExtensions, sortProcedure)
self.prefixText = prefixText
self.genFuncPointers = genFuncPointers
self.protectFile = protectFile
self.protectFeature = protectFeature
self.apicall = apicall
self.apientry = apientry
self.apientryp = apientryp
self.indentFuncProto = indentFuncProto
self.indentFuncPointer = indentFuncPointer
self.alignFuncParam = alignFuncParam
self.expandEnumerants = expandEnumerants
# LayerChassisDispatchOutputGenerator - subclass of OutputGenerator.
# Generates layer chassis non-dispatchable handle-wrapping code.
#
# ---- methods ----
# LayerChassisDispatchOutputGenerator(errFile, warnFile, diagFile) - args as for OutputGenerator. Defines additional internal state.
# ---- methods overriding base class ----
# beginFile(genOpts)
# endFile()
# beginFeature(interface, emit)
# endFeature()
# genCmd(cmdinfo)
# genStruct()
# genType()
class LayerChassisDispatchOutputGenerator(OutputGenerator):
"""Generate layer chassis handle wrapping code based on XML element attributes"""
inline_copyright_message = """
// This file is ***GENERATED***. Do Not Edit.
// See layer_chassis_dispatch_generator.py for modifications.
/* Copyright (c) 2015-2019 The Khronos Group Inc.
* Copyright (c) 2015-2019 Valve Corporation
* Copyright (c) 2015-2019 LunarG, Inc.
* Copyright (c) 2015-2019 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Author: Mark Lobodzinski <mark@lunarg.com>
*/"""
inline_custom_source_preamble = """
VkResult DispatchCreateComputePipelines(VkDevice device, VkPipelineCache pipelineCache, uint32_t createInfoCount,
const VkComputePipelineCreateInfo *pCreateInfos,
const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines) {
auto layer_data = GetLayerDataPtr(get_dispatch_key(device), layer_data_map);
if (!wrap_handles) return layer_data->device_dispatch_table.CreateComputePipelines(device, pipelineCache, createInfoCount,
pCreateInfos, pAllocator, pPipelines);
safe_VkComputePipelineCreateInfo *local_pCreateInfos = NULL;
if (pCreateInfos) {
local_pCreateInfos = new safe_VkComputePipelineCreateInfo[createInfoCount];
for (uint32_t idx0 = 0; idx0 < createInfoCount; ++idx0) {
local_pCreateInfos[idx0].initialize(&pCreateInfos[idx0]);
if (pCreateInfos[idx0].basePipelineHandle) {
local_pCreateInfos[idx0].basePipelineHandle = layer_data->Unwrap(pCreateInfos[idx0].basePipelineHandle);
}
if (pCreateInfos[idx0].layout) {
local_pCreateInfos[idx0].layout = layer_data->Unwrap(pCreateInfos[idx0].layout);
}
if (pCreateInfos[idx0].stage.module) {
local_pCreateInfos[idx0].stage.module = layer_data->Unwrap(pCreateInfos[idx0].stage.module);
}
}
}
if (pipelineCache) {
pipelineCache = layer_data->Unwrap(pipelineCache);
}
VkResult result = layer_data->device_dispatch_table.CreateComputePipelines(device, pipelineCache, createInfoCount,
local_pCreateInfos->ptr(), pAllocator, pPipelines);
delete[] local_pCreateInfos;
{
for (uint32_t i = 0; i < createInfoCount; ++i) {
if (pPipelines[i] != VK_NULL_HANDLE) {
pPipelines[i] = layer_data->WrapNew(pPipelines[i]);
}
}
}
return result;
}
VkResult DispatchCreateGraphicsPipelines(VkDevice device, VkPipelineCache pipelineCache, uint32_t createInfoCount,
const VkGraphicsPipelineCreateInfo *pCreateInfos,
const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines) {
auto layer_data = GetLayerDataPtr(get_dispatch_key(device), layer_data_map);
if (!wrap_handles) return layer_data->device_dispatch_table.CreateGraphicsPipelines(device, pipelineCache, createInfoCount,
pCreateInfos, pAllocator, pPipelines);
safe_VkGraphicsPipelineCreateInfo *local_pCreateInfos = nullptr;
if (pCreateInfos) {
local_pCreateInfos = new safe_VkGraphicsPipelineCreateInfo[createInfoCount];
read_dispatch_lock_guard_t lock(dispatch_lock);
for (uint32_t idx0 = 0; idx0 < createInfoCount; ++idx0) {
bool uses_color_attachment = false;
bool uses_depthstencil_attachment = false;
{
const auto subpasses_uses_it = layer_data->renderpasses_states.find(layer_data->Unwrap(pCreateInfos[idx0].renderPass));
if (subpasses_uses_it != layer_data->renderpasses_states.end()) {
const auto &subpasses_uses = subpasses_uses_it->second;
if (subpasses_uses.subpasses_using_color_attachment.count(pCreateInfos[idx0].subpass))
uses_color_attachment = true;
if (subpasses_uses.subpasses_using_depthstencil_attachment.count(pCreateInfos[idx0].subpass))
uses_depthstencil_attachment = true;
}
}
local_pCreateInfos[idx0].initialize(&pCreateInfos[idx0], uses_color_attachment, uses_depthstencil_attachment);
if (pCreateInfos[idx0].basePipelineHandle) {
local_pCreateInfos[idx0].basePipelineHandle = layer_data->Unwrap(pCreateInfos[idx0].basePipelineHandle);
}
if (pCreateInfos[idx0].layout) {
local_pCreateInfos[idx0].layout = layer_data->Unwrap(pCreateInfos[idx0].layout);
}
if (pCreateInfos[idx0].pStages) {
for (uint32_t idx1 = 0; idx1 < pCreateInfos[idx0].stageCount; ++idx1) {
if (pCreateInfos[idx0].pStages[idx1].module) {
local_pCreateInfos[idx0].pStages[idx1].module = layer_data->Unwrap(pCreateInfos[idx0].pStages[idx1].module);
}
}
}
if (pCreateInfos[idx0].renderPass) {
local_pCreateInfos[idx0].renderPass = layer_data->Unwrap(pCreateInfos[idx0].renderPass);
}
}
}
if (pipelineCache) {
pipelineCache = layer_data->Unwrap(pipelineCache);
}
VkResult result = layer_data->device_dispatch_table.CreateGraphicsPipelines(device, pipelineCache, createInfoCount,
local_pCreateInfos->ptr(), pAllocator, pPipelines);
delete[] local_pCreateInfos;
{
for (uint32_t i = 0; i < createInfoCount; ++i) {
if (pPipelines[i] != VK_NULL_HANDLE) {
pPipelines[i] = layer_data->WrapNew(pPipelines[i]);
}
}
}
return result;
}
template <typename T>
static void UpdateCreateRenderPassState(ValidationObject *layer_data, const T *pCreateInfo, VkRenderPass renderPass) {
auto &renderpass_state = layer_data->renderpasses_states[renderPass];
for (uint32_t subpass = 0; subpass < pCreateInfo->subpassCount; ++subpass) {
bool uses_color = false;
for (uint32_t i = 0; i < pCreateInfo->pSubpasses[subpass].colorAttachmentCount && !uses_color; ++i)
if (pCreateInfo->pSubpasses[subpass].pColorAttachments[i].attachment != VK_ATTACHMENT_UNUSED) uses_color = true;
bool uses_depthstencil = false;
if (pCreateInfo->pSubpasses[subpass].pDepthStencilAttachment)
if (pCreateInfo->pSubpasses[subpass].pDepthStencilAttachment->attachment != VK_ATTACHMENT_UNUSED)
uses_depthstencil = true;
if (uses_color) renderpass_state.subpasses_using_color_attachment.insert(subpass);
if (uses_depthstencil) renderpass_state.subpasses_using_depthstencil_attachment.insert(subpass);
}
}
VkResult DispatchCreateRenderPass(VkDevice device, const VkRenderPassCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkRenderPass *pRenderPass) {
auto layer_data = GetLayerDataPtr(get_dispatch_key(device), layer_data_map);
VkResult result = layer_data->device_dispatch_table.CreateRenderPass(device, pCreateInfo, pAllocator, pRenderPass);
if (!wrap_handles) return result;
if (VK_SUCCESS == result) {
write_dispatch_lock_guard_t lock(dispatch_lock);
UpdateCreateRenderPassState(layer_data, pCreateInfo, *pRenderPass);
*pRenderPass = layer_data->WrapNew(*pRenderPass);
}
return result;
}
VkResult DispatchCreateRenderPass2KHR(VkDevice device, const VkRenderPassCreateInfo2KHR *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkRenderPass *pRenderPass) {
auto layer_data = GetLayerDataPtr(get_dispatch_key(device), layer_data_map);
VkResult result = layer_data->device_dispatch_table.CreateRenderPass2KHR(device, pCreateInfo, pAllocator, pRenderPass);
if (!wrap_handles) return result;
if (VK_SUCCESS == result) {
write_dispatch_lock_guard_t lock(dispatch_lock);
UpdateCreateRenderPassState(layer_data, pCreateInfo, *pRenderPass);
*pRenderPass = layer_data->WrapNew(*pRenderPass);
}
return result;
}
void DispatchDestroyRenderPass(VkDevice device, VkRenderPass renderPass, const VkAllocationCallbacks *pAllocator) {
auto layer_data = GetLayerDataPtr(get_dispatch_key(device), layer_data_map);
if (!wrap_handles) return layer_data->device_dispatch_table.DestroyRenderPass(device, renderPass, pAllocator);
uint64_t renderPass_id = reinterpret_cast<uint64_t &>(renderPass);
auto iter = unique_id_mapping.pop(renderPass_id);
if (iter != unique_id_mapping.end()) {
renderPass = (VkRenderPass)iter->second;
} else {
renderPass = (VkRenderPass)0;
}
layer_data->device_dispatch_table.DestroyRenderPass(device, renderPass, pAllocator);
write_dispatch_lock_guard_t lock(dispatch_lock);
layer_data->renderpasses_states.erase(renderPass);
}
VkResult DispatchCreateSwapchainKHR(VkDevice device, const VkSwapchainCreateInfoKHR *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkSwapchainKHR *pSwapchain) {
auto layer_data = GetLayerDataPtr(get_dispatch_key(device), layer_data_map);
if (!wrap_handles) return layer_data->device_dispatch_table.CreateSwapchainKHR(device, pCreateInfo, pAllocator, pSwapchain);
safe_VkSwapchainCreateInfoKHR *local_pCreateInfo = NULL;
if (pCreateInfo) {
local_pCreateInfo = new safe_VkSwapchainCreateInfoKHR(pCreateInfo);
local_pCreateInfo->oldSwapchain = layer_data->Unwrap(pCreateInfo->oldSwapchain);
// Surface is instance-level object
local_pCreateInfo->surface = layer_data->Unwrap(pCreateInfo->surface);
}
VkResult result = layer_data->device_dispatch_table.CreateSwapchainKHR(device, local_pCreateInfo->ptr(), pAllocator, pSwapchain);
delete local_pCreateInfo;
if (VK_SUCCESS == result) {
*pSwapchain = layer_data->WrapNew(*pSwapchain);
}
return result;
}
VkResult DispatchCreateSharedSwapchainsKHR(VkDevice device, uint32_t swapchainCount, const VkSwapchainCreateInfoKHR *pCreateInfos,
const VkAllocationCallbacks *pAllocator, VkSwapchainKHR *pSwapchains) {
