You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2149 lines
80 KiB
2149 lines
80 KiB
/*
|
|
* Copyright (c) 2019 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "modules/pacing/pacing_controller.h"
|
|
|
|
#include <algorithm>
|
|
#include <list>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include "api/units/data_rate.h"
|
|
#include "modules/pacing/packet_router.h"
|
|
#include "system_wrappers/include/clock.h"
|
|
#include "test/explicit_key_value_config.h"
|
|
#include "test/field_trial.h"
|
|
#include "test/gmock.h"
|
|
#include "test/gtest.h"
|
|
|
|
using ::testing::_;
|
|
using ::testing::Field;
|
|
using ::testing::Pointee;
|
|
using ::testing::Property;
|
|
using ::testing::Return;
|
|
|
|
namespace webrtc {
|
|
namespace test {
|
|
namespace {
|
|
constexpr DataRate kFirstClusterRate = DataRate::KilobitsPerSec(900);
|
|
constexpr DataRate kSecondClusterRate = DataRate::KilobitsPerSec(1800);
|
|
|
|
// The error stems from truncating the time interval of probe packets to integer
|
|
// values. This results in probing slightly higher than the target bitrate.
|
|
// For 1.8 Mbps, this comes to be about 120 kbps with 1200 probe packets.
|
|
constexpr DataRate kProbingErrorMargin = DataRate::KilobitsPerSec(150);
|
|
|
|
const float kPaceMultiplier = 2.5f;
|
|
|
|
constexpr uint32_t kAudioSsrc = 12345;
|
|
constexpr uint32_t kVideoSsrc = 234565;
|
|
constexpr uint32_t kVideoRtxSsrc = 34567;
|
|
constexpr uint32_t kFlexFecSsrc = 45678;
|
|
|
|
constexpr DataRate kTargetRate = DataRate::KilobitsPerSec(800);
|
|
|
|
std::unique_ptr<RtpPacketToSend> BuildPacket(RtpPacketMediaType type,
|
|
uint32_t ssrc,
|
|
uint16_t sequence_number,
|
|
int64_t capture_time_ms,
|
|
size_t size) {
|
|
auto packet = std::make_unique<RtpPacketToSend>(nullptr);
|
|
packet->set_packet_type(type);
|
|
packet->SetSsrc(ssrc);
|
|
packet->SetSequenceNumber(sequence_number);
|
|
packet->set_capture_time_ms(capture_time_ms);
|
|
packet->SetPayloadSize(size);
|
|
return packet;
|
|
}
|
|
} // namespace
|
|
|
|
// Mock callback proxy, where both new and old api redirects to common mock
|
|
// methods that focus on core aspects.
|
|
class MockPacingControllerCallback : public PacingController::PacketSender {
|
|
public:
|
|
void SendPacket(std::unique_ptr<RtpPacketToSend> packet,
|
|
const PacedPacketInfo& cluster_info) override {
|
|
SendPacket(packet->Ssrc(), packet->SequenceNumber(),
|
|
packet->capture_time_ms(),
|
|
packet->packet_type() == RtpPacketMediaType::kRetransmission,
|
|
packet->packet_type() == RtpPacketMediaType::kPadding);
|
|
}
|
|
|
|
std::vector<std::unique_ptr<RtpPacketToSend>> GeneratePadding(
|
|
DataSize target_size) override {
|
|
std::vector<std::unique_ptr<RtpPacketToSend>> ret;
|
|
size_t padding_size = SendPadding(target_size.bytes());
|
|
if (padding_size > 0) {
|
|
auto packet = std::make_unique<RtpPacketToSend>(nullptr);
|
|
packet->SetPayloadSize(padding_size);
|
|
packet->set_packet_type(RtpPacketMediaType::kPadding);
|
|
ret.emplace_back(std::move(packet));
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
MOCK_METHOD(void,
|
|
SendPacket,
|
|
(uint32_t ssrc,
|
|
uint16_t sequence_number,
|
|
int64_t capture_timestamp,
|
|
bool retransmission,
|
|
bool padding));
|
|
MOCK_METHOD(std::vector<std::unique_ptr<RtpPacketToSend>>,
|
|
FetchFec,
|
|
(),
|
|
(override));
|
|
MOCK_METHOD(size_t, SendPadding, (size_t target_size));
|
|
};
|
|
|
|
// Mock callback implementing the raw api.
|
|
class MockPacketSender : public PacingController::PacketSender {
|
|
public:
|
|
MOCK_METHOD(void,
|
|
SendPacket,
|
|
(std::unique_ptr<RtpPacketToSend> packet,
|
|
const PacedPacketInfo& cluster_info),
|
|
(override));
|
|
MOCK_METHOD(std::vector<std::unique_ptr<RtpPacketToSend>>,
|
|
FetchFec,
|
|
(),
|
|
(override));
|
|
|
|
MOCK_METHOD(std::vector<std::unique_ptr<RtpPacketToSend>>,
|
|
GeneratePadding,
|
|
(DataSize target_size),
|
|
(override));
|
|
};
|
|
|
|
class PacingControllerPadding : public PacingController::PacketSender {
|
|
public:
|
|
static const size_t kPaddingPacketSize = 224;
|
|
|
|
PacingControllerPadding() : padding_sent_(0), total_bytes_sent_(0) {}
|
|
|
|
void SendPacket(std::unique_ptr<RtpPacketToSend> packet,
|
|
const PacedPacketInfo& pacing_info) override {
|
|
total_bytes_sent_ += packet->payload_size();
|
|
}
|
|
|
|
std::vector<std::unique_ptr<RtpPacketToSend>> FetchFec() override {
|
|
return {};
|
|
}
|
|
|
|
std::vector<std::unique_ptr<RtpPacketToSend>> GeneratePadding(
|
|
DataSize target_size) override {
|
|
size_t num_packets =
|
|
(target_size.bytes() + kPaddingPacketSize - 1) / kPaddingPacketSize;
|
|
std::vector<std::unique_ptr<RtpPacketToSend>> packets;
|
|
for (size_t i = 0; i < num_packets; ++i) {
|
|
packets.emplace_back(std::make_unique<RtpPacketToSend>(nullptr));
|
|
packets.back()->SetPadding(kPaddingPacketSize);
|
|
packets.back()->set_packet_type(RtpPacketMediaType::kPadding);
|
|
padding_sent_ += kPaddingPacketSize;
|
|
}
|
|
return packets;
|
|
}
|
|
|
|
size_t padding_sent() { return padding_sent_; }
|
|
size_t total_bytes_sent() { return total_bytes_sent_; }
|
|
|
|
private:
|
|
size_t padding_sent_;
|
|
size_t total_bytes_sent_;
|
|
};
|
|
|
|
class PacingControllerProbing : public PacingController::PacketSender {
|
|
public:
|
|
PacingControllerProbing() : packets_sent_(0), padding_sent_(0) {}
|
|
|
|
void SendPacket(std::unique_ptr<RtpPacketToSend> packet,
|
|
const PacedPacketInfo& pacing_info) override {
|
|
if (packet->packet_type() != RtpPacketMediaType::kPadding) {
|
|
++packets_sent_;
|
|
}
|
|
last_pacing_info_ = pacing_info;
|
|
}
|
|
|
|
std::vector<std::unique_ptr<RtpPacketToSend>> FetchFec() override {
|
|
return {};
|
|
}
|
|
|
|
std::vector<std::unique_ptr<RtpPacketToSend>> GeneratePadding(
|
|
DataSize target_size) override {
|
|
// From RTPSender:
|
|
// Max in the RFC 3550 is 255 bytes, we limit it to be modulus 32 for SRTP.
|
|
const DataSize kMaxPadding = DataSize::Bytes(224);
|
|
|
|
std::vector<std::unique_ptr<RtpPacketToSend>> packets;
|
|
while (target_size > DataSize::Zero()) {
|
|
DataSize padding_size = std::min(kMaxPadding, target_size);
|
|
packets.emplace_back(std::make_unique<RtpPacketToSend>(nullptr));
|
|
packets.back()->SetPadding(padding_size.bytes());
|
|
packets.back()->set_packet_type(RtpPacketMediaType::kPadding);
|
|
padding_sent_ += padding_size.bytes();
|
|
target_size -= padding_size;
|
|
}
|
|
return packets;
|
|
}
|
|
|
|
int packets_sent() const { return packets_sent_; }
|
|
int padding_sent() const { return padding_sent_; }
|
|
int total_packets_sent() const { return packets_sent_ + padding_sent_; }
|
|
PacedPacketInfo last_pacing_info() const { return last_pacing_info_; }
|
|
|
|
private:
|
|
int packets_sent_;
|
|
int padding_sent_;
|
|
PacedPacketInfo last_pacing_info_;
|
|
};
|
|
|
|
class PacingControllerTest
|
|
: public ::testing::TestWithParam<PacingController::ProcessMode> {
|
|
protected:
|
|
PacingControllerTest() : clock_(123456) {}
|
|
|
|
void SetUp() override {
|
|
srand(0);
|
|
// Need to initialize PacingController after we initialize clock.
|
|
pacer_ = std::make_unique<PacingController>(&clock_, &callback_, nullptr,
|
|
nullptr, GetParam());
|
|
Init();
|
|
}
|
|
|
|
bool PeriodicProcess() const {
|
|
return GetParam() == PacingController::ProcessMode::kPeriodic;
|
|
}
|
|
|
|
void Init() {
|
|
pacer_->CreateProbeCluster(kFirstClusterRate, /*cluster_id=*/0);
|
|
pacer_->CreateProbeCluster(kSecondClusterRate, /*cluster_id=*/1);
|
|
// Default to bitrate probing disabled for testing purposes. Probing tests
|
|
// have to enable probing, either by creating a new PacingController
|
|
// instance or by calling SetProbingEnabled(true).