auto layer_data = GetLayerDataPtr(get_dispatch_key(device), layer_data_map);
if (!wrap_handles)
return layer_data->device_dispatch_table.CreateSharedSwapchainsKHR(device, swapchainCount, pCreateInfos, pAllocator,
pSwapchains);
safe_VkSwapchainCreateInfoKHR *local_pCreateInfos = NULL;
{
if (pCreateInfos) {
local_pCreateInfos = new safe_VkSwapchainCreateInfoKHR[swapchainCount];
for (uint32_t i = 0; i < swapchainCount; ++i) {
local_pCreateInfos[i].initialize(&pCreateInfos[i]);
if (pCreateInfos[i].surface) {
// Surface is instance-level object
local_pCreateInfos[i].surface = layer_data->Unwrap(pCreateInfos[i].surface);
}
if (pCreateInfos[i].oldSwapchain) {
local_pCreateInfos[i].oldSwapchain = layer_data->Unwrap(pCreateInfos[i].oldSwapchain);
}
}
}
}
VkResult result = layer_data->device_dispatch_table.CreateSharedSwapchainsKHR(device, swapchainCount, local_pCreateInfos->ptr(),
pAllocator, pSwapchains);
delete[] local_pCreateInfos;
if (VK_SUCCESS == result) {
for (uint32_t i = 0; i < swapchainCount; i++) {
pSwapchains[i] = layer_data->WrapNew(pSwapchains[i]);
}
}
return result;
}
VkResult DispatchGetSwapchainImagesKHR(VkDevice device, VkSwapchainKHR swapchain, uint32_t *pSwapchainImageCount,
VkImage *pSwapchainImages) {
auto layer_data = GetLayerDataPtr(get_dispatch_key(device), layer_data_map);
if (!wrap_handles)
return layer_data->device_dispatch_table.GetSwapchainImagesKHR(device, swapchain, pSwapchainImageCount, pSwapchainImages);
VkSwapchainKHR wrapped_swapchain_handle = swapchain;
if (VK_NULL_HANDLE != swapchain) {
swapchain = layer_data->Unwrap(swapchain);
}
VkResult result =
layer_data->device_dispatch_table.GetSwapchainImagesKHR(device, swapchain, pSwapchainImageCount, pSwapchainImages);
if ((VK_SUCCESS == result) || (VK_INCOMPLETE == result)) {
if ((*pSwapchainImageCount > 0) && pSwapchainImages) {
write_dispatch_lock_guard_t lock(dispatch_lock);
auto &wrapped_swapchain_image_handles = layer_data->swapchain_wrapped_image_handle_map[wrapped_swapchain_handle];
for (uint32_t i = static_cast<uint32_t>(wrapped_swapchain_image_handles.size()); i < *pSwapchainImageCount; i++) {
wrapped_swapchain_image_handles.emplace_back(layer_data->WrapNew(pSwapchainImages[i]));
}
for (uint32_t i = 0; i < *pSwapchainImageCount; i++) {
pSwapchainImages[i] = wrapped_swapchain_image_handles[i];
}
}
}
return result;
}
void DispatchDestroySwapchainKHR(VkDevice device, VkSwapchainKHR swapchain, const VkAllocationCallbacks *pAllocator) {
auto layer_data = GetLayerDataPtr(get_dispatch_key(device), layer_data_map);
if (!wrap_handles) return layer_data->device_dispatch_table.DestroySwapchainKHR(device, swapchain, pAllocator);
write_dispatch_lock_guard_t lock(dispatch_lock);
auto &image_array = layer_data->swapchain_wrapped_image_handle_map[swapchain];
for (auto &image_handle : image_array) {
unique_id_mapping.erase(HandleToUint64(image_handle));
}
layer_data->swapchain_wrapped_image_handle_map.erase(swapchain);
lock.unlock();
uint64_t swapchain_id = HandleToUint64(swapchain);
auto iter = unique_id_mapping.pop(swapchain_id);
if (iter != unique_id_mapping.end()) {
swapchain = (VkSwapchainKHR)iter->second;
} else {
swapchain = (VkSwapchainKHR)0;
}
layer_data->device_dispatch_table.DestroySwapchainKHR(device, swapchain, pAllocator);
}
VkResult DispatchQueuePresentKHR(VkQueue queue, const VkPresentInfoKHR *pPresentInfo) {
auto layer_data = GetLayerDataPtr(get_dispatch_key(queue), layer_data_map);
if (!wrap_handles) return layer_data->device_dispatch_table.QueuePresentKHR(queue, pPresentInfo);
safe_VkPresentInfoKHR *local_pPresentInfo = NULL;
{
if (pPresentInfo) {
local_pPresentInfo = new safe_VkPresentInfoKHR(pPresentInfo);
if (local_pPresentInfo->pWaitSemaphores) {
for (uint32_t index1 = 0; index1 < local_pPresentInfo->waitSemaphoreCount; ++index1) {
local_pPresentInfo->pWaitSemaphores[index1] = layer_data->Unwrap(pPresentInfo->pWaitSemaphores[index1]);
}
}
if (local_pPresentInfo->pSwapchains) {
for (uint32_t index1 = 0; index1 < local_pPresentInfo->swapchainCount; ++index1) {
local_pPresentInfo->pSwapchains[index1] = layer_data->Unwrap(pPresentInfo->pSwapchains[index1]);
}
}
}
}
VkResult result = layer_data->device_dispatch_table.QueuePresentKHR(queue, local_pPresentInfo->ptr());
// pResults is an output array embedded in a structure. The code generator neglects to copy back from the safe_* version,
// so handle it as a special case here:
if (pPresentInfo && pPresentInfo->pResults) {
for (uint32_t i = 0; i < pPresentInfo->swapchainCount; i++) {
pPresentInfo->pResults[i] = local_pPresentInfo->pResults[i];
}
}
delete local_pPresentInfo;
return result;
}
void DispatchDestroyDescriptorPool(VkDevice device, VkDescriptorPool descriptorPool, const VkAllocationCallbacks *pAllocator) {
auto layer_data = GetLayerDataPtr(get_dispatch_key(device), layer_data_map);
if (!wrap_handles) return layer_data->device_dispatch_table.DestroyDescriptorPool(device, descriptorPool, pAllocator);
write_dispatch_lock_guard_t lock(dispatch_lock);
// remove references to implicitly freed descriptor sets
for(auto descriptor_set : layer_data->pool_descriptor_sets_map[descriptorPool]) {
unique_id_mapping.erase(reinterpret_cast<uint64_t &>(descriptor_set));
}
layer_data->pool_descriptor_sets_map.erase(descriptorPool);
lock.unlock();
uint64_t descriptorPool_id = reinterpret_cast<uint64_t &>(descriptorPool);
auto iter = unique_id_mapping.pop(descriptorPool_id);
if (iter != unique_id_mapping.end()) {
descriptorPool = (VkDescriptorPool)iter->second;
} else {
descriptorPool = (VkDescriptorPool)0;
}
layer_data->device_dispatch_table.DestroyDescriptorPool(device, descriptorPool, pAllocator);
}
VkResult DispatchResetDescriptorPool(VkDevice device, VkDescriptorPool descriptorPool, VkDescriptorPoolResetFlags flags) {
auto layer_data = GetLayerDataPtr(get_dispatch_key(device), layer_data_map);
if (!wrap_handles) return layer_data->device_dispatch_table.ResetDescriptorPool(device, descriptorPool, flags);
VkDescriptorPool local_descriptor_pool = VK_NULL_HANDLE;
{
local_descriptor_pool = layer_data->Unwrap(descriptorPool);
}
VkResult result = layer_data->device_dispatch_table.ResetDescriptorPool(device, local_descriptor_pool, flags);
if (VK_SUCCESS == result) {
write_dispatch_lock_guard_t lock(dispatch_lock);
// remove references to implicitly freed descriptor sets
for(auto descriptor_set : layer_data->pool_descriptor_sets_map[descriptorPool]) {
unique_id_mapping.erase(reinterpret_cast<uint64_t &>(descriptor_set));
}
layer_data->pool_descriptor_sets_map[descriptorPool].clear();
}
return result;
}
VkResult DispatchAllocateDescriptorSets(VkDevice device, const VkDescriptorSetAllocateInfo *pAllocateInfo,
VkDescriptorSet *pDescriptorSets) {
auto layer_data = GetLayerDataPtr(get_dispatch_key(device), layer_data_map);
if (!wrap_handles) return layer_data->device_dispatch_table.AllocateDescriptorSets(device, pAllocateInfo, pDescriptorSets);
safe_VkDescriptorSetAllocateInfo *local_pAllocateInfo = NULL;
{
if (pAllocateInfo) {
local_pAllocateInfo = new safe_VkDescriptorSetAllocateInfo(pAllocateInfo);
if (pAllocateInfo->descriptorPool) {
local_pAllocateInfo->descriptorPool = layer_data->Unwrap(pAllocateInfo->descriptorPool);
}
if (local_pAllocateInfo->pSetLayouts) {
for (uint32_t index1 = 0; index1 < local_pAllocateInfo->descriptorSetCount; ++index1) {
local_pAllocateInfo->pSetLayouts[index1] = layer_data->Unwrap(local_pAllocateInfo->pSetLayouts[index1]);
}
}
}
}
VkResult result = layer_data->device_dispatch_table.AllocateDescriptorSets(
device, (const VkDescriptorSetAllocateInfo *)local_pAllocateInfo, pDescriptorSets);
if (local_pAllocateInfo) {
delete local_pAllocateInfo;
}
if (VK_SUCCESS == result) {
write_dispatch_lock_guard_t lock(dispatch_lock);
auto &pool_descriptor_sets = layer_data->pool_descriptor_sets_map[pAllocateInfo->descriptorPool];
for (uint32_t index0 = 0; index0 < pAllocateInfo->descriptorSetCount; index0++) {
pDescriptorSets[index0] = layer_data->WrapNew(pDescriptorSets[index0]);
pool_descriptor_sets.insert(pDescriptorSets[index0]);
}
}
return result;
}
VkResult DispatchFreeDescriptorSets(VkDevice device, VkDescriptorPool descriptorPool, uint32_t descriptorSetCount,
const VkDescriptorSet *pDescriptorSets) {
auto layer_data = GetLayerDataPtr(get_dispatch_key(device), layer_data_map);
if (!wrap_handles)
return layer_data->device_dispatch_table.FreeDescriptorSets(device, descriptorPool, descriptorSetCount, pDescriptorSets);
VkDescriptorSet *local_pDescriptorSets = NULL;
VkDescriptorPool local_descriptor_pool = VK_NULL_HANDLE;
{
local_descriptor_pool = layer_data->Unwrap(descriptorPool);
if (pDescriptorSets) {
local_pDescriptorSets = new VkDescriptorSet[descriptorSetCount];
for (uint32_t index0 = 0; index0 < descriptorSetCount; ++index0) {
local_pDescriptorSets[index0] = layer_data->Unwrap(pDescriptorSets[index0]);
}
}
}
VkResult result = layer_data->device_dispatch_table.FreeDescriptorSets(device, local_descriptor_pool, descriptorSetCount,
(const VkDescriptorSet *)local_pDescriptorSets);
if (local_pDescriptorSets) delete[] local_pDescriptorSets;
if ((VK_SUCCESS == result) && (pDescriptorSets)) {
write_dispatch_lock_guard_t lock(dispatch_lock);
auto &pool_descriptor_sets = layer_data->pool_descriptor_sets_map[descriptorPool];
for (uint32_t index0 = 0; index0 < descriptorSetCount; index0++) {
VkDescriptorSet handle = pDescriptorSets[index0];
pool_descriptor_sets.erase(handle);
uint64_t unique_id = reinterpret_cast<uint64_t &>(handle);
unique_id_mapping.erase(unique_id);
}
}
return result;
}
// This is the core version of this routine. The extension version is below.
VkResult DispatchCreateDescriptorUpdateTemplate(VkDevice device, const VkDescriptorUpdateTemplateCreateInfoKHR *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkDescriptorUpdateTemplateKHR *pDescriptorUpdateTemplate) {
auto layer_data = GetLayerDataPtr(get_dispatch_key(device), layer_data_map);
if (!wrap_handles)
return layer_data->device_dispatch_table.CreateDescriptorUpdateTemplate(device, pCreateInfo, pAllocator,
pDescriptorUpdateTemplate);
safe_VkDescriptorUpdateTemplateCreateInfo *local_create_info = NULL;
{
if (pCreateInfo) {
local_create_info = new safe_VkDescriptorUpdateTemplateCreateInfo(pCreateInfo);
if (pCreateInfo->descriptorSetLayout) {
local_create_info->descriptorSetLayout = layer_data->Unwrap(pCreateInfo->descriptorSetLayout);
}
if (pCreateInfo->pipelineLayout) {
local_create_info->pipelineLayout = layer_data->Unwrap(pCreateInfo->pipelineLayout);
}
}
}
VkResult result = layer_data->device_dispatch_table.CreateDescriptorUpdateTemplate(device, local_create_info->ptr(), pAllocator,
pDescriptorUpdateTemplate);
if (VK_SUCCESS == result) {
write_dispatch_lock_guard_t lock(dispatch_lock);
*pDescriptorUpdateTemplate = layer_data->WrapNew(*pDescriptorUpdateTemplate);
// Shadow template createInfo for later updates
std::unique_ptr<TEMPLATE_STATE> template_state(new TEMPLATE_STATE(*pDescriptorUpdateTemplate, local_create_info));
layer_data->desc_template_createinfo_map[(uint64_t)*pDescriptorUpdateTemplate] = std::move(template_state);
}
return result;
}
// This is the extension version of this routine. The core version is above.
VkResult DispatchCreateDescriptorUpdateTemplateKHR(VkDevice device, const VkDescriptorUpdateTemplateCreateInfoKHR *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkDescriptorUpdateTemplateKHR *pDescriptorUpdateTemplate) {
auto layer_data = GetLayerDataPtr(get_dispatch_key(device), layer_data_map);
if (!wrap_handles)
return layer_data->device_dispatch_table.CreateDescriptorUpdateTemplateKHR(device, pCreateInfo, pAllocator,
pDescriptorUpdateTemplate);
safe_VkDescriptorUpdateTemplateCreateInfo *local_create_info = NULL;
{
if (pCreateInfo) {
local_create_info = new safe_VkDescriptorUpdateTemplateCreateInfo(pCreateInfo);
if (pCreateInfo->descriptorSetLayout) {
local_create_info->descriptorSetLayout = layer_data->Unwrap(pCreateInfo->descriptorSetLayout);
}
if (pCreateInfo->pipelineLayout) {
local_create_info->pipelineLayout = layer_data->Unwrap(pCreateInfo->pipelineLayout);
}
}
}
VkResult result = layer_data->device_dispatch_table.CreateDescriptorUpdateTemplateKHR(device, local_create_info->ptr(), pAllocator,
pDescriptorUpdateTemplate);
if (VK_SUCCESS == result) {
write_dispatch_lock_guard_t lock(dispatch_lock);
*pDescriptorUpdateTemplate = layer_data->WrapNew(*pDescriptorUpdateTemplate);
// Shadow template createInfo for later updates
std::unique_ptr<TEMPLATE_STATE> template_state(new TEMPLATE_STATE(*pDescriptorUpdateTemplate, local_create_info));
layer_data->desc_template_createinfo_map[(uint64_t)*pDescriptorUpdateTemplate] = std::move(template_state);
}
return result;
}
// This is the core version of this routine. The extension version is below.
void DispatchDestroyDescriptorUpdateTemplate(VkDevice device, VkDescriptorUpdateTemplateKHR descriptorUpdateTemplate,
const VkAllocationCallbacks *pAllocator) {
auto layer_data = GetLayerDataPtr(get_dispatch_key(device), layer_data_map);
if (!wrap_handles)
return layer_data->device_dispatch_table.DestroyDescriptorUpdateTemplate(device, descriptorUpdateTemplate, pAllocator);
write_dispatch_lock_guard_t lock(dispatch_lock);
uint64_t descriptor_update_template_id = reinterpret_cast<uint64_t &>(descriptorUpdateTemplate);
layer_data->desc_template_createinfo_map.erase(descriptor_update_template_id);
lock.unlock();
auto iter = unique_id_mapping.pop(descriptor_update_template_id);
if (iter != unique_id_mapping.end()) {
descriptorUpdateTemplate = (VkDescriptorUpdateTemplate)iter->second;
} else {
descriptorUpdateTemplate = (VkDescriptorUpdateTemplate)0;
}
layer_data->device_dispatch_table.DestroyDescriptorUpdateTemplate(device, descriptorUpdateTemplate, pAllocator);
}
// This is the extension version of this routine. The core version is above.
void DispatchDestroyDescriptorUpdateTemplateKHR(VkDevice device, VkDescriptorUpdateTemplateKHR descriptorUpdateTemplate,
const VkAllocationCallbacks *pAllocator) {
auto layer_data = GetLayerDataPtr(get_dispatch_key(device), layer_data_map);
if (!wrap_handles)
return layer_data->device_dispatch_table.DestroyDescriptorUpdateTemplateKHR(device, descriptorUpdateTemplate, pAllocator);
write_dispatch_lock_guard_t lock(dispatch_lock);
uint64_t descriptor_update_template_id = reinterpret_cast<uint64_t &>(descriptorUpdateTemplate);
layer_data->desc_template_createinfo_map.erase(descriptor_update_template_id);
lock.unlock();
auto iter = unique_id_mapping.pop(descriptor_update_template_id);
if (iter != unique_id_mapping.end()) {
descriptorUpdateTemplate = (VkDescriptorUpdateTemplate)iter->second;
} else {
descriptorUpdateTemplate = (VkDescriptorUpdateTemplate)0;
}
layer_data->device_dispatch_table.DestroyDescriptorUpdateTemplateKHR(device, descriptorUpdateTemplate, pAllocator);
}
void *BuildUnwrappedUpdateTemplateBuffer(ValidationObject *layer_data, uint64_t descriptorUpdateTemplate, const void *pData) {
auto const template_map_entry = layer_data->desc_template_createinfo_map.find(descriptorUpdateTemplate);
if (template_map_entry == layer_data->desc_template_createinfo_map.end()) {
assert(0);
}
auto const &create_info = template_map_entry->second->create_info;
size_t allocation_size = 0;
std::vector<std::tuple<size_t, VulkanObjectType, uint64_t, size_t>> template_entries;
for (uint32_t i = 0; i < create_info.descriptorUpdateEntryCount; i++) {
for (uint32_t j = 0; j < create_info.pDescriptorUpdateEntries[i].descriptorCount; j++) {
size_t offset = create_info.pDescriptorUpdateEntries[i].offset + j * create_info.pDescriptorUpdateEntries[i].stride;
char *update_entry = (char *)(pData) + offset;
switch (create_info.pDescriptorUpdateEntries[i].descriptorType) {
case VK_DESCRIPTOR_TYPE_SAMPLER:
case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT: {
auto image_entry = reinterpret_cast<VkDescriptorImageInfo *>(update_entry);
allocation_size = std::max(allocation_size, offset + sizeof(VkDescriptorImageInfo));
VkDescriptorImageInfo *wrapped_entry = new VkDescriptorImageInfo(*image_entry);
wrapped_entry->sampler = layer_data->Unwrap(image_entry->sampler);
wrapped_entry->imageView = layer_data->Unwrap(image_entry->imageView);
template_entries.emplace_back(offset, kVulkanObjectTypeImage, CastToUint64(wrapped_entry), 0);
} break;
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: {
auto buffer_entry = reinterpret_cast<VkDescriptorBufferInfo *>(update_entry);
allocation_size = std::max(allocation_size, offset + sizeof(VkDescriptorBufferInfo));
VkDescriptorBufferInfo *wrapped_entry = new VkDescriptorBufferInfo(*buffer_entry);
wrapped_entry->buffer = layer_data->Unwrap(buffer_entry->buffer);
template_entries.emplace_back(offset, kVulkanObjectTypeBuffer, CastToUint64(wrapped_entry), 0);
} break;
case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER: {
auto buffer_view_handle = reinterpret_cast<VkBufferView *>(update_entry);
allocation_size = std::max(allocation_size, offset + sizeof(VkBufferView));
VkBufferView wrapped_entry = layer_data->Unwrap(*buffer_view_handle);
template_entries.emplace_back(offset, kVulkanObjectTypeBufferView, CastToUint64(wrapped_entry), 0);
} break;
case VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT: {
size_t numBytes = create_info.pDescriptorUpdateEntries[i].descriptorCount;
allocation_size = std::max(allocation_size, offset + numBytes);
// nothing to unwrap, just plain data
template_entries.emplace_back(offset, kVulkanObjectTypeUnknown, CastToUint64(update_entry),
numBytes);
// to break out of the loop
j = create_info.pDescriptorUpdateEntries[i].descriptorCount;
} break;
default:
assert(0);
break;
}
}
}