|
|
pacer_->SetProbingEnabled(false);
|
|
pacer_->SetPacingRates(kTargetRate * kPaceMultiplier, DataRate::Zero());
|
|
|
|
clock_.AdvanceTime(TimeUntilNextProcess());
|
|
}
|
|
|
|
void Send(RtpPacketMediaType type,
|
|
uint32_t ssrc,
|
|
uint16_t sequence_number,
|
|
int64_t capture_time_ms,
|
|
size_t size) {
|
|
pacer_->EnqueuePacket(
|
|
BuildPacket(type, ssrc, sequence_number, capture_time_ms, size));
|
|
}
|
|
|
|
void SendAndExpectPacket(RtpPacketMediaType type,
|
|
uint32_t ssrc,
|
|
uint16_t sequence_number,
|
|
int64_t capture_time_ms,
|
|
size_t size) {
|
|
Send(type, ssrc, sequence_number, capture_time_ms, size);
|
|
EXPECT_CALL(callback_,
|
|
SendPacket(ssrc, sequence_number, capture_time_ms,
|
|
type == RtpPacketMediaType::kRetransmission, false))
|
|
.Times(1);
|
|
}
|
|
|
|
std::unique_ptr<RtpPacketToSend> BuildRtpPacket(RtpPacketMediaType type) {
|
|
auto packet = std::make_unique<RtpPacketToSend>(nullptr);
|
|
packet->set_packet_type(type);
|
|
switch (type) {
|
|
case RtpPacketMediaType::kAudio:
|
|
packet->SetSsrc(kAudioSsrc);
|
|
break;
|
|
case RtpPacketMediaType::kVideo:
|
|
packet->SetSsrc(kVideoSsrc);
|
|
break;
|
|
case RtpPacketMediaType::kRetransmission:
|
|
case RtpPacketMediaType::kPadding:
|
|
packet->SetSsrc(kVideoRtxSsrc);
|
|
break;
|
|
case RtpPacketMediaType::kForwardErrorCorrection:
|
|
packet->SetSsrc(kFlexFecSsrc);
|
|
break;
|
|
}
|
|
|
|
packet->SetPayloadSize(234);
|
|
return packet;
|
|
}
|
|
|
|
TimeDelta TimeUntilNextProcess() {
|
|
Timestamp now = clock_.CurrentTime();
|
|
return std::max(pacer_->NextSendTime() - now, TimeDelta::Zero());
|
|
}
|
|
|
|
void AdvanceTimeAndProcess() {
|
|
Timestamp now = clock_.CurrentTime();
|
|
Timestamp next_send_time = pacer_->NextSendTime();
|
|
clock_.AdvanceTime(std::max(TimeDelta::Zero(), next_send_time - now));
|
|
pacer_->ProcessPackets();
|
|
}
|
|
|
|
void ConsumeInitialBudget() {
|
|
const uint32_t kSsrc = 54321;
|
|
uint16_t sequence_number = 1234;
|
|
int64_t capture_time_ms = clock_.TimeInMilliseconds();
|
|
const size_t kPacketSize = 250;
|
|
|
|
EXPECT_EQ(TimeDelta::Zero(), pacer_->OldestPacketWaitTime());
|
|
|
|
// Due to the multiplicative factor we can send 5 packets during a send
|
|
// interval. (network capacity * multiplier / (8 bits per byte *
|
|
// (packet size * #send intervals per second)
|
|
const size_t packets_to_send_per_interval =
|
|
kTargetRate.bps() * kPaceMultiplier / (8 * kPacketSize * 200);
|
|
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
|
|
SendAndExpectPacket(RtpPacketMediaType::kVideo, kSsrc, sequence_number++,
|
|
capture_time_ms, kPacketSize);
|
|
}
|
|
|
|
while (pacer_->QueueSizePackets() > 0) {
|
|
if (PeriodicProcess()) {
|
|
clock_.AdvanceTime(TimeUntilNextProcess());
|
|
pacer_->ProcessPackets();
|
|
} else {
|
|
AdvanceTimeAndProcess();
|
|
}
|
|
}
|
|
}
|
|
|
|
SimulatedClock clock_;
|
|
::testing::NiceMock<MockPacingControllerCallback> callback_;
|
|
std::unique_ptr<PacingController> pacer_;
|
|
};
|
|
|
|
class PacingControllerFieldTrialTest
|
|
: public ::testing::TestWithParam<PacingController::ProcessMode> {
|
|
protected:
|
|
struct MediaStream {
|
|
const RtpPacketMediaType type;
|
|
const uint32_t ssrc;
|
|
const size_t packet_size;
|
|
uint16_t seq_num;
|
|
};
|
|
|
|
const int kProcessIntervalsPerSecond = 1000 / 5;
|
|
|
|
PacingControllerFieldTrialTest() : clock_(123456) {}
|
|
void InsertPacket(PacingController* pacer, MediaStream* stream) {
|
|
pacer->EnqueuePacket(
|
|
BuildPacket(stream->type, stream->ssrc, stream->seq_num++,
|
|
clock_.TimeInMilliseconds(), stream->packet_size));
|
|
}
|
|
void ProcessNext(PacingController* pacer) {
|
|
if (GetParam() == PacingController::ProcessMode::kPeriodic) {
|
|
TimeDelta process_interval = TimeDelta::Millis(5);
|
|
clock_.AdvanceTime(process_interval);
|
|
pacer->ProcessPackets();
|
|
return;
|
|
}
|
|
|
|
Timestamp now = clock_.CurrentTime();
|
|
Timestamp next_send_time = pacer->NextSendTime();
|
|
TimeDelta wait_time = std::max(TimeDelta::Zero(), next_send_time - now);
|
|
clock_.AdvanceTime(wait_time);
|
|
pacer->ProcessPackets();
|
|
}
|
|
MediaStream audio{/*type*/ RtpPacketMediaType::kAudio,
|
|
/*ssrc*/ 3333, /*packet_size*/ 100, /*seq_num*/ 1000};
|
|
MediaStream video{/*type*/ RtpPacketMediaType::kVideo,
|
|
/*ssrc*/ 4444, /*packet_size*/ 1000, /*seq_num*/ 1000};
|
|
SimulatedClock clock_;
|
|
MockPacingControllerCallback callback_;
|
|
};
|
|
|
|
TEST_P(PacingControllerFieldTrialTest, DefaultNoPaddingInSilence) {
|
|
PacingController pacer(&clock_, &callback_, nullptr, nullptr, GetParam());
|
|
pacer.SetPacingRates(kTargetRate, DataRate::Zero());
|
|
// Video packet to reset last send time and provide padding data.
|
|
InsertPacket(&pacer, &video);
|
|
EXPECT_CALL(callback_, SendPacket).Times(1);
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
pacer.ProcessPackets();
|
|
EXPECT_CALL(callback_, SendPadding).Times(0);
|
|
// Waiting 500 ms should not trigger sending of padding.
|
|
clock_.AdvanceTimeMilliseconds(500);
|
|
pacer.ProcessPackets();
|
|
}
|
|
|
|
TEST_P(PacingControllerFieldTrialTest, PaddingInSilenceWithTrial) {
|
|
ScopedFieldTrials trial("WebRTC-Pacer-PadInSilence/Enabled/");
|
|
PacingController pacer(&clock_, &callback_, nullptr, nullptr, GetParam());
|
|
pacer.SetPacingRates(kTargetRate, DataRate::Zero());
|
|
// Video packet to reset last send time and provide padding data.
|
|
InsertPacket(&pacer, &video);
|
|
EXPECT_CALL(callback_, SendPacket).Times(2);
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
pacer.ProcessPackets();
|
|
EXPECT_CALL(callback_, SendPadding).WillOnce(Return(1000));
|
|
// Waiting 500 ms should trigger sending of padding.
|
|
clock_.AdvanceTimeMilliseconds(500);
|
|
pacer.ProcessPackets();
|
|
}
|
|
|
|
TEST_P(PacingControllerFieldTrialTest, CongestionWindowAffectsAudioInTrial) {
|
|
ScopedFieldTrials trial("WebRTC-Pacer-BlockAudio/Enabled/");
|
|
EXPECT_CALL(callback_, SendPadding).Times(0);
|
|
PacingController pacer(&clock_, &callback_, nullptr, nullptr, GetParam());
|
|
pacer.SetPacingRates(DataRate::KilobitsPerSec(10000), DataRate::Zero());
|
|
pacer.SetCongestionWindow(DataSize::Bytes(video.packet_size - 100));
|
|
pacer.UpdateOutstandingData(DataSize::Zero());
|
|
// Video packet fills congestion window.
|
|
InsertPacket(&pacer, &video);
|
|
EXPECT_CALL(callback_, SendPacket).Times(1);
|
|
ProcessNext(&pacer);
|
|
// Audio packet blocked due to congestion.
|
|
InsertPacket(&pacer, &audio);
|
|
EXPECT_CALL(callback_, SendPacket).Times(0);
|
|
if (GetParam() == PacingController::ProcessMode::kDynamic) {
|
|
// Without interval budget we'll forward time to where we send keep-alive.
|
|
EXPECT_CALL(callback_, SendPadding(1)).Times(2);
|
|
}
|
|
ProcessNext(&pacer);
|
|
ProcessNext(&pacer);
|
|
// Audio packet unblocked when congestion window clear.
|
|
::testing::Mock::VerifyAndClearExpectations(&callback_);
|
|
pacer.UpdateOutstandingData(DataSize::Zero());
|
|
EXPECT_CALL(callback_, SendPacket).Times(1);
|
|
ProcessNext(&pacer);
|
|
}
|
|
|
|
TEST_P(PacingControllerFieldTrialTest,
|
|
DefaultCongestionWindowDoesNotAffectAudio) {
|
|
EXPECT_CALL(callback_, SendPadding).Times(0);
|
|
PacingController pacer(&clock_, &callback_, nullptr, nullptr, GetParam());
|
|
pacer.SetPacingRates(DataRate::BitsPerSec(10000000), DataRate::Zero());
|
|
pacer.SetCongestionWindow(DataSize::Bytes(800));
|
|
pacer.UpdateOutstandingData(DataSize::Zero());
|
|
// Video packet fills congestion window.
|
|
InsertPacket(&pacer, &video);
|
|
EXPECT_CALL(callback_, SendPacket).Times(1);
|
|
ProcessNext(&pacer);
|
|
// Audio not blocked due to congestion.
|
|
InsertPacket(&pacer, &audio);
|
|
EXPECT_CALL(callback_, SendPacket).Times(1);
|
|
ProcessNext(&pacer);
|
|
}
|
|
|
|
TEST_P(PacingControllerFieldTrialTest, BudgetAffectsAudioInTrial) {
|
|
ScopedFieldTrials trial("WebRTC-Pacer-BlockAudio/Enabled/");
|
|
PacingController pacer(&clock_, &callback_, nullptr, nullptr, GetParam());
|
|
DataRate pacing_rate = DataRate::BitsPerSec(video.packet_size / 3 * 8 *
|
|
kProcessIntervalsPerSecond);
|
|
pacer.SetPacingRates(pacing_rate, DataRate::Zero());
|
|
// Video fills budget for following process periods.
|
|
InsertPacket(&pacer, &video);
|
|
EXPECT_CALL(callback_, SendPacket).Times(1);
|
|
ProcessNext(&pacer);
|
|
// Audio packet blocked due to budget limit.
|
|
InsertPacket(&pacer, &audio);
|
|
Timestamp wait_start_time = clock_.CurrentTime();
|
|
Timestamp wait_end_time = Timestamp::MinusInfinity();
|
|
EXPECT_CALL(callback_, SendPacket)
|
|
.WillOnce([&](uint32_t ssrc, uint16_t sequence_number,
|
|
int64_t capture_timestamp, bool retransmission,
|
|
bool padding) { wait_end_time = clock_.CurrentTime(); });
|
|
while (!wait_end_time.IsFinite()) {
|
|
ProcessNext(&pacer);
|
|
}
|
|
const TimeDelta expected_wait_time =
|
|
DataSize::Bytes(video.packet_size) / pacing_rate;
|
|
// Verify delay is near expectation, within timing margin.
|
|
EXPECT_LT(((wait_end_time - wait_start_time) - expected_wait_time).Abs(),
|
|
GetParam() == PacingController::ProcessMode::kPeriodic
|
|
? TimeDelta::Millis(5)
|
|
: PacingController::kMinSleepTime);
|
|
}
|
|
|
|
TEST_P(PacingControllerFieldTrialTest, DefaultBudgetDoesNotAffectAudio) {
|
|
EXPECT_CALL(callback_, SendPadding).Times(0);
|
|
PacingController pacer(&clock_, &callback_, nullptr, nullptr, GetParam());
|
|
pacer.SetPacingRates(DataRate::BitsPerSec(video.packet_size / 3 * 8 *
|
|
kProcessIntervalsPerSecond),
|
|
DataRate::Zero());
|
|
// Video fills budget for following process periods.
|
|
InsertPacket(&pacer, &video);
|
|
EXPECT_CALL(callback_, SendPacket).Times(1);
|
|
ProcessNext(&pacer);
|
|
// Audio packet not blocked due to budget limit.
|
|
EXPECT_CALL(callback_, SendPacket).Times(1);
|
|
InsertPacket(&pacer, &audio);
|
|
ProcessNext(&pacer);
|
|
}
|
|
|
|
INSTANTIATE_TEST_SUITE_P(WithAndWithoutIntervalBudget,
|
|
PacingControllerFieldTrialTest,
|
|
::testing::Values(false, true));
|
|
|
|
TEST_P(PacingControllerTest, FirstSentPacketTimeIsSet) {
|
|
uint16_t sequence_number = 1234;
|
|
const uint32_t kSsrc = 12345;
|
|
const size_t kSizeBytes = 250;
|
|
const size_t kPacketToSend = 3;
|
|
const Timestamp kStartTime = clock_.CurrentTime();
|
|
|
|
// No packet sent.
|
|
EXPECT_FALSE(pacer_->FirstSentPacketTime().has_value());
|
|
|
|
for (size_t i = 0; i < kPacketToSend; ++i) {
|
|
SendAndExpectPacket(RtpPacketMediaType::kVideo, kSsrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), kSizeBytes);
|
|
clock_.AdvanceTime(TimeUntilNextProcess());
|
|
pacer_->ProcessPackets();
|
|
}
|
|
EXPECT_EQ(kStartTime, pacer_->FirstSentPacketTime());
|
|
}
|
|
|
|
TEST_P(PacingControllerTest, QueuePacket) {
|
|
if (!PeriodicProcess()) {
|
|
// This test checks behavior applicable only when using interval budget.
|
|
return;
|
|
}
|
|
|
|
uint32_t ssrc = 12345;
|
|
uint16_t sequence_number = 1234;
|
|
// Due to the multiplicative factor we can send 5 packets during a 5ms send
|
|
// interval. (network capacity * multiplier / (8 bits per byte *
|
|
// (packet size * #send intervals per second)
|
|
const size_t kPacketsToSend =
|
|
kTargetRate.bps() * kPaceMultiplier / (8 * 250 * 200);
|
|
for (size_t i = 0; i < kPacketsToSend; ++i) {
|
|
SendAndExpectPacket(RtpPacketMediaType::kVideo, ssrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), 250);
|
|
}
|
|
EXPECT_CALL(callback_, SendPadding).Times(0);
|
|
|
|
// Enqueue one extra packet.
|
|
int64_t queued_packet_timestamp = clock_.TimeInMilliseconds();
|
|
Send(RtpPacketMediaType::kVideo, ssrc, sequence_number,
|
|
queued_packet_timestamp, 250);
|
|
EXPECT_EQ(kPacketsToSend + 1, pacer_->QueueSizePackets());
|
|
|
|
// The first kPacketsToSend packets will be sent with budget from the
|
|
// initial 5ms interval.
|
|
pacer_->ProcessPackets();
|
|
EXPECT_EQ(1u, pacer_->QueueSizePackets());
|
|
|
|
// Advance time to next interval, make sure the last packet is sent.