// Allocate required buffer size and populate with source/unwrapped data
void *unwrapped_data = malloc(allocation_size);
for (auto &this_entry : template_entries) {
VulkanObjectType type = std::get<1>(this_entry);
void *destination = (char *)unwrapped_data + std::get<0>(this_entry);
uint64_t source = std::get<2>(this_entry);
size_t size = std::get<3>(this_entry);
if (size != 0) {
assert(type == kVulkanObjectTypeUnknown);
memcpy(destination, CastFromUint64<void *>(source), size);
} else {
switch (type) {
case kVulkanObjectTypeImage:
*(reinterpret_cast<VkDescriptorImageInfo *>(destination)) =
*(reinterpret_cast<VkDescriptorImageInfo *>(source));
delete CastFromUint64<VkDescriptorImageInfo *>(source);
break;
case kVulkanObjectTypeBuffer:
*(reinterpret_cast<VkDescriptorBufferInfo *>(destination)) =
*(CastFromUint64<VkDescriptorBufferInfo *>(source));
delete CastFromUint64<VkDescriptorBufferInfo *>(source);
break;
case kVulkanObjectTypeBufferView:
*(reinterpret_cast<VkBufferView *>(destination)) = CastFromUint64<VkBufferView>(source);
break;
default:
assert(0);
break;
}
}
}
return (void *)unwrapped_data;
}
void DispatchUpdateDescriptorSetWithTemplate(VkDevice device, VkDescriptorSet descriptorSet,
VkDescriptorUpdateTemplateKHR descriptorUpdateTemplate, const void *pData) {
auto layer_data = GetLayerDataPtr(get_dispatch_key(device), layer_data_map);
if (!wrap_handles)
return layer_data->device_dispatch_table.UpdateDescriptorSetWithTemplate(device, descriptorSet, descriptorUpdateTemplate,
pData);
uint64_t template_handle = reinterpret_cast<uint64_t &>(descriptorUpdateTemplate);
void *unwrapped_buffer = nullptr;
{
read_dispatch_lock_guard_t lock(dispatch_lock);
descriptorSet = layer_data->Unwrap(descriptorSet);
descriptorUpdateTemplate = (VkDescriptorUpdateTemplate)layer_data->Unwrap(descriptorUpdateTemplate);
unwrapped_buffer = BuildUnwrappedUpdateTemplateBuffer(layer_data, template_handle, pData);
}
layer_data->device_dispatch_table.UpdateDescriptorSetWithTemplate(device, descriptorSet, descriptorUpdateTemplate, unwrapped_buffer);
free(unwrapped_buffer);
}
void DispatchUpdateDescriptorSetWithTemplateKHR(VkDevice device, VkDescriptorSet descriptorSet,
VkDescriptorUpdateTemplateKHR descriptorUpdateTemplate, const void *pData) {
auto layer_data = GetLayerDataPtr(get_dispatch_key(device), layer_data_map);
if (!wrap_handles)
return layer_data->device_dispatch_table.UpdateDescriptorSetWithTemplateKHR(device, descriptorSet, descriptorUpdateTemplate,
pData);
uint64_t template_handle = reinterpret_cast<uint64_t &>(descriptorUpdateTemplate);
void *unwrapped_buffer = nullptr;
{
read_dispatch_lock_guard_t lock(dispatch_lock);
descriptorSet = layer_data->Unwrap(descriptorSet);
descriptorUpdateTemplate = layer_data->Unwrap(descriptorUpdateTemplate);
unwrapped_buffer = BuildUnwrappedUpdateTemplateBuffer(layer_data, template_handle, pData);
}
layer_data->device_dispatch_table.UpdateDescriptorSetWithTemplateKHR(device, descriptorSet, descriptorUpdateTemplate, unwrapped_buffer);
free(unwrapped_buffer);
}
void DispatchCmdPushDescriptorSetWithTemplateKHR(VkCommandBuffer commandBuffer,
VkDescriptorUpdateTemplateKHR descriptorUpdateTemplate, VkPipelineLayout layout,
uint32_t set, const void *pData) {
auto layer_data = GetLayerDataPtr(get_dispatch_key(commandBuffer), layer_data_map);
if (!wrap_handles)
return layer_data->device_dispatch_table.CmdPushDescriptorSetWithTemplateKHR(commandBuffer, descriptorUpdateTemplate,
layout, set, pData);
uint64_t template_handle = reinterpret_cast<uint64_t &>(descriptorUpdateTemplate);
void *unwrapped_buffer = nullptr;
{
read_dispatch_lock_guard_t lock(dispatch_lock);
descriptorUpdateTemplate = layer_data->Unwrap(descriptorUpdateTemplate);
layout = layer_data->Unwrap(layout);
unwrapped_buffer = BuildUnwrappedUpdateTemplateBuffer(layer_data, template_handle, pData);
}
layer_data->device_dispatch_table.CmdPushDescriptorSetWithTemplateKHR(commandBuffer, descriptorUpdateTemplate, layout, set,
unwrapped_buffer);
free(unwrapped_buffer);
}
VkResult DispatchGetPhysicalDeviceDisplayPropertiesKHR(VkPhysicalDevice physicalDevice, uint32_t *pPropertyCount,
VkDisplayPropertiesKHR *pProperties) {
auto layer_data = GetLayerDataPtr(get_dispatch_key(physicalDevice), layer_data_map);
VkResult result =
layer_data->instance_dispatch_table.GetPhysicalDeviceDisplayPropertiesKHR(physicalDevice, pPropertyCount, pProperties);
if (!wrap_handles) return result;
if ((result == VK_SUCCESS || result == VK_INCOMPLETE) && pProperties) {
for (uint32_t idx0 = 0; idx0 < *pPropertyCount; ++idx0) {
pProperties[idx0].display = layer_data->MaybeWrapDisplay(pProperties[idx0].display, layer_data);
}
}
return result;
}
VkResult DispatchGetPhysicalDeviceDisplayProperties2KHR(VkPhysicalDevice physicalDevice, uint32_t *pPropertyCount,
VkDisplayProperties2KHR *pProperties) {
auto layer_data = GetLayerDataPtr(get_dispatch_key(physicalDevice), layer_data_map);
VkResult result =
layer_data->instance_dispatch_table.GetPhysicalDeviceDisplayProperties2KHR(physicalDevice, pPropertyCount, pProperties);
if (!wrap_handles) return result;
if ((result == VK_SUCCESS || result == VK_INCOMPLETE) && pProperties) {
for (uint32_t idx0 = 0; idx0 < *pPropertyCount; ++idx0) {
pProperties[idx0].displayProperties.display =
layer_data->MaybeWrapDisplay(pProperties[idx0].displayProperties.display, layer_data);
}
}
return result;
}
VkResult DispatchGetPhysicalDeviceDisplayPlanePropertiesKHR(VkPhysicalDevice physicalDevice, uint32_t *pPropertyCount,
VkDisplayPlanePropertiesKHR *pProperties) {
auto layer_data = GetLayerDataPtr(get_dispatch_key(physicalDevice), layer_data_map);
VkResult result =
layer_data->instance_dispatch_table.GetPhysicalDeviceDisplayPlanePropertiesKHR(physicalDevice, pPropertyCount, pProperties);
if (!wrap_handles) return result;
if ((result == VK_SUCCESS || result == VK_INCOMPLETE) && pProperties) {
for (uint32_t idx0 = 0; idx0 < *pPropertyCount; ++idx0) {
VkDisplayKHR &opt_display = pProperties[idx0].currentDisplay;
if (opt_display) opt_display = layer_data->MaybeWrapDisplay(opt_display, layer_data);
}
}
return result;
}
VkResult DispatchGetPhysicalDeviceDisplayPlaneProperties2KHR(VkPhysicalDevice physicalDevice, uint32_t *pPropertyCount,
VkDisplayPlaneProperties2KHR *pProperties) {
auto layer_data = GetLayerDataPtr(get_dispatch_key(physicalDevice), layer_data_map);
VkResult result = layer_data->instance_dispatch_table.GetPhysicalDeviceDisplayPlaneProperties2KHR(physicalDevice,
pPropertyCount, pProperties);
if (!wrap_handles) return result;
if ((result == VK_SUCCESS || result == VK_INCOMPLETE) && pProperties) {
for (uint32_t idx0 = 0; idx0 < *pPropertyCount; ++idx0) {
VkDisplayKHR &opt_display = pProperties[idx0].displayPlaneProperties.currentDisplay;
if (opt_display) opt_display = layer_data->MaybeWrapDisplay(opt_display, layer_data);
}
}
return result;
}
VkResult DispatchGetDisplayPlaneSupportedDisplaysKHR(VkPhysicalDevice physicalDevice, uint32_t planeIndex, uint32_t *pDisplayCount,
VkDisplayKHR *pDisplays) {
auto layer_data = GetLayerDataPtr(get_dispatch_key(physicalDevice), layer_data_map);
VkResult result = layer_data->instance_dispatch_table.GetDisplayPlaneSupportedDisplaysKHR(physicalDevice, planeIndex,
pDisplayCount, pDisplays);
if ((result == VK_SUCCESS || result == VK_INCOMPLETE) && pDisplays) {
if (!wrap_handles) return result;
for (uint32_t i = 0; i < *pDisplayCount; ++i) {
if (pDisplays[i]) pDisplays[i] = layer_data->MaybeWrapDisplay(pDisplays[i], layer_data);
}
}
return result;
}
VkResult DispatchGetDisplayModePropertiesKHR(VkPhysicalDevice physicalDevice, VkDisplayKHR display, uint32_t *pPropertyCount,
VkDisplayModePropertiesKHR *pProperties) {
auto layer_data = GetLayerDataPtr(get_dispatch_key(physicalDevice), layer_data_map);
if (!wrap_handles)
return layer_data->instance_dispatch_table.GetDisplayModePropertiesKHR(physicalDevice, display, pPropertyCount,
pProperties);
{
display = layer_data->Unwrap(display);
}