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
EXPECT_CALL(callback_, SendPacket(ssrc, sequence_number++,
|
|
queued_packet_timestamp, false, false))
|
|
.Times(1);
|
|
pacer_->ProcessPackets();
|
|
sequence_number++;
|
|
EXPECT_EQ(0u, pacer_->QueueSizePackets());
|
|
|
|
// We can send packets_to_send -1 packets of size 250 during the current
|
|
// interval since one packet has already been sent.
|
|
for (size_t i = 0; i < kPacketsToSend - 1; ++i) {
|
|
SendAndExpectPacket(RtpPacketMediaType::kVideo, ssrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), 250);
|
|
}
|
|
Send(RtpPacketMediaType::kVideo, ssrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), 250);
|
|
EXPECT_EQ(kPacketsToSend, pacer_->QueueSizePackets());
|
|
pacer_->ProcessPackets();
|
|
EXPECT_EQ(1u, pacer_->QueueSizePackets());
|
|
}
|
|
|
|
TEST_P(PacingControllerTest, QueueAndPacePackets) {
|
|
if (PeriodicProcess()) {
|
|
// This test checks behavior when not using interval budget.
|
|
return;
|
|
}
|
|
|
|
const uint32_t kSsrc = 12345;
|
|
uint16_t sequence_number = 1234;
|
|
const DataSize kPackeSize = DataSize::Bytes(250);
|
|
const TimeDelta kSendInterval = TimeDelta::Millis(5);
|
|
|
|
// Due to the multiplicative factor we can send 5 packets during a 5ms send
|
|
// interval. (send interval * network capacity * multiplier / packet size)
|
|
const size_t kPacketsToSend = (kSendInterval * kTargetRate).bytes() *
|
|
kPaceMultiplier / kPackeSize.bytes();
|
|
|
|
for (size_t i = 0; i < kPacketsToSend; ++i) {
|
|
SendAndExpectPacket(RtpPacketMediaType::kVideo, kSsrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), kPackeSize.bytes());
|
|
}
|
|
EXPECT_CALL(callback_, SendPadding).Times(0);
|
|
|
|
// Enqueue one extra packet.
|
|
int64_t queued_packet_timestamp = clock_.TimeInMilliseconds();
|
|
Send(RtpPacketMediaType::kVideo, kSsrc, sequence_number,
|
|
queued_packet_timestamp, kPackeSize.bytes());
|
|
EXPECT_EQ(kPacketsToSend + 1, pacer_->QueueSizePackets());
|
|
|
|
// Send packets until the initial kPacketsToSend packets are done.
|
|
Timestamp start_time = clock_.CurrentTime();
|
|
while (pacer_->QueueSizePackets() > 1) {
|
|
AdvanceTimeAndProcess();
|
|
}
|
|
EXPECT_LT(clock_.CurrentTime() - start_time, kSendInterval);
|
|
|
|
// Proceed till last packet can be sent.
|
|
EXPECT_CALL(callback_, SendPacket(kSsrc, sequence_number,
|
|
queued_packet_timestamp, false, false))
|
|
.Times(1);
|
|
AdvanceTimeAndProcess();
|
|
EXPECT_GE(clock_.CurrentTime() - start_time, kSendInterval);
|
|
EXPECT_EQ(pacer_->QueueSizePackets(), 0u);
|
|
}
|
|
|
|
TEST_P(PacingControllerTest, PaceQueuedPackets) {
|
|
uint32_t ssrc = 12345;
|
|
uint16_t sequence_number = 1234;
|
|
const size_t kPacketSize = 250;
|
|
|
|
// Due to the multiplicative factor we can send 5 packets during a send
|
|
// interval. (network capacity * multiplier / (8 bits per byte *
|
|
// (packet size * #send intervals per second)
|
|
const size_t packets_to_send_per_interval =
|
|
kTargetRate.bps() * kPaceMultiplier / (8 * kPacketSize * 200);
|
|
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
|
|
SendAndExpectPacket(RtpPacketMediaType::kVideo, ssrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), kPacketSize);
|
|
}
|
|
|
|
for (size_t j = 0; j < packets_to_send_per_interval * 10; ++j) {
|
|
Send(RtpPacketMediaType::kVideo, ssrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), kPacketSize);
|
|
}
|
|
EXPECT_EQ(packets_to_send_per_interval + packets_to_send_per_interval * 10,
|
|
pacer_->QueueSizePackets());
|
|
if (PeriodicProcess()) {
|
|
pacer_->ProcessPackets();
|
|
} else {
|
|
while (pacer_->QueueSizePackets() > packets_to_send_per_interval * 10) {
|
|
AdvanceTimeAndProcess();
|
|
}
|
|
}
|
|
EXPECT_EQ(pacer_->QueueSizePackets(), packets_to_send_per_interval * 10);
|
|
EXPECT_CALL(callback_, SendPadding).Times(0);
|
|
|
|
EXPECT_CALL(callback_, SendPacket(ssrc, _, _, false, false))
|
|
.Times(pacer_->QueueSizePackets());
|
|
const TimeDelta expected_pace_time =
|
|
DataSize::Bytes(pacer_->QueueSizePackets() * kPacketSize) /
|
|
(kPaceMultiplier * kTargetRate);
|
|
Timestamp start_time = clock_.CurrentTime();
|
|
while (pacer_->QueueSizePackets() > 0) {
|
|
if (PeriodicProcess()) {
|
|
clock_.AdvanceTime(TimeUntilNextProcess());
|
|
pacer_->ProcessPackets();
|
|
} else {
|
|
AdvanceTimeAndProcess();
|
|
}
|
|
}
|
|
const TimeDelta actual_pace_time = clock_.CurrentTime() - start_time;
|
|
EXPECT_LT((actual_pace_time - expected_pace_time).Abs(),
|
|
PeriodicProcess() ? TimeDelta::Millis(5)
|
|
: PacingController::kMinSleepTime);
|
|
|
|
EXPECT_EQ(0u, pacer_->QueueSizePackets());
|
|
clock_.AdvanceTime(TimeUntilNextProcess());
|
|
EXPECT_EQ(0u, pacer_->QueueSizePackets());
|
|
pacer_->ProcessPackets();
|
|
|
|
// Send some more packet, just show that we can..?
|
|
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
|
|
SendAndExpectPacket(RtpPacketMediaType::kVideo, ssrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), 250);
|
|
}
|
|
EXPECT_EQ(packets_to_send_per_interval, pacer_->QueueSizePackets());
|
|
if (PeriodicProcess()) {
|
|
pacer_->ProcessPackets();
|
|
} else {
|
|
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
|
|
AdvanceTimeAndProcess();
|
|
}
|
|
}
|
|
EXPECT_EQ(0u, pacer_->QueueSizePackets());
|
|
}
|
|
|
|
TEST_P(PacingControllerTest, RepeatedRetransmissionsAllowed) {
|
|
// Send one packet, then two retransmissions of that packet.
|
|
for (size_t i = 0; i < 3; i++) {
|
|
constexpr uint32_t ssrc = 333;
|
|
constexpr uint16_t sequence_number = 444;
|
|
constexpr size_t bytes = 250;
|
|
bool is_retransmission = (i != 0); // Original followed by retransmissions.
|
|
SendAndExpectPacket(is_retransmission ? RtpPacketMediaType::kRetransmission
|
|
: RtpPacketMediaType::kVideo,
|
|
ssrc, sequence_number, clock_.TimeInMilliseconds(),
|
|
bytes);
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
}
|
|
if (PeriodicProcess()) {
|
|
pacer_->ProcessPackets();
|
|
} else {
|
|
while (pacer_->QueueSizePackets() > 0) {
|
|
AdvanceTimeAndProcess();
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_P(PacingControllerTest,
|
|
CanQueuePacketsWithSameSequenceNumberOnDifferentSsrcs) {
|
|
uint32_t ssrc = 12345;
|
|
uint16_t sequence_number = 1234;
|
|
|
|
SendAndExpectPacket(RtpPacketMediaType::kVideo, ssrc, sequence_number,
|
|
clock_.TimeInMilliseconds(), 250);
|
|
|
|
// Expect packet on second ssrc to be queued and sent as well.
|
|
SendAndExpectPacket(RtpPacketMediaType::kVideo, ssrc + 1, sequence_number,
|
|
clock_.TimeInMilliseconds(), 250);
|
|
|
|
clock_.AdvanceTimeMilliseconds(1000);
|
|
if (PeriodicProcess()) {
|
|
pacer_->ProcessPackets();
|
|
} else {
|
|
while (pacer_->QueueSizePackets() > 0) {
|
|
AdvanceTimeAndProcess();
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_P(PacingControllerTest, Padding) {
|
|
uint32_t ssrc = 12345;
|
|
uint16_t sequence_number = 1234;
|
|
const size_t kPacketSize = 250;
|
|
|
|
pacer_->SetPacingRates(kTargetRate * kPaceMultiplier, kTargetRate);
|
|
|
|
if (PeriodicProcess()) {
|
|
ConsumeInitialBudget();
|
|
|
|
// 5 milliseconds later should not send padding since we filled the buffers
|
|
// initially.
|
|
EXPECT_CALL(callback_, SendPadding(kPacketSize)).Times(0);
|
|
clock_.AdvanceTime(TimeUntilNextProcess());
|
|
pacer_->ProcessPackets();
|
|
|
|
// 5 milliseconds later we have enough budget to send some padding.
|
|
EXPECT_CALL(callback_, SendPadding(250)).WillOnce(Return(kPacketSize));
|
|
EXPECT_CALL(callback_, SendPacket(_, _, _, _, true)).Times(1);
|
|
clock_.AdvanceTime(TimeUntilNextProcess());
|
|
pacer_->ProcessPackets();
|
|
} else {
|
|
const size_t kPacketsToSend = 20;
|
|
for (size_t i = 0; i < kPacketsToSend; ++i) {
|
|
SendAndExpectPacket(RtpPacketMediaType::kVideo, ssrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), kPacketSize);
|
|
}
|
|
const TimeDelta expected_pace_time =
|
|
DataSize::Bytes(pacer_->QueueSizePackets() * kPacketSize) /
|
|
(kPaceMultiplier * kTargetRate);
|
|
EXPECT_CALL(callback_, SendPadding).Times(0);
|
|
// Only the media packets should be sent.
|
|
Timestamp start_time = clock_.CurrentTime();
|
|
while (pacer_->QueueSizePackets() > 0) {
|
|
AdvanceTimeAndProcess();
|
|
}
|
|
const TimeDelta actual_pace_time = clock_.CurrentTime() - start_time;
|
|
EXPECT_LE((actual_pace_time - expected_pace_time).Abs(),
|
|
PacingController::kMinSleepTime);
|
|
|
|
// Pacing media happens at 2.5x, but padding was configured with 1.0x
|
|
// factor. We have to wait until the padding debt is gone before we start
|
|
// sending padding.
|
|
const TimeDelta time_to_padding_debt_free =
|
|
(expected_pace_time * kPaceMultiplier) - actual_pace_time;
|
|
clock_.AdvanceTime(time_to_padding_debt_free -
|
|
PacingController::kMinSleepTime);
|
|
pacer_->ProcessPackets();
|
|
|
|
// Send 10 padding packets.
|
|
const size_t kPaddingPacketsToSend = 10;
|
|
DataSize padding_sent = DataSize::Zero();
|
|
size_t packets_sent = 0;
|
|
Timestamp first_send_time = Timestamp::MinusInfinity();
|
|
Timestamp last_send_time = Timestamp::MinusInfinity();
|
|
|
|
EXPECT_CALL(callback_, SendPadding)
|
|
.Times(kPaddingPacketsToSend)
|
|
.WillRepeatedly([&](size_t target_size) {
|
|
++packets_sent;
|
|
if (packets_sent < kPaddingPacketsToSend) {
|
|
// Don't count bytes of last packet, instead just
|
|
// use this as the time the last packet finished
|
|
// sending.
|
|
padding_sent += DataSize::Bytes(target_size);
|
|
}
|
|
if (first_send_time.IsInfinite()) {
|
|
first_send_time = clock_.CurrentTime();
|
|
} else {
|
|
last_send_time = clock_.CurrentTime();
|
|
}
|
|
return target_size;
|
|
});
|
|
EXPECT_CALL(callback_, SendPacket(_, _, _, false, true))
|
|
.Times(kPaddingPacketsToSend);
|
|
|
|
while (packets_sent < kPaddingPacketsToSend) {
|
|
AdvanceTimeAndProcess();
|
|
}
|
|
|
|
// Verify rate of sent padding.