VkResult result = layer_data->instance_dispatch_table.GetDisplayModePropertiesKHR(physicalDevice, display, pPropertyCount, pProperties);
if ((result == VK_SUCCESS || result == VK_INCOMPLETE) && pProperties) {
for (uint32_t idx0 = 0; idx0 < *pPropertyCount; ++idx0) {
pProperties[idx0].displayMode = layer_data->WrapNew(pProperties[idx0].displayMode);
}
}
return result;
}
VkResult DispatchGetDisplayModeProperties2KHR(VkPhysicalDevice physicalDevice, VkDisplayKHR display, uint32_t *pPropertyCount,
VkDisplayModeProperties2KHR *pProperties) {
auto layer_data = GetLayerDataPtr(get_dispatch_key(physicalDevice), layer_data_map);
if (!wrap_handles)
return layer_data->instance_dispatch_table.GetDisplayModeProperties2KHR(physicalDevice, display, pPropertyCount,
pProperties);
{
display = layer_data->Unwrap(display);
}
VkResult result =
layer_data->instance_dispatch_table.GetDisplayModeProperties2KHR(physicalDevice, display, pPropertyCount, pProperties);
if ((result == VK_SUCCESS || result == VK_INCOMPLETE) && pProperties) {
for (uint32_t idx0 = 0; idx0 < *pPropertyCount; ++idx0) {
pProperties[idx0].displayModeProperties.displayMode = layer_data->WrapNew(pProperties[idx0].displayModeProperties.displayMode);
}
}
return result;
}
VkResult DispatchDebugMarkerSetObjectTagEXT(VkDevice device, const VkDebugMarkerObjectTagInfoEXT *pTagInfo) {
auto layer_data = GetLayerDataPtr(get_dispatch_key(device), layer_data_map);
if (!wrap_handles) return layer_data->device_dispatch_table.DebugMarkerSetObjectTagEXT(device, pTagInfo);
safe_VkDebugMarkerObjectTagInfoEXT local_tag_info(pTagInfo);
{
auto it = unique_id_mapping.find(reinterpret_cast<uint64_t &>(local_tag_info.object));
if (it != unique_id_mapping.end()) {
local_tag_info.object = it->second;
}
}
VkResult result = layer_data->device_dispatch_table.DebugMarkerSetObjectTagEXT(device,
reinterpret_cast<VkDebugMarkerObjectTagInfoEXT *>(&local_tag_info));
return result;
}
VkResult DispatchDebugMarkerSetObjectNameEXT(VkDevice device, const VkDebugMarkerObjectNameInfoEXT *pNameInfo) {
auto layer_data = GetLayerDataPtr(get_dispatch_key(device), layer_data_map);
if (!wrap_handles) return layer_data->device_dispatch_table.DebugMarkerSetObjectNameEXT(device, pNameInfo);
safe_VkDebugMarkerObjectNameInfoEXT local_name_info(pNameInfo);
{
auto it = unique_id_mapping.find(reinterpret_cast<uint64_t &>(local_name_info.object));
if (it != unique_id_mapping.end()) {
local_name_info.object = it->second;
}
}
VkResult result = layer_data->device_dispatch_table.DebugMarkerSetObjectNameEXT(
device, reinterpret_cast<VkDebugMarkerObjectNameInfoEXT *>(&local_name_info));
return result;
}
// VK_EXT_debug_utils
VkResult DispatchSetDebugUtilsObjectTagEXT(VkDevice device, const VkDebugUtilsObjectTagInfoEXT *pTagInfo) {
auto layer_data = GetLayerDataPtr(get_dispatch_key(device), layer_data_map);
if (!wrap_handles) return layer_data->device_dispatch_table.SetDebugUtilsObjectTagEXT(device, pTagInfo);
safe_VkDebugUtilsObjectTagInfoEXT local_tag_info(pTagInfo);
{
auto it = unique_id_mapping.find(reinterpret_cast<uint64_t &>(local_tag_info.objectHandle));
if (it != unique_id_mapping.end()) {
local_tag_info.objectHandle = it->second;
}
}
VkResult result = layer_data->device_dispatch_table.SetDebugUtilsObjectTagEXT(
device, reinterpret_cast<const VkDebugUtilsObjectTagInfoEXT *>(&local_tag_info));
return result;
}
VkResult DispatchSetDebugUtilsObjectNameEXT(VkDevice device, const VkDebugUtilsObjectNameInfoEXT *pNameInfo) {
auto layer_data = GetLayerDataPtr(get_dispatch_key(device), layer_data_map);
if (!wrap_handles) return layer_data->device_dispatch_table.SetDebugUtilsObjectNameEXT(device, pNameInfo);
safe_VkDebugUtilsObjectNameInfoEXT local_name_info(pNameInfo);
{
auto it = unique_id_mapping.find(reinterpret_cast<uint64_t &>(local_name_info.objectHandle));
if (it != unique_id_mapping.end()) {
local_name_info.objectHandle = it->second;
}
}
VkResult result = layer_data->device_dispatch_table.SetDebugUtilsObjectNameEXT(
device, reinterpret_cast<const VkDebugUtilsObjectNameInfoEXT *>(&local_name_info));
return result;
}
"""
# Separate generated text for source and headers
ALL_SECTIONS = ['source_file', 'header_file']
def __init__(self,
errFile = sys.stderr,
warnFile = sys.stderr,
diagFile = sys.stdout):
OutputGenerator.__init__(self, errFile, warnFile, diagFile)
self.INDENT_SPACES = 4
self.instance_extensions = []
self.device_extensions = []
# Commands which are not autogenerated but still intercepted
self.no_autogen_list = [
'vkCreateInstance',
'vkDestroyInstance',
'vkCreateDevice',
'vkDestroyDevice',
'vkCreateComputePipelines',
'vkCreateGraphicsPipelines',
'vkCreateSwapchainKHR',
'vkCreateSharedSwapchainsKHR',
'vkGetSwapchainImagesKHR',
'vkDestroySwapchainKHR',
'vkQueuePresentKHR',
'vkResetDescriptorPool',
'vkDestroyDescriptorPool',
'vkAllocateDescriptorSets',
'vkFreeDescriptorSets',
'vkCreateDescriptorUpdateTemplate',
'vkCreateDescriptorUpdateTemplateKHR',
'vkDestroyDescriptorUpdateTemplate',
'vkDestroyDescriptorUpdateTemplateKHR',
'vkUpdateDescriptorSetWithTemplate',
'vkUpdateDescriptorSetWithTemplateKHR',
'vkCmdPushDescriptorSetWithTemplateKHR',
'vkDebugMarkerSetObjectTagEXT',
'vkDebugMarkerSetObjectNameEXT',
'vkCreateRenderPass',
'vkCreateRenderPass2KHR',
'vkDestroyRenderPass',
'vkSetDebugUtilsObjectNameEXT',
'vkSetDebugUtilsObjectTagEXT',
'vkGetPhysicalDeviceDisplayPropertiesKHR',
'vkGetPhysicalDeviceDisplayProperties2KHR',
'vkGetPhysicalDeviceDisplayPlanePropertiesKHR',
'vkGetPhysicalDeviceDisplayPlaneProperties2KHR',
'vkGetDisplayPlaneSupportedDisplaysKHR',
'vkGetDisplayModePropertiesKHR',
'vkGetDisplayModeProperties2KHR',
'vkEnumerateInstanceExtensionProperties',
'vkEnumerateInstanceLayerProperties',
'vkEnumerateDeviceExtensionProperties',
'vkEnumerateDeviceLayerProperties',
'vkEnumerateInstanceVersion',
]
self.headerVersion = None
# Internal state - accumulators for different inner block text
self.sections = dict([(section, []) for section in self.ALL_SECTIONS])
self.cmdMembers = []
self.cmd_feature_protect = [] # Save ifdef's for each command
self.cmd_info_data = [] # Save the cmdinfo data for wrapping the handles when processing is complete
self.structMembers = [] # List of StructMemberData records for all Vulkan structs
self.extension_structs = [] # List of all structs or sister-structs containing handles
# A sister-struct may contain no handles but shares a structextends attribute with one that does
self.pnext_extension_structs = [] # List of all structs which can be extended by a pnext chain
self.structTypes = dict() # Map of Vulkan struct typename to required VkStructureType
self.struct_member_dict = dict()
# Named tuples to store struct and command data
self.StructType = namedtuple('StructType', ['name', 'value'])
self.CmdMemberData = namedtuple('CmdMemberData', ['name', 'members'])
self.CmdInfoData = namedtuple('CmdInfoData', ['name', 'cmdinfo'])
self.CmdExtraProtect = namedtuple('CmdExtraProtect', ['name', 'extra_protect'])
self.CommandParam = namedtuple('CommandParam', ['type', 'name', 'ispointer', 'isconst', 'iscount', 'len', 'extstructs', 'cdecl', 'islocal', 'iscreate', 'isdestroy', 'feature_protect'])
self.StructMemberData = namedtuple('StructMemberData', ['name', 'members'])
#
def incIndent(self, indent):
inc = ' ' * self.INDENT_SPACES
if indent:
return indent + inc
return inc
#
def decIndent(self, indent):
if indent and (len(indent) > self.INDENT_SPACES):
return indent[:-self.INDENT_SPACES]
return ''
#
# Override makeProtoName to drop the "vk" prefix
def makeProtoName(self, name, tail):
return self.genOpts.apientry + name[2:] + tail
#
# Check if the parameter passed in is a pointer to an array
def paramIsArray(self, param):
return param.attrib.get('len') is not None
#
def beginFile(self, genOpts):
OutputGenerator.beginFile(self, genOpts)
# Initialize members that require the tree
self.handle_types = GetHandleTypes(self.registry.tree)
self.type_categories = GetTypeCategories(self.registry.tree)
# Output Copyright
self.appendSection('header_file', self.inline_copyright_message)