|
|
TimeDelta padding_duration = last_send_time - first_send_time;
|
|
DataRate padding_rate = padding_sent / padding_duration;
|
|
EXPECT_EQ(padding_rate, kTargetRate);
|
|
}
|
|
}
|
|
|
|
TEST_P(PacingControllerTest, NoPaddingBeforeNormalPacket) {
|
|
pacer_->SetPacingRates(kTargetRate * kPaceMultiplier, kTargetRate);
|
|
|
|
EXPECT_CALL(callback_, SendPadding).Times(0);
|
|
|
|
pacer_->ProcessPackets();
|
|
clock_.AdvanceTime(TimeUntilNextProcess());
|
|
|
|
pacer_->ProcessPackets();
|
|
clock_.AdvanceTime(TimeUntilNextProcess());
|
|
|
|
uint32_t ssrc = 12345;
|
|
uint16_t sequence_number = 1234;
|
|
int64_t capture_time_ms = 56789;
|
|
|
|
SendAndExpectPacket(RtpPacketMediaType::kVideo, ssrc, sequence_number++,
|
|
capture_time_ms, 250);
|
|
bool padding_sent = false;
|
|
EXPECT_CALL(callback_, SendPadding).WillOnce([&](size_t padding) {
|
|
padding_sent = true;
|
|
return padding;
|
|
});
|
|
EXPECT_CALL(callback_, SendPacket(_, _, _, _, true)).Times(1);
|
|
if (PeriodicProcess()) {
|
|
pacer_->ProcessPackets();
|
|
} else {
|
|
while (!padding_sent) {
|
|
AdvanceTimeAndProcess();
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_P(PacingControllerTest, VerifyPaddingUpToBitrate) {
|
|
if (!PeriodicProcess()) {
|
|
// Already tested in PacingControllerTest.Padding.
|
|
return;
|
|
}
|
|
|
|
uint32_t ssrc = 12345;
|
|
uint16_t sequence_number = 1234;
|
|
int64_t capture_time_ms = 56789;
|
|
const int kTimeStep = 5;
|
|
const int64_t kBitrateWindow = 100;
|
|
pacer_->SetPacingRates(kTargetRate * kPaceMultiplier, kTargetRate);
|
|
|
|
int64_t start_time = clock_.TimeInMilliseconds();
|
|
while (clock_.TimeInMilliseconds() - start_time < kBitrateWindow) {
|
|
SendAndExpectPacket(RtpPacketMediaType::kVideo, ssrc, sequence_number++,
|
|
capture_time_ms, 250);
|
|
EXPECT_CALL(callback_, SendPadding(250)).WillOnce(Return(250));
|
|
EXPECT_CALL(callback_, SendPacket(_, _, _, _, true)).Times(1);
|
|
pacer_->ProcessPackets();
|
|
clock_.AdvanceTimeMilliseconds(kTimeStep);
|
|
}
|
|
}
|
|
|
|
TEST_P(PacingControllerTest, VerifyAverageBitrateVaryingMediaPayload) {
|
|
uint32_t ssrc = 12345;
|
|
uint16_t sequence_number = 1234;
|
|
int64_t capture_time_ms = 56789;
|
|
const int kTimeStep = 5;
|
|
const TimeDelta kAveragingWindowLength = TimeDelta::Seconds(10);
|
|
PacingControllerPadding callback;
|
|
pacer_ = std::make_unique<PacingController>(&clock_, &callback, nullptr,
|
|
nullptr, GetParam());
|
|
pacer_->SetProbingEnabled(false);
|
|
pacer_->SetPacingRates(kTargetRate * kPaceMultiplier, kTargetRate);
|
|
|
|
Timestamp start_time = clock_.CurrentTime();
|
|
size_t media_bytes = 0;
|
|
while (clock_.CurrentTime() - start_time < kAveragingWindowLength) {
|
|
// Maybe add some new media packets corresponding to expected send rate.
|
|
int rand_value = rand(); // NOLINT (rand_r instead of rand)
|
|
while (
|
|
media_bytes <
|
|
(kTargetRate * (clock_.CurrentTime() - start_time)).bytes<size_t>()) {
|
|
size_t media_payload = rand_value % 400 + 800; // [400, 1200] bytes.
|
|
Send(RtpPacketMediaType::kVideo, ssrc, sequence_number++, capture_time_ms,
|
|
media_payload);
|
|
media_bytes += media_payload;
|
|
}
|
|
|
|
if (PeriodicProcess()) {
|
|
clock_.AdvanceTimeMilliseconds(kTimeStep);
|
|
pacer_->ProcessPackets();
|
|
} else {
|
|
AdvanceTimeAndProcess();
|
|
}
|
|
}
|
|
|
|
EXPECT_NEAR(
|
|
kTargetRate.bps(),
|
|
(DataSize::Bytes(callback.total_bytes_sent()) / kAveragingWindowLength)
|
|
.bps(),
|
|
(kTargetRate * 0.01 /* 1% error marging */).bps());
|
|
}
|
|
|
|
TEST_P(PacingControllerTest, Priority) {
|
|
uint32_t ssrc_low_priority = 12345;
|
|
uint32_t ssrc = 12346;
|
|
uint16_t sequence_number = 1234;
|
|
int64_t capture_time_ms = 56789;
|
|
int64_t capture_time_ms_low_priority = 1234567;
|
|
|
|
ConsumeInitialBudget();
|
|
|
|
// Expect normal and low priority to be queued and high to pass through.
|
|
Send(RtpPacketMediaType::kVideo, ssrc_low_priority, sequence_number++,
|
|
capture_time_ms_low_priority, 250);
|
|
|
|
const size_t packets_to_send_per_interval =
|
|
kTargetRate.bps() * kPaceMultiplier / (8 * 250 * 200);
|
|
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
|
|
Send(RtpPacketMediaType::kRetransmission, ssrc, sequence_number++,
|
|
capture_time_ms, 250);
|
|
}
|
|
Send(RtpPacketMediaType::kAudio, ssrc, sequence_number++, capture_time_ms,
|
|
250);
|
|
|
|
// Expect all high and normal priority to be sent out first.
|
|
EXPECT_CALL(callback_, SendPadding).Times(0);
|
|
EXPECT_CALL(callback_, SendPacket(ssrc, _, capture_time_ms, _, _))
|
|
.Times(packets_to_send_per_interval + 1);
|
|
|
|
if (PeriodicProcess()) {
|
|
clock_.AdvanceTime(TimeUntilNextProcess());
|
|
pacer_->ProcessPackets();
|
|
} else {
|
|
while (pacer_->QueueSizePackets() > 1) {
|
|
AdvanceTimeAndProcess();
|
|
}
|
|
}
|
|
|
|
EXPECT_EQ(1u, pacer_->QueueSizePackets());
|
|
|
|
EXPECT_CALL(callback_, SendPacket(ssrc_low_priority, _,
|
|
capture_time_ms_low_priority, _, _))
|
|
.Times(1);
|
|
if (PeriodicProcess()) {
|
|
clock_.AdvanceTime(TimeUntilNextProcess());
|
|
pacer_->ProcessPackets();
|
|
} else {
|
|
AdvanceTimeAndProcess();
|
|
}
|
|
}
|
|
|
|
TEST_P(PacingControllerTest, RetransmissionPriority) {
|
|
uint32_t ssrc = 12345;
|
|
uint16_t sequence_number = 1234;
|
|
int64_t capture_time_ms = 45678;
|
|
int64_t capture_time_ms_retransmission = 56789;
|
|
|
|
// Due to the multiplicative factor we can send 5 packets during a send
|
|
// interval. (network capacity * multiplier / (8 bits per byte *
|
|
// (packet size * #send intervals per second)
|
|
const size_t packets_to_send_per_interval =
|
|
kTargetRate.bps() * kPaceMultiplier / (8 * 250 * 200);
|
|
pacer_->ProcessPackets();
|
|
EXPECT_EQ(0u, pacer_->QueueSizePackets());
|
|
|
|
// Alternate retransmissions and normal packets.
|
|
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
|
|
Send(RtpPacketMediaType::kVideo, ssrc, sequence_number++, capture_time_ms,
|
|
250);
|
|
Send(RtpPacketMediaType::kRetransmission, ssrc, sequence_number++,
|
|
capture_time_ms_retransmission, 250);
|
|
}
|
|
EXPECT_EQ(2 * packets_to_send_per_interval, pacer_->QueueSizePackets());
|
|
|
|
// Expect all retransmissions to be sent out first despite having a later
|
|
// capture time.
|
|
EXPECT_CALL(callback_, SendPadding).Times(0);
|
|
EXPECT_CALL(callback_, SendPacket(_, _, _, false, _)).Times(0);
|
|
EXPECT_CALL(callback_,
|
|
SendPacket(ssrc, _, capture_time_ms_retransmission, true, _))
|
|
.Times(packets_to_send_per_interval);
|
|
|
|
if (PeriodicProcess()) {
|
|
clock_.AdvanceTime(TimeUntilNextProcess());
|
|
pacer_->ProcessPackets();
|
|
} else {
|
|
while (pacer_->QueueSizePackets() > packets_to_send_per_interval) {
|
|
AdvanceTimeAndProcess();
|
|
}
|
|
}
|
|
EXPECT_EQ(packets_to_send_per_interval, pacer_->QueueSizePackets());
|
|
|
|
// Expect the remaining (non-retransmission) packets to be sent.
|
|
EXPECT_CALL(callback_, SendPadding).Times(0);
|
|
EXPECT_CALL(callback_, SendPacket(_, _, _, true, _)).Times(0);
|
|
EXPECT_CALL(callback_, SendPacket(ssrc, _, capture_time_ms, false, _))
|
|
.Times(packets_to_send_per_interval);
|
|
|
|
if (PeriodicProcess()) {
|
|
clock_.AdvanceTime(TimeUntilNextProcess());
|
|
pacer_->ProcessPackets();
|
|
} else {
|
|
while (pacer_->QueueSizePackets() > 0) {
|
|
AdvanceTimeAndProcess();
|
|
}
|
|
}
|
|
|
|
EXPECT_EQ(0u, pacer_->QueueSizePackets());
|
|
}
|
|
|
|
TEST_P(PacingControllerTest, HighPrioDoesntAffectBudget) {
|
|
const size_t kPacketSize = 250;
|
|
uint32_t ssrc = 12346;
|
|
uint16_t sequence_number = 1234;
|
|
int64_t capture_time_ms = 56789;
|
|
|
|
// As high prio packets doesn't affect the budget, we should be able to send
|
|
// a high number of them at once.
|
|
const size_t kNumAudioPackets = 25;
|
|
for (size_t i = 0; i < kNumAudioPackets; ++i) {
|
|
SendAndExpectPacket(RtpPacketMediaType::kAudio, ssrc, sequence_number++,
|
|
capture_time_ms, kPacketSize);
|
|
}
|
|
pacer_->ProcessPackets();
|
|
// Low prio packets does affect the budget.
|
|
// Due to the multiplicative factor we can send 5 packets during a send
|
|
// interval. (network capacity * multiplier / (8 bits per byte *
|
|
// (packet size * #send intervals per second)
|
|
const size_t kPacketsToSendPerInterval =
|
|
kTargetRate.bps() * kPaceMultiplier / (8 * kPacketSize * 200);
|
|
for (size_t i = 0; i < kPacketsToSendPerInterval; ++i) {
|
|
SendAndExpectPacket(RtpPacketMediaType::kVideo, ssrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), kPacketSize);
|
|
}
|
|
|
|
// Send all packets and measure pace time.
|
|
Timestamp start_time = clock_.CurrentTime();
|
|
while (pacer_->QueueSizePackets() > 0) {
|
|
if (PeriodicProcess()) {
|
|
clock_.AdvanceTime(TimeUntilNextProcess());
|
|
pacer_->ProcessPackets();
|
|
} else {
|
|
AdvanceTimeAndProcess();
|
|
}
|
|
}
|
|
|
|
// Measure pacing time. Expect only low-prio packets to affect this.