# Multiple inclusion protection & C++ namespace.
self.header = False
if (self.genOpts.filename and 'h' == self.genOpts.filename[-1]):
self.header = True
self.appendSection('header_file', '#pragma once')
self.appendSection('header_file', '')
self.appendSection('header_file', '#if defined(LAYER_CHASSIS_CAN_WRAP_HANDLES)')
self.appendSection('header_file', 'extern bool wrap_handles;')
self.appendSection('header_file', '#else')
self.appendSection('header_file', 'extern bool wrap_handles;')
self.appendSection('header_file', '#endif')
# Now that the data is all collected and complete, generate and output the wrapping/unwrapping routines
def endFile(self):
self.struct_member_dict = dict(self.structMembers)
# Generate the list of APIs that might need to handle wrapped extension structs
self.GenerateCommandWrapExtensionList()
# Write out wrapping/unwrapping functions
self.WrapCommands()
# Build and write out pNext processing function
extension_proc = self.build_extension_processing_func()
if not self.header:
write(self.inline_copyright_message, file=self.outFile)
self.newline()
write('#include <mutex>', file=self.outFile)
write('#include "chassis.h"', file=self.outFile)
write('#include "layer_chassis_dispatch.h"', file=self.outFile)
write('#include "vk_layer_utils.h"', file=self.outFile)
self.newline()
write('// This intentionally includes a cpp file', file=self.outFile)
write('#include "vk_safe_struct.cpp"', file=self.outFile)
self.newline()
write('// shared_mutex support added in MSVC 2015 update 2', file=self.outFile)
write('#if defined(_MSC_FULL_VER) && _MSC_FULL_VER >= 190023918 && NTDDI_VERSION > NTDDI_WIN10_RS2', file=self.outFile)
write(' #include <shared_mutex>', file=self.outFile)
write(' typedef std::shared_mutex dispatch_lock_t;', file=self.outFile)
write(' typedef std::shared_lock<dispatch_lock_t> read_dispatch_lock_guard_t;', file=self.outFile)
write(' typedef std::unique_lock<dispatch_lock_t> write_dispatch_lock_guard_t;', file=self.outFile)
write('#else', file=self.outFile)
write(' typedef std::mutex dispatch_lock_t;', file=self.outFile)
write(' typedef std::unique_lock<dispatch_lock_t> read_dispatch_lock_guard_t;', file=self.outFile)
write(' typedef std::unique_lock<dispatch_lock_t> write_dispatch_lock_guard_t;', file=self.outFile)
write('#endif', file=self.outFile)
write('dispatch_lock_t dispatch_lock;', file=self.outFile)
self.newline()
write('// Unique Objects pNext extension handling function', file=self.outFile)
write('%s' % extension_proc, file=self.outFile)
self.newline()
write('// Manually written Dispatch routines', file=self.outFile)
write('%s' % self.inline_custom_source_preamble, file=self.outFile)
self.newline()
if (self.sections['source_file']):
write('\n'.join(self.sections['source_file']), end=u'', file=self.outFile)
else:
self.newline()
if (self.sections['header_file']):
write('\n'.join(self.sections['header_file']), end=u'', file=self.outFile)
# Finish processing in superclass
OutputGenerator.endFile(self)
#
def beginFeature(self, interface, emit):
# Start processing in superclass
OutputGenerator.beginFeature(self, interface, emit)
self.headerVersion = None
self.featureExtraProtect = GetFeatureProtect(interface)
if self.featureName != 'VK_VERSION_1_0' and self.featureName != 'VK_VERSION_1_1':
white_list_entry = []
if (self.featureExtraProtect is not None):
white_list_entry += [ '#ifdef %s' % self.featureExtraProtect ]
white_list_entry += [ '"%s"' % self.featureName ]
if (self.featureExtraProtect is not None):
white_list_entry += [ '#endif' ]
featureType = interface.get('type')
if featureType == 'instance':
self.instance_extensions += white_list_entry
elif featureType == 'device':
self.device_extensions += white_list_entry
#
def endFeature(self):
# Finish processing in superclass
OutputGenerator.endFeature(self)
#
def genType(self, typeinfo, name, alias):
OutputGenerator.genType(self, typeinfo, name, alias)
typeElem = typeinfo.elem
# If the type is a struct type, traverse the imbedded <member> tags generating a structure.
# Otherwise, emit the tag text.
category = typeElem.get('category')
if (category == 'struct' or category == 'union'):
self.genStruct(typeinfo, name, alias)
#
# Append a definition to the specified section
def appendSection(self, section, text):
# self.sections[section].append('SECTION: ' + section + '\n')
self.sections[section].append(text)
#
# Check if the parameter passed in is a pointer
def paramIsPointer(self, param):
ispointer = False
for elem in param:
if elem.tag == 'type' and elem.tail is not None and '*' in elem.tail:
ispointer = True
return ispointer
#
# Retrieve the type and name for a parameter
def getTypeNameTuple(self, param):
type = ''
name = ''
for elem in param:
if elem.tag == 'type':
type = noneStr(elem.text)
elif elem.tag == 'name':
name = noneStr(elem.text)
return (type, name)
#
# Retrieve the value of the len tag
def getLen(self, param):
result = None
len = param.attrib.get('len')
if len and len != 'null-terminated':
# For string arrays, 'len' can look like 'count,null-terminated', indicating that we
# have a null terminated array of strings. We strip the null-terminated from the
# 'len' field and only return the parameter specifying the string count
if 'null-terminated' in len:
result = len.split(',')[0]
else:
result = len
# Spec has now notation for len attributes, using :: instead of platform specific pointer symbol
result = str(result).replace('::', '->')
return result
#
# Generate a VkStructureType based on a structure typename
def genVkStructureType(self, typename):
# Add underscore between lowercase then uppercase
value = re.sub('([a-z0-9])([A-Z])', r'\1_\2', typename)
# Change to uppercase
value = value.upper()
# Add STRUCTURE_TYPE_
return re.sub('VK_', 'VK_STRUCTURE_TYPE_', value)
#
# Struct parameter check generation.
# This is a special case of the <type> tag where the contents are interpreted as a set of
# <member> tags instead of freeform C type declarations. The <member> tags are just like
# <param> tags - they are a declaration of a struct or union member. Only simple member
# declarations are supported (no nested structs etc.)
def genStruct(self, typeinfo, typeName, alias):
OutputGenerator.genStruct(self, typeinfo, typeName, alias)
members = typeinfo.elem.findall('.//member')
# Iterate over members once to get length parameters for arrays
lens = set()
for member in members:
len = self.getLen(member)
if len:
lens.add(len)
# Generate member info
membersInfo = []
for member in members:
# Get the member's type and name
info = self.getTypeNameTuple(member)
type = info[0]
name = info[1]
cdecl = self.makeCParamDecl(member, 0)
# Process VkStructureType
if type == 'VkStructureType':
# Extract the required struct type value from the comments
# embedded in the original text defining the 'typeinfo' element
rawXml = etree.tostring(typeinfo.elem).decode('ascii')
result = re.search(r'VK_STRUCTURE_TYPE_\w+', rawXml)
if result:
value = result.group(0)
else:
value = self.genVkStructureType(typeName)
# Store the required type value
self.structTypes[typeName] = self.StructType(name=name, value=value)
# Store pointer/array/string info
extstructs = self.registry.validextensionstructs[typeName] if name == 'pNext' else None
membersInfo.append(self.CommandParam(type=type,
name=name,
ispointer=self.paramIsPointer(member),
isconst=True if 'const' in cdecl else False,
iscount=True if name in lens else False,
len=self.getLen(member),
extstructs=extstructs,
cdecl=cdecl,
islocal=False,
iscreate=False,
isdestroy=False,
feature_protect=self.featureExtraProtect))
self.structMembers.append(self.StructMemberData(name=typeName, members=membersInfo))
#
# Determine if a struct has an NDO as a member or an embedded member
def struct_contains_ndo(self, struct_item):
struct_member_dict = dict(self.structMembers)
struct_members = struct_member_dict[struct_item]
for member in struct_members:
if self.handle_types.IsNonDispatchable(member.type):
return True
elif member.type in struct_member_dict:
if self.struct_contains_ndo(member.type) == True:
return True
return False
#
# Return list of struct members which contain, or which sub-structures contain
# an NDO in a given list of parameters or members
def getParmeterStructsWithNdos(self, item_list):
struct_list = set()
for item in item_list:
paramtype = item.find('type')
typecategory = self.type_categories[paramtype.text]
if typecategory == 'struct':
if self.struct_contains_ndo(paramtype.text) == True:
struct_list.add(item)
return struct_list
#
# Return list of non-dispatchable objects from a given list of parameters or members
def getNdosInParameterList(self, item_list, create_func):
ndo_list = set()
if create_func == True:
member_list = item_list[0:-1]
else:
member_list = item_list
for item in member_list:
if self.handle_types.IsNonDispatchable(paramtype.text):
ndo_list.add(item)