|
|
TimeDelta pacing_time = clock_.CurrentTime() - start_time;
|
|
TimeDelta expected_pacing_time =
|
|
DataSize::Bytes(kPacketsToSendPerInterval * kPacketSize) /
|
|
(kTargetRate * kPaceMultiplier);
|
|
EXPECT_NEAR(pacing_time.us<double>(), expected_pacing_time.us<double>(),
|
|
PeriodicProcess() ? 5000.0
|
|
: PacingController::kMinSleepTime.us<double>());
|
|
}
|
|
|
|
TEST_P(PacingControllerTest, SendsOnlyPaddingWhenCongested) {
|
|
uint32_t ssrc = 202020;
|
|
uint16_t sequence_number = 1000;
|
|
int kPacketSize = 250;
|
|
int kCongestionWindow = kPacketSize * 10;
|
|
|
|
pacer_->UpdateOutstandingData(DataSize::Zero());
|
|
pacer_->SetCongestionWindow(DataSize::Bytes(kCongestionWindow));
|
|
int sent_data = 0;
|
|
while (sent_data < kCongestionWindow) {
|
|
sent_data += kPacketSize;
|
|
SendAndExpectPacket(RtpPacketMediaType::kVideo, ssrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), kPacketSize);
|
|
AdvanceTimeAndProcess();
|
|
}
|
|
::testing::Mock::VerifyAndClearExpectations(&callback_);
|
|
EXPECT_CALL(callback_, SendPacket).Times(0);
|
|
EXPECT_CALL(callback_, SendPadding).Times(0);
|
|
|
|
size_t blocked_packets = 0;
|
|
int64_t expected_time_until_padding = 500;
|
|
while (expected_time_until_padding > 5) {
|
|
Send(RtpPacketMediaType::kVideo, ssrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), kPacketSize);
|
|
blocked_packets++;
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
pacer_->ProcessPackets();
|
|
expected_time_until_padding -= 5;
|
|
}
|
|
::testing::Mock::VerifyAndClearExpectations(&callback_);
|
|
EXPECT_CALL(callback_, SendPadding(1)).WillOnce(Return(1));
|
|
EXPECT_CALL(callback_, SendPacket(_, _, _, _, true)).Times(1);
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
pacer_->ProcessPackets();
|
|
EXPECT_EQ(blocked_packets, pacer_->QueueSizePackets());
|
|
}
|
|
|
|
TEST_P(PacingControllerTest, DoesNotAllowOveruseAfterCongestion) {
|
|
uint32_t ssrc = 202020;
|
|
uint16_t seq_num = 1000;
|
|
int size = 1000;
|
|
auto now_ms = [this] { return clock_.TimeInMilliseconds(); };
|
|
EXPECT_CALL(callback_, SendPadding).Times(0);
|
|
// The pacing rate is low enough that the budget should not allow two packets
|
|
// to be sent in a row.
|
|
pacer_->SetPacingRates(DataRate::BitsPerSec(400 * 8 * 1000 / 5),
|
|
DataRate::Zero());
|
|
// The congestion window is small enough to only let one packet through.
|
|
pacer_->SetCongestionWindow(DataSize::Bytes(800));
|
|
pacer_->UpdateOutstandingData(DataSize::Zero());
|
|
// Not yet budget limited or congested, packet is sent.
|
|
Send(RtpPacketMediaType::kVideo, ssrc, seq_num++, now_ms(), size);
|
|
EXPECT_CALL(callback_, SendPacket).Times(1);
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
pacer_->ProcessPackets();
|
|
// Packet blocked due to congestion.
|
|
Send(RtpPacketMediaType::kVideo, ssrc, seq_num++, now_ms(), size);
|
|
EXPECT_CALL(callback_, SendPacket).Times(0);
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
pacer_->ProcessPackets();
|
|
// Packet blocked due to congestion.
|
|
Send(RtpPacketMediaType::kVideo, ssrc, seq_num++, now_ms(), size);
|
|
EXPECT_CALL(callback_, SendPacket).Times(0);
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
pacer_->ProcessPackets();
|
|
// Congestion removed and budget has recovered, packet is sent.
|
|
Send(RtpPacketMediaType::kVideo, ssrc, seq_num++, now_ms(), size);
|
|
EXPECT_CALL(callback_, SendPacket).Times(1);
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
pacer_->UpdateOutstandingData(DataSize::Zero());
|
|
pacer_->ProcessPackets();
|
|
// Should be blocked due to budget limitation as congestion has be removed.
|
|
Send(RtpPacketMediaType::kVideo, ssrc, seq_num++, now_ms(), size);
|
|
EXPECT_CALL(callback_, SendPacket).Times(0);
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
pacer_->ProcessPackets();
|
|
}
|
|
|
|
TEST_P(PacingControllerTest, ResumesSendingWhenCongestionEnds) {
|
|
uint32_t ssrc = 202020;
|
|
uint16_t sequence_number = 1000;
|
|
int64_t kPacketSize = 250;
|
|
int64_t kCongestionCount = 10;
|
|
int64_t kCongestionWindow = kPacketSize * kCongestionCount;
|
|
int64_t kCongestionTimeMs = 1000;
|
|
|
|
pacer_->UpdateOutstandingData(DataSize::Zero());
|
|
pacer_->SetCongestionWindow(DataSize::Bytes(kCongestionWindow));
|
|
int sent_data = 0;
|
|
while (sent_data < kCongestionWindow) {
|
|
sent_data += kPacketSize;
|
|
SendAndExpectPacket(RtpPacketMediaType::kVideo, ssrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), kPacketSize);
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
pacer_->ProcessPackets();
|
|
}
|
|
::testing::Mock::VerifyAndClearExpectations(&callback_);
|
|
EXPECT_CALL(callback_, SendPacket).Times(0);
|
|
int unacked_packets = 0;
|
|
for (int duration = 0; duration < kCongestionTimeMs; duration += 5) {
|
|
Send(RtpPacketMediaType::kVideo, ssrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), kPacketSize);
|
|
unacked_packets++;
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
pacer_->ProcessPackets();
|
|
}
|
|
::testing::Mock::VerifyAndClearExpectations(&callback_);
|
|
|
|
// First mark half of the congested packets as cleared and make sure that just
|
|
// as many are sent
|
|
int ack_count = kCongestionCount / 2;
|
|
EXPECT_CALL(callback_, SendPacket(ssrc, _, _, false, _)).Times(ack_count);
|
|
pacer_->UpdateOutstandingData(
|
|
DataSize::Bytes(kCongestionWindow - kPacketSize * ack_count));
|
|
|
|
for (int duration = 0; duration < kCongestionTimeMs; duration += 5) {
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
pacer_->ProcessPackets();
|
|
}
|
|
unacked_packets -= ack_count;
|
|
::testing::Mock::VerifyAndClearExpectations(&callback_);
|
|
|
|
// Second make sure all packets are sent if sent packets are continuously
|
|
// marked as acked.
|
|
EXPECT_CALL(callback_, SendPacket(ssrc, _, _, false, _))
|
|
.Times(unacked_packets);
|
|
for (int duration = 0; duration < kCongestionTimeMs; duration += 5) {
|
|
pacer_->UpdateOutstandingData(DataSize::Zero());
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
pacer_->ProcessPackets();
|
|
}
|
|
}
|
|
|
|
TEST_P(PacingControllerTest, Pause) {
|
|
uint32_t ssrc_low_priority = 12345;
|
|
uint32_t ssrc = 12346;
|
|
uint32_t ssrc_high_priority = 12347;
|
|
uint16_t sequence_number = 1234;
|
|
|
|
EXPECT_EQ(TimeDelta::Zero(), pacer_->OldestPacketWaitTime());
|
|
|
|
ConsumeInitialBudget();
|
|
|
|
pacer_->Pause();
|
|
|
|
int64_t capture_time_ms = clock_.TimeInMilliseconds();
|
|
const size_t packets_to_send_per_interval =
|
|
kTargetRate.bps() * kPaceMultiplier / (8 * 250 * 200);
|
|
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
|
|
Send(RtpPacketMediaType::kVideo, ssrc_low_priority, sequence_number++,
|
|
capture_time_ms, 250);
|
|
Send(RtpPacketMediaType::kRetransmission, ssrc, sequence_number++,
|
|
capture_time_ms, 250);
|
|
Send(RtpPacketMediaType::kAudio, ssrc_high_priority, sequence_number++,
|
|
capture_time_ms, 250);
|
|
}
|
|
clock_.AdvanceTimeMilliseconds(10000);
|
|
int64_t second_capture_time_ms = clock_.TimeInMilliseconds();
|
|
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
|
|
Send(RtpPacketMediaType::kVideo, ssrc_low_priority, sequence_number++,
|
|
second_capture_time_ms, 250);
|
|
Send(RtpPacketMediaType::kRetransmission, ssrc, sequence_number++,
|
|
second_capture_time_ms, 250);
|
|
Send(RtpPacketMediaType::kAudio, ssrc_high_priority, sequence_number++,
|
|
second_capture_time_ms, 250);
|
|
}
|
|
|
|
// Expect everything to be queued.
|
|
EXPECT_EQ(TimeDelta::Millis(second_capture_time_ms - capture_time_ms),
|
|
pacer_->OldestPacketWaitTime());
|
|
|
|
// Process triggers keep-alive packet.
|
|
EXPECT_CALL(callback_, SendPadding).WillOnce([](size_t padding) {
|
|
return padding;
|
|
});
|
|
EXPECT_CALL(callback_, SendPacket(_, _, _, _, true)).Times(1);
|
|
pacer_->ProcessPackets();
|
|
|
|
// Verify no packets sent for the rest of the paused process interval.
|
|
const TimeDelta kProcessInterval = TimeDelta::Millis(5);
|
|
TimeDelta expected_time_until_send = PacingController::kPausedProcessInterval;
|
|
EXPECT_CALL(callback_, SendPadding).Times(0);
|
|
while (expected_time_until_send >= kProcessInterval) {
|
|
pacer_->ProcessPackets();
|
|
clock_.AdvanceTime(kProcessInterval);
|
|
expected_time_until_send -= kProcessInterval;
|
|
}
|
|
|
|
// New keep-alive packet.
|
|
::testing::Mock::VerifyAndClearExpectations(&callback_);
|
|
EXPECT_CALL(callback_, SendPadding).WillOnce([](size_t padding) {
|
|
return padding;
|
|
});
|
|
EXPECT_CALL(callback_, SendPacket(_, _, _, _, true)).Times(1);
|
|
clock_.AdvanceTime(kProcessInterval);
|
|
pacer_->ProcessPackets();
|
|
::testing::Mock::VerifyAndClearExpectations(&callback_);
|
|
|
|
// Expect high prio packets to come out first followed by normal
|
|
// prio packets and low prio packets (all in capture order).
|
|
{
|
|
::testing::InSequence sequence;
|
|
EXPECT_CALL(callback_,
|
|
SendPacket(ssrc_high_priority, _, capture_time_ms, _, _))
|
|
.Times(packets_to_send_per_interval);
|
|
EXPECT_CALL(callback_,
|
|
SendPacket(ssrc_high_priority, _, second_capture_time_ms, _, _))
|
|
.Times(packets_to_send_per_interval);
|
|
|
|
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
|
|
EXPECT_CALL(callback_, SendPacket(ssrc, _, capture_time_ms, _, _))
|
|
.Times(1);
|
|
}
|
|
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
|
|
EXPECT_CALL(callback_, SendPacket(ssrc, _, second_capture_time_ms, _, _))
|
|
.Times(1);
|
|
}
|
|
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
|
|
EXPECT_CALL(callback_,
|
|
SendPacket(ssrc_low_priority, _, capture_time_ms, _, _))
|
|
.Times(1);
|
|
}
|
|
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
|
|
EXPECT_CALL(callback_, SendPacket(ssrc_low_priority, _,
|
|
second_capture_time_ms, _, _))
|
|
.Times(1);
|
|
}
|
|
}
|
|
pacer_->Resume();
|
|
|
|
if (PeriodicProcess()) {
|
|
// The pacer was resumed directly after the previous process call finished.
|
|
// It will therefore wait 5 ms until next process.
|
|
clock_.AdvanceTime(TimeUntilNextProcess());
|
|
|
|
for (size_t i = 0; i < 4; i++) {
|
|
pacer_->ProcessPackets();
|
|
clock_.AdvanceTime(TimeUntilNextProcess());
|
|
}
|
|
} else {
|
|
while (pacer_->QueueSizePackets() > 0) {
|
|
AdvanceTimeAndProcess();
|
|
}
|
|
}
|
|
|
|
EXPECT_EQ(TimeDelta::Zero(), pacer_->OldestPacketWaitTime());
|
|
}
|
|
|
|
TEST_P(PacingControllerTest, InactiveFromStart) {
|
|
// Recreate the pacer without the inital time forwarding.
|
|
pacer_ = std::make_unique<PacingController>(&clock_, &callback_, nullptr,
|
|
nullptr, GetParam());
|
|
pacer_->SetProbingEnabled(false);
|
|
pacer_->SetPacingRates(kTargetRate * kPaceMultiplier, kTargetRate);
|
|
|
|
if (PeriodicProcess()) {
|
|
// In period mode, pause the pacer to check the same idle behavior as
|
|
// dynamic.
|
|
pacer_->Pause();
|
|
}
|
|
|
|
// No packets sent, there should be no keep-alives sent either.
|
|
EXPECT_CALL(callback_, SendPadding).Times(0);
|
|
EXPECT_CALL(callback_, SendPacket).Times(0);
|
|
pacer_->ProcessPackets();
|
|
|
|
const Timestamp start_time = clock_.CurrentTime();
|
|
|
|
// Determine the margin need so we can advance to the last possible moment
|
|
// that will not cause a process event.
|
|
const TimeDelta time_margin =
|
|
(GetParam() == PacingController::ProcessMode::kDynamic
|
|
? PacingController::kMinSleepTime
|
|
: TimeDelta::Zero()) +
|
|
TimeDelta::Micros(1);
|
|
|
|
EXPECT_EQ(pacer_->NextSendTime() - start_time,
|
|
PacingController::kPausedProcessInterval);
|
|
clock_.AdvanceTime(PacingController::kPausedProcessInterval - time_margin);
|
|
pacer_->ProcessPackets();
|
|
EXPECT_EQ(pacer_->NextSendTime() - start_time,
|
|
PacingController::kPausedProcessInterval);
|
|
|
|
clock_.AdvanceTime(time_margin);
|
|
pacer_->ProcessPackets();
|
|
EXPECT_EQ(pacer_->NextSendTime() - start_time,
|
|
2 * PacingController::kPausedProcessInterval);
|
|
}
|
|
|
|
TEST_P(PacingControllerTest, ExpectedQueueTimeMs) {
|
|
uint32_t ssrc = 12346;
|
|
uint16_t sequence_number = 1234;
|
|
const size_t kNumPackets = 60;
|
|
const size_t kPacketSize = 1200;
|
|
const int32_t kMaxBitrate = kPaceMultiplier * 30000;
|
|
EXPECT_EQ(TimeDelta::Zero(), pacer_->OldestPacketWaitTime());
|
|
|
|
pacer_->SetPacingRates(DataRate::BitsPerSec(30000 * kPaceMultiplier),
|
|
DataRate::Zero());
|
|
for (size_t i = 0; i < kNumPackets; ++i) {
|
|
SendAndExpectPacket(RtpPacketMediaType::kVideo, ssrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), kPacketSize);
|
|
}
|
|
|
|
// Queue in ms = 1000 * (bytes in queue) *8 / (bits per second)
|
|
TimeDelta queue_time =
|
|
TimeDelta::Millis(1000 * kNumPackets * kPacketSize * 8 / kMaxBitrate);
|
|
EXPECT_EQ(queue_time, pacer_->ExpectedQueueTime());
|
|
|
|
const Timestamp time_start = clock_.CurrentTime();
|
|
while (pacer_->QueueSizePackets() > 0) {
|
|
clock_.AdvanceTime(TimeUntilNextProcess());
|
|
pacer_->ProcessPackets();
|
|
}
|
|
TimeDelta duration = clock_.CurrentTime() - time_start;
|
|
|
|
EXPECT_EQ(TimeDelta::Zero(), pacer_->ExpectedQueueTime());
|
|
|
|
// Allow for aliasing, duration should be within one pack of max time limit.
|
|
const TimeDelta deviation =
|
|
duration - PacingController::kMaxExpectedQueueLength;
|
|
EXPECT_LT(deviation.Abs(),
|
|
TimeDelta::Millis(1000 * kPacketSize * 8 / kMaxBitrate));
|
|
}
|
|
|
|
TEST_P(PacingControllerTest, QueueTimeGrowsOverTime) {
|
|
uint32_t ssrc = 12346;
|
|
uint16_t sequence_number = 1234;
|
|
EXPECT_EQ(TimeDelta::Zero(), pacer_->OldestPacketWaitTime());
|
|
|
|
pacer_->SetPacingRates(DataRate::BitsPerSec(30000 * kPaceMultiplier),
|
|
DataRate::Zero());
|
|
SendAndExpectPacket(RtpPacketMediaType::kVideo, ssrc, sequence_number,
|
|
clock_.TimeInMilliseconds(), 1200);
|
|
|
|
clock_.AdvanceTimeMilliseconds(500);
|
|
EXPECT_EQ(TimeDelta::Millis(500), pacer_->OldestPacketWaitTime());
|
|
pacer_->ProcessPackets();
|
|
EXPECT_EQ(TimeDelta::Zero(), pacer_->OldestPacketWaitTime());
|
|
}
|
|
|
|
TEST_P(PacingControllerTest, ProbingWithInsertedPackets) {
|
|
const size_t kPacketSize = 1200;
|
|
const int kInitialBitrateBps = 300000;
|
|
uint32_t ssrc = 12346;
|
|
uint16_t sequence_number = 1234;
|
|
|
|
PacingControllerProbing packet_sender;
|
|
pacer_ = std::make_unique<PacingController>(&clock_, &packet_sender, nullptr,
|
|
nullptr, GetParam());
|
|
pacer_->CreateProbeCluster(kFirstClusterRate,
|
|
/*cluster_id=*/0);
|
|
pacer_->CreateProbeCluster(kSecondClusterRate,
|
|
/*cluster_id=*/1);
|
|
pacer_->SetPacingRates(
|
|
DataRate::BitsPerSec(kInitialBitrateBps * kPaceMultiplier),
|
|
DataRate::Zero());
|
|
|
|
for (int i = 0; i < 10; ++i) {
|
|
Send(RtpPacketMediaType::kVideo, ssrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), kPacketSize);
|
|
}
|
|
|
|
int64_t start = clock_.TimeInMilliseconds();
|
|
while (packet_sender.packets_sent() < 5) {
|
|
clock_.AdvanceTime(TimeUntilNextProcess());
|
|
pacer_->ProcessPackets();
|
|
}
|
|
int packets_sent = packet_sender.packets_sent();
|
|
// Validate first cluster bitrate. Note that we have to account for number
|
|
// of intervals and hence (packets_sent - 1) on the first cluster.
|
|
EXPECT_NEAR((packets_sent - 1) * kPacketSize * 8000 /
|
|
(clock_.TimeInMilliseconds() - start),
|
|
kFirstClusterRate.bps(), kProbingErrorMargin.bps());
|
|
EXPECT_EQ(0, packet_sender.padding_sent());
|
|
|
|
clock_.AdvanceTime(TimeUntilNextProcess());
|
|
start = clock_.TimeInMilliseconds();
|
|
while (packet_sender.packets_sent() < 10) {
|
|
clock_.AdvanceTime(TimeUntilNextProcess());
|
|
pacer_->ProcessPackets();
|
|
}
|
|
packets_sent = packet_sender.packets_sent() - packets_sent;
|
|
// Validate second cluster bitrate.
|
|
EXPECT_NEAR((packets_sent - 1) * kPacketSize * 8000 /
|
|
(clock_.TimeInMilliseconds() - start),
|
|
kSecondClusterRate.bps(), kProbingErrorMargin.bps());
|
|
}
|
|
|
|
TEST_P(PacingControllerTest, SkipsProbesWhenProcessIntervalTooLarge) {
|
|
const size_t kPacketSize = 1200;
|
|
const int kInitialBitrateBps = 300000;
|
|
const uint32_t ssrc = 12346;
|
|
const int kProbeClusterId = 3;
|
|
|
|
// Test with both legacy and new probe discard modes.
|
|
// TODO(bugs.webrtc.org/11780): Clean up when legacy is gone.
|
|
for (bool abort_delayed_probes : {false, true}) {
|
|
uint16_t sequence_number = 1234;
|
|
|
|
PacingControllerProbing packet_sender;
|
|
|
|
const test::ExplicitKeyValueConfig trials(
|
|
abort_delayed_probes ? "WebRTC-Bwe-ProbingBehavior/"
|
|
"abort_delayed_probes:1,max_probe_delay:2ms/"
|
|
: "WebRTC-Bwe-ProbingBehavior/"
|
|
"abort_delayed_probes:0,max_probe_delay:2ms/");
|
|
pacer_ = std::make_unique<PacingController>(&clock_, &packet_sender,
|
|
nullptr, &trials, GetParam());
|
|
pacer_->SetPacingRates(
|
|
DataRate::BitsPerSec(kInitialBitrateBps * kPaceMultiplier),
|
|
DataRate::BitsPerSec(kInitialBitrateBps));
|
|
|
|
for (int i = 0; i < 10; ++i) {
|
|
Send(RtpPacketMediaType::kVideo, ssrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), kPacketSize);
|
|
}
|
|
while (pacer_->QueueSizePackets() > 0) {
|
|
clock_.AdvanceTime(TimeUntilNextProcess());
|
|
pacer_->ProcessPackets();
|
|
}
|
|
|
|
// Probe at a very high rate.
|
|
pacer_->CreateProbeCluster(DataRate::KilobitsPerSec(10000), // 10 Mbps.
|
|
/*cluster_id=*/kProbeClusterId);
|
|
// We need one packet to start the probe.
|
|
Send(RtpPacketMediaType::kVideo, ssrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), kPacketSize);
|
|
const int packets_sent_before_probe = packet_sender.packets_sent();
|
|
clock_.AdvanceTime(TimeUntilNextProcess());
|
|
pacer_->ProcessPackets();
|
|
EXPECT_EQ(packet_sender.packets_sent(), packets_sent_before_probe + 1);
|
|
|
|
// Figure out how long between probe packets.
|
|
Timestamp start_time = clock_.CurrentTime();
|
|
clock_.AdvanceTime(TimeUntilNextProcess());
|
|
TimeDelta time_between_probes = clock_.CurrentTime() - start_time;
|
|
// Advance that distance again + 1ms.
|
|
clock_.AdvanceTime(time_between_probes);
|
|
|
|
// Send second probe packet.
|
|
Send(RtpPacketMediaType::kVideo, ssrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), kPacketSize);
|
|
pacer_->ProcessPackets();
|
|
EXPECT_EQ(packet_sender.packets_sent(), packets_sent_before_probe + 2);
|
|
PacedPacketInfo last_pacing_info = packet_sender.last_pacing_info();
|
|
EXPECT_EQ(last_pacing_info.probe_cluster_id, kProbeClusterId);
|
|
|
|
// We're exactly where we should be for the next probe.
|
|
const Timestamp probe_time = clock_.CurrentTime();
|
|
EXPECT_EQ(pacer_->NextSendTime(), clock_.CurrentTime());
|
|
|
|
BitrateProberConfig probing_config(&trials);
|
|
EXPECT_GT(probing_config.max_probe_delay.Get(), TimeDelta::Zero());
|
|
// Advance to within max probe delay, should still return same target.
|
|
clock_.AdvanceTime(probing_config.max_probe_delay.Get());
|
|
EXPECT_EQ(pacer_->NextSendTime(), probe_time);
|
|
|
|
// Too high probe delay, drop it!
|
|
clock_.AdvanceTime(TimeDelta::Micros(1));
|
|
|
|
int packets_sent_before_timeout = packet_sender.total_packets_sent();
|
|
if (abort_delayed_probes) {
|
|
// Expected next process time is unchanged, but calling should not
|
|
// generate new packets.
|
|
EXPECT_EQ(pacer_->NextSendTime(), probe_time);
|
|
pacer_->ProcessPackets();
|
|
EXPECT_EQ(packet_sender.total_packets_sent(),
|
|
packets_sent_before_timeout);
|
|
|
|
// Next packet sent is not part of probe.
|
|
if (PeriodicProcess()) {
|
|
do {
|
|
AdvanceTimeAndProcess();
|
|
} while (packet_sender.total_packets_sent() ==
|
|
packets_sent_before_timeout);
|
|
} else {
|
|
AdvanceTimeAndProcess();
|
|
}
|
|
const int expected_probe_id = PacedPacketInfo::kNotAProbe;
|
|
EXPECT_EQ(packet_sender.last_pacing_info().probe_cluster_id,
|
|
expected_probe_id);
|
|
} else {
|
|
// Legacy behaviour, probe "aborted" so send time moved back. Next call to
|
|
// ProcessPackets() still results in packets being marked as part of probe
|
|
// cluster.
|
|
EXPECT_GT(pacer_->NextSendTime(), probe_time);
|
|
AdvanceTimeAndProcess();
|
|
EXPECT_GT(packet_sender.total_packets_sent(),
|
|
packets_sent_before_timeout);
|
|
const int expected_probe_id = last_pacing_info.probe_cluster_id;
|
|
EXPECT_EQ(packet_sender.last_pacing_info().probe_cluster_id,
|
|
expected_probe_id);
|
|
|
|
// Time between sent packets keeps being too large, but we still mark the
|
|
// packets as being part of the cluster.
|
|
Timestamp a = clock_.CurrentTime();
|
|
AdvanceTimeAndProcess();
|
|
EXPECT_GT(packet_sender.total_packets_sent(),
|
|
packets_sent_before_timeout);
|
|
EXPECT_EQ(packet_sender.last_pacing_info().probe_cluster_id,
|
|
expected_probe_id);
|
|
EXPECT_GT(clock_.CurrentTime() - a, time_between_probes);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_P(PacingControllerTest, ProbingWithPaddingSupport) {
|
|
const size_t kPacketSize = 1200;
|
|
const int kInitialBitrateBps = 300000;
|
|
uint32_t ssrc = 12346;
|
|
uint16_t sequence_number = 1234;
|
|
|
|
PacingControllerProbing packet_sender;
|
|
pacer_ = std::make_unique<PacingController>(&clock_, &packet_sender, nullptr,
|
|
nullptr, GetParam());
|
|
pacer_->CreateProbeCluster(kFirstClusterRate,
|
|
/*cluster_id=*/0);
|
|
pacer_->SetPacingRates(
|
|
DataRate::BitsPerSec(kInitialBitrateBps * kPaceMultiplier),
|
|
DataRate::Zero());
|
|
|
|
for (int i = 0; i < 3; ++i) {
|
|
Send(RtpPacketMediaType::kVideo, ssrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), kPacketSize);
|
|
}
|
|
|
|
int64_t start = clock_.TimeInMilliseconds();
|
|
int process_count = 0;
|
|
while (process_count < 5) {
|
|
clock_.AdvanceTime(TimeUntilNextProcess());
|
|
pacer_->ProcessPackets();
|
|
++process_count;
|
|
}
|
|
int packets_sent = packet_sender.packets_sent();
|
|
int padding_sent = packet_sender.padding_sent();
|
|
EXPECT_GT(packets_sent, 0);
|
|
EXPECT_GT(padding_sent, 0);
|
|
// Note that the number of intervals here for kPacketSize is
|
|
// packets_sent due to padding in the same cluster.
|
|
EXPECT_NEAR((packets_sent * kPacketSize * 8000 + padding_sent) /
|
|
(clock_.TimeInMilliseconds() - start),
|
|
kFirstClusterRate.bps(), kProbingErrorMargin.bps());
|
|
}
|
|
|
|
TEST_P(PacingControllerTest, PaddingOveruse) {
|
|
uint32_t ssrc = 12346;
|
|
uint16_t sequence_number = 1234;
|
|
const size_t kPacketSize = 1200;
|
|
|
|
// Initially no padding rate.
|
|
pacer_->ProcessPackets();
|
|
pacer_->SetPacingRates(DataRate::BitsPerSec(60000 * kPaceMultiplier),
|
|
DataRate::Zero());
|
|
|
|
SendAndExpectPacket(RtpPacketMediaType::kVideo, ssrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), kPacketSize);
|
|
pacer_->ProcessPackets();
|
|
|
|
// Add 30kbit padding. When increasing budget, media budget will increase from
|
|
// negative (overuse) while padding budget will increase from 0.