return ndo_list
#
# Construct list of extension structs containing handles, or extension structs that share a structextends attribute
# WITH an extension struct containing handles. All extension structs in any pNext chain will have to be copied.
# TODO: make this recursive -- structs buried three or more levels deep are not searched for extensions
def GenerateCommandWrapExtensionList(self):
for struct in self.structMembers:
if (len(struct.members) > 1) and struct.members[1].extstructs is not None:
found = False;
for item in struct.members[1].extstructs:
if item != '' and item not in self.pnext_extension_structs:
self.pnext_extension_structs.append(item)
if item != '' and self.struct_contains_ndo(item) == True:
found = True
if found == True:
for item in struct.members[1].extstructs:
if item != '' and item not in self.extension_structs:
self.extension_structs.append(item)
#
# Returns True if a struct may have a pNext chain containing an NDO
def StructWithExtensions(self, struct_type):
if struct_type in self.struct_member_dict:
param_info = self.struct_member_dict[struct_type]
if (len(param_info) > 1) and param_info[1].extstructs is not None:
for item in param_info[1].extstructs:
if item in self.extension_structs:
return True
return False
#
# Generate pNext handling function
def build_extension_processing_func(self):
# Construct helper functions to build and free pNext extension chains
pnext_proc = ''
pnext_proc += 'void WrapPnextChainHandles(ValidationObject *layer_data, const void *pNext) {\n'
pnext_proc += ' void *cur_pnext = const_cast<void *>(pNext);\n'
pnext_proc += ' while (cur_pnext != NULL) {\n'
pnext_proc += ' VkBaseOutStructure *header = reinterpret_cast<VkBaseOutStructure *>(cur_pnext);\n\n'
pnext_proc += ' switch (header->sType) {\n'
for item in self.pnext_extension_structs:
struct_info = self.struct_member_dict[item]
indent = ' '
(tmp_decl, tmp_pre, tmp_post) = self.uniquify_members(struct_info, indent, 'safe_struct->', 0, False, False, False, False)
# Only process extension structs containing handles
if not tmp_pre:
continue
if struct_info[0].feature_protect is not None:
pnext_proc += '#ifdef %s \n' % struct_info[0].feature_protect
pnext_proc += ' case %s: {\n' % self.structTypes[item].value
pnext_proc += ' safe_%s *safe_struct = reinterpret_cast<safe_%s *>(cur_pnext);\n' % (item, item)
# Generate code to unwrap the handles
pnext_proc += tmp_pre
pnext_proc += ' } break;\n'
if struct_info[0].feature_protect is not None:
pnext_proc += '#endif // %s \n' % struct_info[0].feature_protect
pnext_proc += '\n'
pnext_proc += ' default:\n'
pnext_proc += ' break;\n'
pnext_proc += ' }\n\n'
pnext_proc += ' // Process the next structure in the chain\n'
pnext_proc += ' cur_pnext = header->pNext;\n'
pnext_proc += ' }\n'
pnext_proc += '}\n'
return pnext_proc
#
# Generate source for creating a non-dispatchable object
def generate_create_ndo_code(self, indent, proto, params, cmd_info):
create_ndo_code = ''
handle_type = params[-1].find('type')
if self.handle_types.IsNonDispatchable(handle_type.text):
# Check for special case where multiple handles are returned
ndo_array = False
if cmd_info[-1].len is not None:
ndo_array = True;
handle_name = params[-1].find('name')
create_ndo_code += '%sif (VK_SUCCESS == result) {\n' % (indent)
indent = self.incIndent(indent)
ndo_dest = '*%s' % handle_name.text
if ndo_array == True:
create_ndo_code += '%sfor (uint32_t index0 = 0; index0 < %s; index0++) {\n' % (indent, cmd_info[-1].len)
indent = self.incIndent(indent)
ndo_dest = '%s[index0]' % cmd_info[-1].name
create_ndo_code += '%s%s = layer_data->WrapNew(%s);\n' % (indent, ndo_dest, ndo_dest)
if ndo_array == True:
indent = self.decIndent(indent)
create_ndo_code += '%s}\n' % indent
indent = self.decIndent(indent)
create_ndo_code += '%s}\n' % (indent)
return create_ndo_code
#
# Generate source for destroying a non-dispatchable object
def generate_destroy_ndo_code(self, indent, proto, cmd_info):
destroy_ndo_code = ''
ndo_array = False
if True in [destroy_txt in proto.text for destroy_txt in ['Destroy', 'Free']]:
# Check for special case where multiple handles are returned
if cmd_info[-1].len is not None:
ndo_array = True;
param = -1
else:
param = -2
if self.handle_types.IsNonDispatchable(cmd_info[param].type):
if ndo_array == True:
# This API is freeing an array of handles. Remove them from the unique_id map.
destroy_ndo_code += '%sif ((VK_SUCCESS == result) && (%s)) {\n' % (indent, cmd_info[param].name)
indent = self.incIndent(indent)
destroy_ndo_code += '%sfor (uint32_t index0 = 0; index0 < %s; index0++) {\n' % (indent, cmd_info[param].len)
indent = self.incIndent(indent)
destroy_ndo_code += '%s%s handle = %s[index0];\n' % (indent, cmd_info[param].type, cmd_info[param].name)
destroy_ndo_code += '%suint64_t unique_id = reinterpret_cast<uint64_t &>(handle);\n' % (indent)
destroy_ndo_code += '%sunique_id_mapping.erase(unique_id);\n' % (indent)
indent = self.decIndent(indent);
destroy_ndo_code += '%s}\n' % indent
indent = self.decIndent(indent);
destroy_ndo_code += '%s}\n' % indent
else:
# Remove a single handle from the map
destroy_ndo_code += '%suint64_t %s_id = reinterpret_cast<uint64_t &>(%s);\n' % (indent, cmd_info[param].name, cmd_info[param].name)
destroy_ndo_code += '%sauto iter = unique_id_mapping.pop(%s_id);\n' % (indent, cmd_info[param].name)
destroy_ndo_code += '%sif (iter != unique_id_mapping.end()) {\n' % (indent)
indent = self.incIndent(indent)
destroy_ndo_code += '%s%s = (%s)iter->second;\n' % (indent, cmd_info[param].name, cmd_info[param].type)
indent = self.decIndent(indent);
destroy_ndo_code += '%s} else {\n' % (indent)
indent = self.incIndent(indent)
destroy_ndo_code += '%s%s = (%s)0;\n' % (indent, cmd_info[param].name, cmd_info[param].type)
indent = self.decIndent(indent);
destroy_ndo_code += '%s}\n' % (indent)
return ndo_array, destroy_ndo_code
#
# Clean up local declarations
def cleanUpLocalDeclarations(self, indent, prefix, name, len, index):
cleanup = '%sif (local_%s%s) {\n' % (indent, prefix, name)
if len is not None:
cleanup += '%s delete[] local_%s%s;\n' % (indent, prefix, name)
else:
cleanup += '%s delete local_%s%s;\n' % (indent, prefix, name)
cleanup += "%s}\n" % (indent)
return cleanup
#
# Output UO code for a single NDO (ndo_count is NULL) or a counted list of NDOs
def outputNDOs(self, ndo_type, ndo_name, ndo_count, prefix, index, indent, destroy_func, destroy_array, top_level):
decl_code = ''
pre_call_code = ''
post_call_code = ''
if ndo_count is not None:
if top_level == True:
decl_code += '%s%s *local_%s%s = NULL;\n' % (indent, ndo_type, prefix, ndo_name)
pre_call_code += '%s if (%s%s) {\n' % (indent, prefix, ndo_name)
indent = self.incIndent(indent)
if top_level == True:
pre_call_code += '%s local_%s%s = new %s[%s];\n' % (indent, prefix, ndo_name, ndo_type, ndo_count)
pre_call_code += '%s for (uint32_t %s = 0; %s < %s; ++%s) {\n' % (indent, index, index, ndo_count, index)
indent = self.incIndent(indent)
pre_call_code += '%s local_%s%s[%s] = layer_data->Unwrap(%s[%s]);\n' % (indent, prefix, ndo_name, index, ndo_name, index)
else:
pre_call_code += '%s for (uint32_t %s = 0; %s < %s; ++%s) {\n' % (indent, index, index, ndo_count, index)
indent = self.incIndent(indent)
pre_call_code += '%s %s%s[%s] = layer_data->Unwrap(%s%s[%s]);\n' % (indent, prefix, ndo_name, index, prefix, ndo_name, index)
indent = self.decIndent(indent)
pre_call_code += '%s }\n' % indent
indent = self.decIndent(indent)
pre_call_code += '%s }\n' % indent
if top_level == True:
post_call_code += '%sif (local_%s%s)\n' % (indent, prefix, ndo_name)
indent = self.incIndent(indent)
post_call_code += '%sdelete[] local_%s;\n' % (indent, ndo_name)
else:
if top_level == True:
if (destroy_func == False) or (destroy_array == True):
pre_call_code += '%s %s = layer_data->Unwrap(%s);\n' % (indent, ndo_name, ndo_name)
else:
# Make temp copy of this var with the 'local' removed. It may be better to not pass in 'local_'
# as part of the string and explicitly print it
fix = str(prefix).strip('local_');
pre_call_code += '%s if (%s%s) {\n' % (indent, fix, ndo_name)
indent = self.incIndent(indent)
pre_call_code += '%s %s%s = layer_data->Unwrap(%s%s);\n' % (indent, prefix, ndo_name, fix, ndo_name)
indent = self.decIndent(indent)
pre_call_code += '%s }\n' % indent
return decl_code, pre_call_code, post_call_code
#
# first_level_param indicates if elements are passed directly into the function else they're below a ptr/struct
# create_func means that this is API creates or allocates NDOs
# destroy_func indicates that this API destroys or frees NDOs
# destroy_array means that the destroy_func operated on an array of NDOs
def uniquify_members(self, members, indent, prefix, array_index, create_func, destroy_func, destroy_array, first_level_param):
decls = ''
pre_code = ''
post_code = ''
index = 'index%s' % str(array_index)
array_index += 1
# Process any NDOs in this structure and recurse for any sub-structs in this struct
for member in members:
process_pnext = self.StructWithExtensions(member.type)
# Handle NDOs
if self.handle_types.IsNonDispatchable(member.type):
count_name = member.len
if (count_name is not None):
if first_level_param == False:
count_name = '%s%s' % (prefix, member.len)
if (first_level_param == False) or (create_func == False) or (not '*' in member.cdecl):
(tmp_decl, tmp_pre, tmp_post) = self.outputNDOs(member.type, member.name, count_name, prefix, index, indent, destroy_func, destroy_array, first_level_param)
decls += tmp_decl
pre_code += tmp_pre
post_code += tmp_post
# Handle Structs that contain NDOs at some level
elif member.type in self.struct_member_dict:
# Structs at first level will have an NDO, OR, we need a safe_struct for the pnext chain
if self.struct_contains_ndo(member.type) == True or process_pnext:
struct_info = self.struct_member_dict[member.type]