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
pacer_->SetPacingRates(DataRate::BitsPerSec(60000 * kPaceMultiplier),
|
|
DataRate::BitsPerSec(30000));
|
|
|
|
SendAndExpectPacket(RtpPacketMediaType::kVideo, ssrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), kPacketSize);
|
|
EXPECT_LT(TimeDelta::Millis(5), pacer_->ExpectedQueueTime());
|
|
// Don't send padding if queue is non-empty, even if padding budget > 0.
|
|
EXPECT_CALL(callback_, SendPadding).Times(0);
|
|
if (PeriodicProcess()) {
|
|
pacer_->ProcessPackets();
|
|
} else {
|
|
AdvanceTimeAndProcess();
|
|
}
|
|
}
|
|
|
|
TEST_P(PacingControllerTest, ProbeClusterId) {
|
|
MockPacketSender callback;
|
|
|
|
pacer_ = std::make_unique<PacingController>(&clock_, &callback, nullptr,
|
|
nullptr, GetParam());
|
|
Init();
|
|
|
|
uint32_t ssrc = 12346;
|
|
uint16_t sequence_number = 1234;
|
|
const size_t kPacketSize = 1200;
|
|
|
|
pacer_->SetPacingRates(kTargetRate * kPaceMultiplier, kTargetRate);
|
|
pacer_->SetProbingEnabled(true);
|
|
for (int i = 0; i < 10; ++i) {
|
|
Send(RtpPacketMediaType::kVideo, ssrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), kPacketSize);
|
|
}
|
|
|
|
// First probing cluster.
|
|
EXPECT_CALL(callback,
|
|
SendPacket(_, Field(&PacedPacketInfo::probe_cluster_id, 0)))
|
|
.Times(5);
|
|
|
|
for (int i = 0; i < 5; ++i) {
|
|
AdvanceTimeAndProcess();
|
|
}
|
|
|
|
// Second probing cluster.
|
|
EXPECT_CALL(callback,
|
|
SendPacket(_, Field(&PacedPacketInfo::probe_cluster_id, 1)))
|
|
.Times(5);
|
|
|
|
for (int i = 0; i < 5; ++i) {
|
|
AdvanceTimeAndProcess();
|
|
}
|
|
|
|
// Needed for the Field comparer below.
|
|
const int kNotAProbe = PacedPacketInfo::kNotAProbe;
|
|
// No more probing packets.
|
|
EXPECT_CALL(callback, GeneratePadding).WillOnce([&](DataSize padding_size) {
|
|
std::vector<std::unique_ptr<RtpPacketToSend>> padding_packets;
|
|
padding_packets.emplace_back(
|
|
BuildPacket(RtpPacketMediaType::kPadding, ssrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), padding_size.bytes()));
|
|
return padding_packets;
|
|
});
|
|
bool non_probe_packet_seen = false;
|
|
EXPECT_CALL(callback, SendPacket)
|
|
.WillOnce([&](std::unique_ptr<RtpPacketToSend> packet,
|
|
const PacedPacketInfo& cluster_info) {
|
|
EXPECT_EQ(cluster_info.probe_cluster_id, kNotAProbe);
|
|
non_probe_packet_seen = true;
|
|
});
|
|
while (!non_probe_packet_seen) {
|
|
AdvanceTimeAndProcess();
|
|
}
|
|
}
|
|
|
|
TEST_P(PacingControllerTest, OwnedPacketPrioritizedOnType) {
|
|
MockPacketSender callback;
|
|
pacer_ = std::make_unique<PacingController>(&clock_, &callback, nullptr,
|
|
nullptr, GetParam());
|
|
Init();
|
|
|
|
// Insert a packet of each type, from low to high priority. Since priority
|
|
// is weighted higher than insert order, these should come out of the pacer
|
|
// in backwards order with the exception of FEC and Video.
|
|
for (RtpPacketMediaType type :
|
|
{RtpPacketMediaType::kPadding,
|
|
RtpPacketMediaType::kForwardErrorCorrection, RtpPacketMediaType::kVideo,
|
|
RtpPacketMediaType::kRetransmission, RtpPacketMediaType::kAudio}) {
|
|
pacer_->EnqueuePacket(BuildRtpPacket(type));
|
|
}
|
|
|
|
::testing::InSequence seq;
|
|
EXPECT_CALL(
|
|
callback,
|
|
SendPacket(Pointee(Property(&RtpPacketToSend::Ssrc, kAudioSsrc)), _));
|
|
EXPECT_CALL(
|
|
callback,
|
|
SendPacket(Pointee(Property(&RtpPacketToSend::Ssrc, kVideoRtxSsrc)), _));
|
|
|
|
// FEC and video actually have the same priority, so will come out in
|
|
// insertion order.
|
|
EXPECT_CALL(
|
|
callback,
|
|
SendPacket(Pointee(Property(&RtpPacketToSend::Ssrc, kFlexFecSsrc)), _));
|
|
EXPECT_CALL(
|
|
callback,
|
|
SendPacket(Pointee(Property(&RtpPacketToSend::Ssrc, kVideoSsrc)), _));
|
|
|
|
EXPECT_CALL(
|
|
callback,
|
|
SendPacket(Pointee(Property(&RtpPacketToSend::Ssrc, kVideoRtxSsrc)), _));
|
|
|
|
while (pacer_->QueueSizePackets() > 0) {
|
|
if (PeriodicProcess()) {
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
pacer_->ProcessPackets();
|
|
} else {
|
|
AdvanceTimeAndProcess();
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_P(PacingControllerTest, SmallFirstProbePacket) {
|
|
ScopedFieldTrials trial("WebRTC-Pacer-SmallFirstProbePacket/Enabled/");
|
|
MockPacketSender callback;
|
|
pacer_ = std::make_unique<PacingController>(&clock_, &callback, nullptr,
|
|
nullptr, GetParam());
|
|
pacer_->CreateProbeCluster(kFirstClusterRate, /*cluster_id=*/0);
|
|
pacer_->SetPacingRates(kTargetRate * kPaceMultiplier, DataRate::Zero());
|
|
|
|
// Add high prio media.
|
|
pacer_->EnqueuePacket(BuildRtpPacket(RtpPacketMediaType::kAudio));
|
|
|
|
// Expect small padding packet to be requested.
|
|
EXPECT_CALL(callback, GeneratePadding(DataSize::Bytes(1)))
|
|
.WillOnce([&](DataSize padding_size) {
|
|
std::vector<std::unique_ptr<RtpPacketToSend>> padding_packets;
|
|
padding_packets.emplace_back(
|
|
BuildPacket(RtpPacketMediaType::kPadding, kAudioSsrc, 1,
|
|
clock_.TimeInMilliseconds(), 1));
|
|
return padding_packets;
|
|
});
|
|
|
|
size_t packets_sent = 0;
|
|
bool media_seen = false;
|
|
EXPECT_CALL(callback, SendPacket)
|
|
.Times(::testing::AnyNumber())
|
|
.WillRepeatedly([&](std::unique_ptr<RtpPacketToSend> packet,
|
|
const PacedPacketInfo& cluster_info) {
|
|
if (packets_sent == 0) {
|
|
EXPECT_EQ(packet->packet_type(), RtpPacketMediaType::kPadding);
|
|
} else {
|
|
if (packet->packet_type() == RtpPacketMediaType::kAudio) {
|
|
media_seen = true;
|
|
}
|
|
}
|
|
packets_sent++;
|
|
});
|
|
while (!media_seen) {
|
|
pacer_->ProcessPackets();
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
}
|
|
}
|
|
|
|
TEST_P(PacingControllerTest, TaskLate) {
|
|
if (PeriodicProcess()) {
|
|
// This test applies only when NOT using interval budget.
|
|
return;
|
|
}
|
|
|
|
// Set a low send rate to more easily test timing issues.
|
|
DataRate kSendRate = DataRate::KilobitsPerSec(30);
|
|
pacer_->SetPacingRates(kSendRate, DataRate::Zero());
|
|
|
|
// Add four packets of equal size and priority.
|
|
pacer_->EnqueuePacket(BuildRtpPacket(RtpPacketMediaType::kVideo));
|
|
pacer_->EnqueuePacket(BuildRtpPacket(RtpPacketMediaType::kVideo));
|
|
pacer_->EnqueuePacket(BuildRtpPacket(RtpPacketMediaType::kVideo));
|
|
pacer_->EnqueuePacket(BuildRtpPacket(RtpPacketMediaType::kVideo));
|
|
|
|
// Process packets, only first should be sent.
|
|
EXPECT_CALL(callback_, SendPacket).Times(1);
|
|
pacer_->ProcessPackets();
|
|
|
|
Timestamp next_send_time = pacer_->NextSendTime();
|
|
// Determine time between packets (ca 62ms)
|
|
const TimeDelta time_between_packets = next_send_time - clock_.CurrentTime();
|
|
|
|
// Simulate a late process call, executed just before we allow sending the
|
|
// fourth packet.
|
|
const TimeDelta kOffset = TimeDelta::Millis(1);
|
|
clock_.AdvanceTime((time_between_packets * 3) - kOffset);
|
|
|
|
EXPECT_CALL(callback_, SendPacket).Times(2);
|
|
pacer_->ProcessPackets();
|
|
|
|
// Check that next scheduled send time is in ca 1ms.
|
|
next_send_time = pacer_->NextSendTime();
|
|
const TimeDelta time_left = next_send_time - clock_.CurrentTime();
|
|
EXPECT_EQ(time_left.RoundTo(TimeDelta::Millis(1)), kOffset);
|
|
|
|
clock_.AdvanceTime(time_left);
|
|
EXPECT_CALL(callback_, SendPacket);
|
|
pacer_->ProcessPackets();
|
|
}
|
|
|
|
TEST_P(PacingControllerTest, NoProbingWhilePaused) {
|
|
uint32_t ssrc = 12345;
|
|
uint16_t sequence_number = 1234;
|
|
|
|
pacer_->SetProbingEnabled(true);
|
|
|
|
// Send at least one packet so probing can initate.
|
|
SendAndExpectPacket(RtpPacketMediaType::kVideo, ssrc, sequence_number,
|
|
clock_.TimeInMilliseconds(), 250);
|
|
while (pacer_->QueueSizePackets() > 0) {
|
|
AdvanceTimeAndProcess();
|
|
}
|
|
|
|
// Trigger probing.
|
|
pacer_->CreateProbeCluster(DataRate::KilobitsPerSec(10000), // 10 Mbps.
|
|
/*cluster_id=*/3);
|
|
|
|
// Time to next send time should be small.
|
|
EXPECT_LT(pacer_->NextSendTime() - clock_.CurrentTime(),
|
|
PacingController::kPausedProcessInterval);
|
|
|
|
// Pause pacer, time to next send time should now be the pause process
|
|
// interval.
|
|
pacer_->Pause();
|
|
|
|
EXPECT_EQ(pacer_->NextSendTime() - clock_.CurrentTime(),
|
|
PacingController::kPausedProcessInterval);
|
|
}
|
|
|
|
TEST_P(PacingControllerTest, AudioNotPacedEvenWhenAccountedFor) {
|
|
const uint32_t kSsrc = 12345;
|
|
uint16_t sequence_number = 1234;
|
|
const size_t kPacketSize = 123;
|
|
|
|
// Account for audio - so that audio packets can cause pushback on other
|
|
// types such as video. Audio packet should still be immediated passed
|
|
// through though ("WebRTC-Pacer-BlockAudio" needs to be enabled in order
|
|
// to pace audio packets).