# TODO (jbolz): Can this use paramIsPointer?
ispointer = '*' in member.cdecl;
# Struct Array
if member.len is not None:
# Update struct prefix
if first_level_param == True:
new_prefix = 'local_%s' % member.name
# Declare safe_VarType for struct
decls += '%ssafe_%s *%s = NULL;\n' % (indent, member.type, new_prefix)
else:
new_prefix = '%s%s' % (prefix, member.name)
pre_code += '%s if (%s%s) {\n' % (indent, prefix, member.name)
indent = self.incIndent(indent)
if first_level_param == True:
pre_code += '%s %s = new safe_%s[%s];\n' % (indent, new_prefix, member.type, member.len)
pre_code += '%s for (uint32_t %s = 0; %s < %s%s; ++%s) {\n' % (indent, index, index, prefix, member.len, index)
indent = self.incIndent(indent)
if first_level_param == True:
pre_code += '%s %s[%s].initialize(&%s[%s]);\n' % (indent, new_prefix, index, member.name, index)
if process_pnext:
pre_code += '%s WrapPnextChainHandles(layer_data, %s[%s].pNext);\n' % (indent, new_prefix, index)
local_prefix = '%s[%s].' % (new_prefix, index)
# Process sub-structs in this struct
(tmp_decl, tmp_pre, tmp_post) = self.uniquify_members(struct_info, indent, local_prefix, array_index, create_func, destroy_func, destroy_array, False)
decls += tmp_decl
pre_code += tmp_pre
post_code += tmp_post
indent = self.decIndent(indent)
pre_code += '%s }\n' % indent
indent = self.decIndent(indent)
pre_code += '%s }\n' % indent
if first_level_param == True:
post_code += self.cleanUpLocalDeclarations(indent, prefix, member.name, member.len, index)
# Single Struct
elif ispointer:
# Update struct prefix
if first_level_param == True:
new_prefix = 'local_%s->' % member.name
decls += '%ssafe_%s *local_%s%s = NULL;\n' % (indent, member.type, prefix, member.name)
else:
new_prefix = '%s%s->' % (prefix, member.name)
# Declare safe_VarType for struct
pre_code += '%s if (%s%s) {\n' % (indent, prefix, member.name)
indent = self.incIndent(indent)
if first_level_param == True:
pre_code += '%s local_%s%s = new safe_%s(%s);\n' % (indent, prefix, member.name, member.type, member.name)
# Process sub-structs in this struct
(tmp_decl, tmp_pre, tmp_post) = self.uniquify_members(struct_info, indent, new_prefix, array_index, create_func, destroy_func, destroy_array, False)
decls += tmp_decl
pre_code += tmp_pre
post_code += tmp_post
if process_pnext:
pre_code += '%s WrapPnextChainHandles(layer_data, local_%s%s->pNext);\n' % (indent, prefix, member.name)
indent = self.decIndent(indent)
pre_code += '%s }\n' % indent
if first_level_param == True:
post_code += self.cleanUpLocalDeclarations(indent, prefix, member.name, member.len, index)
else:
# Update struct prefix
if first_level_param == True:
sys.exit(1)
else:
new_prefix = '%s%s.' % (prefix, member.name)
# Process sub-structs in this struct
(tmp_decl, tmp_pre, tmp_post) = self.uniquify_members(struct_info, indent, new_prefix, array_index, create_func, destroy_func, destroy_array, False)
decls += tmp_decl
pre_code += tmp_pre
post_code += tmp_post
if process_pnext:
pre_code += '%s WrapPnextChainHandles(layer_data, local_%s%s.pNext);\n' % (indent, prefix, member.name)
return decls, pre_code, post_code
#
# For a particular API, generate the non-dispatchable-object wrapping/unwrapping code
def generate_wrapping_code(self, cmd):
indent = ' '
proto = cmd.find('proto/name')
params = cmd.findall('param')
if proto.text is not None:
cmd_member_dict = dict(self.cmdMembers)
cmd_info = cmd_member_dict[proto.text]
# Handle ndo create/allocate operations
if cmd_info[0].iscreate:
create_ndo_code = self.generate_create_ndo_code(indent, proto, params, cmd_info)
else:
create_ndo_code = ''
# Handle ndo destroy/free operations
if cmd_info[0].isdestroy:
(destroy_array, destroy_ndo_code) = self.generate_destroy_ndo_code(indent, proto, cmd_info)
else:
destroy_array = False
destroy_ndo_code = ''
paramdecl = ''
param_pre_code = ''
param_post_code = ''
create_func = True if create_ndo_code else False
destroy_func = True if destroy_ndo_code else False
(paramdecl, param_pre_code, param_post_code) = self.uniquify_members(cmd_info, indent, '', 0, create_func, destroy_func, destroy_array, True)
param_post_code += create_ndo_code
if destroy_ndo_code:
if destroy_array == True:
param_post_code += destroy_ndo_code
else:
param_pre_code += destroy_ndo_code
if param_pre_code:
if (not destroy_func) or (destroy_array):
param_pre_code = '%s{\n%s%s}\n' % (' ', param_pre_code, indent)
return paramdecl, param_pre_code, param_post_code
#
# Capture command parameter info needed to wrap NDOs as well as handling some boilerplate code
def genCmd(self, cmdinfo, cmdname, alias):
# Add struct-member type information to command parameter information
OutputGenerator.genCmd(self, cmdinfo, cmdname, alias)
members = cmdinfo.elem.findall('.//param')
# Iterate over members once to get length parameters for arrays
lens = set()
for member in members:
len = self.getLen(member)
if len:
lens.add(len)
struct_member_dict = dict(self.structMembers)
# Generate member info
membersInfo = []
for member in members:
# Get type and name of member
info = self.getTypeNameTuple(member)
type = info[0]
name = info[1]
cdecl = self.makeCParamDecl(member, 0)
# Check for parameter name in lens set
iscount = True if name in lens else False
len = self.getLen(member)
isconst = True if 'const' in cdecl else False
ispointer = self.paramIsPointer(member)
# Mark param as local if it is an array of NDOs
islocal = False;
if self.handle_types.IsNonDispatchable(type):
if (len is not None) and (isconst == True):
islocal = True
# Or if it's a struct that contains an NDO
elif type in struct_member_dict:
if self.struct_contains_ndo(type) == True:
islocal = True
isdestroy = True if True in [destroy_txt in cmdname for destroy_txt in ['Destroy', 'Free']] else False
iscreate = True if True in [create_txt in cmdname for create_txt in ['Create', 'Allocate', 'GetRandROutputDisplayEXT', 'RegisterDeviceEvent', 'RegisterDisplayEvent']] else False
extstructs = self.registry.validextensionstructs[type] if name == 'pNext' else None
membersInfo.append(self.CommandParam(type=type,
name=name,
ispointer=ispointer,
isconst=isconst,
iscount=iscount,
len=len,
extstructs=extstructs,
cdecl=cdecl,
islocal=islocal,
iscreate=iscreate,
isdestroy=isdestroy,
feature_protect=self.featureExtraProtect))
self.cmdMembers.append(self.CmdMemberData(name=cmdname, members=membersInfo))
self.cmd_info_data.append(self.CmdInfoData(name=cmdname, cmdinfo=cmdinfo))
self.cmd_feature_protect.append(self.CmdExtraProtect(name=cmdname, extra_protect=self.featureExtraProtect))
#
# Create prototype for dispatch header file
def GenDispatchFunctionPrototype(self, cmdinfo, ifdef_text):
decls = self.makeCDecls(cmdinfo.elem)
func_sig = decls[0][:-1]
func_sig = func_sig.replace("VKAPI_ATTR ", "")
func_sig = func_sig.replace("VKAPI_CALL ", "Dispatch")
func_sig += ';'
dispatch_prototype = ''
if ifdef_text is not None:
dispatch_prototype = '#ifdef %s\n' % ifdef_text
dispatch_prototype += func_sig
if ifdef_text is not None:
dispatch_prototype += '\n#endif // %s' % ifdef_text
return dispatch_prototype
#
# Create code to wrap NDOs as well as handling some boilerplate code
def WrapCommands(self):
cmd_member_dict = dict(self.cmdMembers)
cmd_info_dict = dict(self.cmd_info_data)
cmd_protect_dict = dict(self.cmd_feature_protect)
for api_call in self.cmdMembers:
cmdname = api_call.name
cmdinfo = cmd_info_dict[api_call.name]
feature_extra_protect = cmd_protect_dict[api_call.name]
# Add fuction prototype to header data
self.appendSection('header_file', self.GenDispatchFunctionPrototype(cmdinfo, feature_extra_protect))
if cmdname in self.no_autogen_list:
decls = self.makeCDecls(cmdinfo.elem)
self.appendSection('source_file', '')
self.appendSection('source_file', '// Skip %s dispatch, manually generated' % cmdname)
continue
# Generate NDO wrapping/unwrapping code for all parameters
(api_decls, api_pre, api_post) = self.generate_wrapping_code(cmdinfo.elem)
# If API doesn't contain NDO's, we still need to make a down-chain call
down_chain_call_only = False
if not api_decls and not api_pre and not api_post:
down_chain_call_only = True
if (feature_extra_protect is not None):
self.appendSection('source_file', '')
self.appendSection('source_file', '#ifdef ' + feature_extra_protect)
decls = self.makeCDecls(cmdinfo.elem)
func_sig = decls[0][:-1]
func_sig = func_sig.replace("VKAPI_ATTR ", "")
func_sig = func_sig.replace("VKAPI_CALL ", "Dispatch")
self.appendSection('source_file', '')
self.appendSection('source_file', func_sig)
self.appendSection('source_file', '{')
# Setup common to call wrappers, first parameter is always dispatchable
dispatchable_type = cmdinfo.elem.find('param/type').text
dispatchable_name = cmdinfo.elem.find('param/name').text
# Gather the parameter items
params = cmdinfo.elem.findall('param/name')
# Pull out the text for each of the parameters, separate them by commas in a list
paramstext = ', '.join([str(param.text) for param in params])
wrapped_paramstext = paramstext
# If any of these paramters has been replaced by a local var, fix up the list
params = cmd_member_dict[cmdname]
for param in params:
if param.islocal == True or self.StructWithExtensions(param.type):
if param.ispointer == True:
wrapped_paramstext = wrapped_paramstext.replace(param.name, '(%s %s*)local_%s' % ('const', param.type, param.name))
else:
wrapped_paramstext = wrapped_paramstext.replace(param.name, '(%s %s)local_%s' % ('const', param.type, param.name))
# First, add check and down-chain call. Use correct dispatch table
dispatch_table_type = "device_dispatch_table"
if dispatchable_type in ["VkPhysicalDevice", "VkInstance"]:
dispatch_table_type = "instance_dispatch_table"
api_func = cmdinfo.elem.attrib.get('name').replace('vk','layer_data->%s.',1) % dispatch_table_type
# Call to get the layer_data pointer
self.appendSection('source_file', ' auto layer_data = GetLayerDataPtr(get_dispatch_key(%s), layer_data_map);' % dispatchable_name)
# Put all this together for the final down-chain call
if not down_chain_call_only:
unwrapped_dispatch_call = api_func + '(' + paramstext + ')'
self.appendSection('source_file', ' if (!wrap_handles) return %s;' % unwrapped_dispatch_call)
# Handle return values, if any
resulttype = cmdinfo.elem.find('proto/type')
if (resulttype is not None and resulttype.text == 'void'):
resulttype = None
if (resulttype is not None):
assignresult = resulttype.text + ' result = '
else:
assignresult = ''
# Pre-pend declarations and pre-api-call codegen
if api_decls:
self.appendSection('source_file', "\n".join(str(api_decls).rstrip().split("\n")))
if api_pre:
self.appendSection('source_file', "\n".join(str(api_pre).rstrip().split("\n")))
# Generate the wrapped dispatch call
self.appendSection('source_file', ' ' + assignresult + api_func + '(' + wrapped_paramstext + ');')
# And add the post-API-call codegen
self.appendSection('source_file', "\n".join(str(api_post).rstrip().split("\n")))
# Handle the return result variable, if any
if (resulttype is not None):
self.appendSection('source_file', ' return result;')
self.appendSection('source_file', '}')
if (feature_extra_protect is not None):
self.appendSection('source_file', '#endif // '+ feature_extra_protect)