|
|
pacer_->SetAccountForAudioPackets(true);
|
|
|
|
// Set pacing rate to 1 packet/s, no padding.
|
|
pacer_->SetPacingRates(DataSize::Bytes(kPacketSize) / TimeDelta::Seconds(1),
|
|
DataRate::Zero());
|
|
|
|
// Add and send an audio packet.
|
|
SendAndExpectPacket(RtpPacketMediaType::kAudio, kSsrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), kPacketSize);
|
|
pacer_->ProcessPackets();
|
|
|
|
// Advance time, add another audio packet and process. It should be sent
|
|
// immediately.
|
|
clock_.AdvanceTimeMilliseconds(5);
|
|
SendAndExpectPacket(RtpPacketMediaType::kAudio, kSsrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), kPacketSize);
|
|
pacer_->ProcessPackets();
|
|
}
|
|
|
|
TEST_P(PacingControllerTest,
|
|
PaddingResumesAfterSaturationEvenWithConcurrentAudio) {
|
|
const uint32_t kSsrc = 12345;
|
|
const DataRate kPacingDataRate = DataRate::KilobitsPerSec(125);
|
|
const DataRate kPaddingDataRate = DataRate::KilobitsPerSec(100);
|
|
const TimeDelta kMaxBufferInTime = TimeDelta::Millis(500);
|
|
const DataSize kPacketSize = DataSize::Bytes(130);
|
|
const TimeDelta kAudioPacketInterval = TimeDelta::Millis(20);
|
|
|
|
// In this test, we fist send a burst of video in order to saturate the
|
|
// padding debt level.
|
|
// We then proceed to send audio at a bitrate that is slightly lower than
|
|
// the padding rate, meaning there will be a period with audio but no
|
|
// padding sent while the debt is draining, then audio and padding will
|
|
// be interlieved.
|
|
|
|
// Verify both with and without accounting for audio.
|
|
for (bool account_for_audio : {false, true}) {
|
|
uint16_t sequence_number = 1234;
|
|
MockPacketSender callback;
|
|
EXPECT_CALL(callback, SendPacket).Times(::testing::AnyNumber());
|
|
pacer_ = std::make_unique<PacingController>(&clock_, &callback, nullptr,
|
|
nullptr, GetParam());
|
|
pacer_->SetAccountForAudioPackets(account_for_audio);
|
|
|
|
// First, saturate the padding budget.
|
|
pacer_->SetPacingRates(kPacingDataRate, kPaddingDataRate);
|
|
|
|
const TimeDelta kPaddingSaturationTime =
|
|
kMaxBufferInTime * kPaddingDataRate /
|
|
(kPacingDataRate - kPaddingDataRate);
|
|
const DataSize kVideoToSend = kPaddingSaturationTime * kPacingDataRate;
|
|
const DataSize kVideoPacketSize = DataSize::Bytes(1200);
|
|
DataSize video_sent = DataSize::Zero();
|
|
while (video_sent < kVideoToSend) {
|
|
pacer_->EnqueuePacket(
|
|
BuildPacket(RtpPacketMediaType::kVideo, kSsrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), kVideoPacketSize.bytes()));
|
|
video_sent += kVideoPacketSize;
|
|
}
|
|
while (pacer_->QueueSizePackets() > 0) {
|
|
AdvanceTimeAndProcess();
|
|
}
|
|
|
|
// Add a stream of audio packets at a rate slightly lower than the padding
|
|
// rate, once the padding debt is paid off we expect padding to be
|
|
// generated.
|
|
pacer_->SetPacingRates(kPacingDataRate, kPaddingDataRate);
|
|
bool padding_seen = false;
|
|
EXPECT_CALL(callback, GeneratePadding).WillOnce([&](DataSize padding_size) {
|
|
padding_seen = true;
|
|
std::vector<std::unique_ptr<RtpPacketToSend>> padding_packets;
|
|
padding_packets.emplace_back(
|
|
BuildPacket(RtpPacketMediaType::kPadding, kSsrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), padding_size.bytes()));
|
|
return padding_packets;
|
|
});
|
|
|
|
Timestamp start_time = clock_.CurrentTime();
|
|
Timestamp last_audio_time = start_time;
|
|
while (!padding_seen) {
|
|
Timestamp now = clock_.CurrentTime();
|
|
Timestamp next_send_time = pacer_->NextSendTime();
|
|
TimeDelta sleep_time =
|
|
std::min(next_send_time, last_audio_time + kAudioPacketInterval) -
|
|
now;
|
|
clock_.AdvanceTime(sleep_time);
|
|
while (clock_.CurrentTime() >= last_audio_time + kAudioPacketInterval) {
|
|
pacer_->EnqueuePacket(
|
|
BuildPacket(RtpPacketMediaType::kAudio, kSsrc, sequence_number++,
|
|
clock_.TimeInMilliseconds(), kPacketSize.bytes()));
|
|
last_audio_time += kAudioPacketInterval;
|
|
}
|
|
pacer_->ProcessPackets();
|
|
}
|
|
|
|
// Verify how long it took to drain the padding debt. Allow 2% error margin.
|
|
const DataRate kAudioDataRate = kPacketSize / kAudioPacketInterval;
|
|
const TimeDelta expected_drain_time =
|
|
account_for_audio ? (kMaxBufferInTime * kPaddingDataRate /
|
|
(kPaddingDataRate - kAudioDataRate))
|
|
: kMaxBufferInTime;
|
|
const TimeDelta actual_drain_time = clock_.CurrentTime() - start_time;
|
|
EXPECT_NEAR(actual_drain_time.ms(), expected_drain_time.ms(),
|
|
expected_drain_time.ms() * 0.02)
|
|
<< " where account_for_audio = "
|
|
<< (account_for_audio ? "true" : "false");
|
|
}
|
|
}
|
|
|
|
TEST_P(PacingControllerTest, AccountsForAudioEnqueuTime) {
|
|
if (PeriodicProcess()) {
|
|
// This test applies only when NOT using interval budget.
|
|
return;
|
|
}
|
|
|
|
const uint32_t kSsrc = 12345;
|
|
const DataRate kPacingDataRate = DataRate::KilobitsPerSec(125);
|
|
const DataRate kPaddingDataRate = DataRate::Zero();
|
|
const DataSize kPacketSize = DataSize::Bytes(130);
|
|
const TimeDelta kPacketPacingTime = kPacketSize / kPacingDataRate;
|
|
|
|
uint32_t sequnce_number = 1;
|
|
// Audio not paced, but still accounted for in budget.
|
|
pacer_->SetAccountForAudioPackets(true);
|
|
pacer_->SetPacingRates(kPacingDataRate, kPaddingDataRate);
|
|
|
|
// Enqueue two audio packets, advance clock to where one packet
|
|
// should have drained the buffer already, has they been sent
|
|
// immediately.
|
|
SendAndExpectPacket(RtpPacketMediaType::kAudio, kSsrc, sequnce_number++,
|
|
clock_.TimeInMilliseconds(), kPacketSize.bytes());
|
|
SendAndExpectPacket(RtpPacketMediaType::kAudio, kSsrc, sequnce_number++,
|
|
clock_.TimeInMilliseconds(), kPacketSize.bytes());
|
|
clock_.AdvanceTime(kPacketPacingTime);
|
|
// Now process and make sure both packets were sent.
|
|
pacer_->ProcessPackets();
|
|
::testing::Mock::VerifyAndClearExpectations(&callback_);
|
|
|
|
// Add a video packet. I can't be sent until debt from audio
|
|
// packets have been drained.
|
|
Send(RtpPacketMediaType::kVideo, kSsrc + 1, sequnce_number++,
|
|
clock_.TimeInMilliseconds(), kPacketSize.bytes());
|
|
EXPECT_EQ(pacer_->NextSendTime() - clock_.CurrentTime(), kPacketPacingTime);
|
|
}
|
|
|
|
TEST_P(PacingControllerTest, NextSendTimeAccountsForPadding) {
|
|
if (PeriodicProcess()) {
|
|
// This test applies only when NOT using interval budget.
|
|
return;
|
|
}
|
|
|
|
const uint32_t kSsrc = 12345;
|
|
const DataRate kPacingDataRate = DataRate::KilobitsPerSec(125);
|
|
const DataSize kPacketSize = DataSize::Bytes(130);
|
|
const TimeDelta kPacketPacingTime = kPacketSize / kPacingDataRate;
|
|
|
|
uint32_t sequnce_number = 1;
|
|
|
|
// Start with no padding.
|
|
pacer_->SetPacingRates(kPacingDataRate, DataRate::Zero());
|
|
|
|
// Send a single packet.
|
|
SendAndExpectPacket(RtpPacketMediaType::kVideo, kSsrc, sequnce_number++,
|
|
clock_.TimeInMilliseconds(), kPacketSize.bytes());
|
|
pacer_->ProcessPackets();
|
|
::testing::Mock::VerifyAndClearExpectations(&callback_);
|
|
|
|
// With current conditions, no need to wake until next keep-alive.
|
|
EXPECT_EQ(pacer_->NextSendTime() - clock_.CurrentTime(),
|
|
PacingController::kPausedProcessInterval);
|
|
|
|
// Enqueue a new packet, that can't be sent until previous buffer has
|
|
// drained.
|
|
SendAndExpectPacket(RtpPacketMediaType::kVideo, kSsrc, sequnce_number++,
|
|
clock_.TimeInMilliseconds(), kPacketSize.bytes());
|
|
EXPECT_EQ(pacer_->NextSendTime() - clock_.CurrentTime(), kPacketPacingTime);
|
|
clock_.AdvanceTime(kPacketPacingTime);
|
|
pacer_->ProcessPackets();
|
|
::testing::Mock::VerifyAndClearExpectations(&callback_);
|
|
|
|
// With current conditions, again no need to wake until next keep-alive.
|
|
EXPECT_EQ(pacer_->NextSendTime() - clock_.CurrentTime(),
|
|
PacingController::kPausedProcessInterval);
|
|
|
|
// Set a non-zero padding rate. Padding also can't be sent until
|
|
// previous debt has cleared. Since padding was disabled before, there
|
|
// currently is no padding debt.
|
|
pacer_->SetPacingRates(kPacingDataRate, kPacingDataRate / 2);
|
|
EXPECT_EQ(pacer_->NextSendTime() - clock_.CurrentTime(), kPacketPacingTime);
|
|
|
|
// Advance time, expect padding.
|
|
EXPECT_CALL(callback_, SendPadding).WillOnce(Return(kPacketSize.bytes()));
|
|
clock_.AdvanceTime(kPacketPacingTime);
|
|
pacer_->ProcessPackets();
|
|
::testing::Mock::VerifyAndClearExpectations(&callback_);
|
|
|
|
// Since padding rate is half of pacing rate, next time we can send
|
|
// padding is double the packet pacing time.
|
|
EXPECT_EQ(pacer_->NextSendTime() - clock_.CurrentTime(),
|
|
kPacketPacingTime * 2);
|
|
|
|
// Insert a packet to be sent, this take precedence again.
|
|
Send(RtpPacketMediaType::kVideo, kSsrc, sequnce_number++,
|
|
clock_.TimeInMilliseconds(), kPacketSize.bytes());
|
|
EXPECT_EQ(pacer_->NextSendTime() - clock_.CurrentTime(), kPacketPacingTime);
|
|
}
|
|
|
|
TEST_P(PacingControllerTest, PaddingTargetAccountsForPaddingRate) {
|
|
if (PeriodicProcess()) {
|
|
// This test applies only when NOT using interval budget.
|
|
return;
|
|
}
|
|
|
|
// Re-init pacer with an explicitly set padding target of 10ms;
|
|
const TimeDelta kPaddingTarget = TimeDelta::Millis(10);
|
|
ScopedFieldTrials field_trials(
|
|
"WebRTC-Pacer-DynamicPaddingTarget/timedelta:10ms/");
|
|
SetUp();
|
|
|
|
const uint32_t kSsrc = 12345;
|
|
const DataRate kPacingDataRate = DataRate::KilobitsPerSec(125);
|
|
const DataSize kPacketSize = DataSize::Bytes(130);
|
|
|
|
uint32_t sequnce_number = 1;
|
|
|
|
// Start with pacing and padding rate equal.
|
|
pacer_->SetPacingRates(kPacingDataRate, kPacingDataRate);
|
|
|
|
// Send a single packet.
|
|
SendAndExpectPacket(RtpPacketMediaType::kVideo, kSsrc, sequnce_number++,
|
|
clock_.TimeInMilliseconds(), kPacketSize.bytes());
|
|
AdvanceTimeAndProcess();
|
|
::testing::Mock::VerifyAndClearExpectations(&callback_);
|
|
|
|
size_t expected_padding_target_bytes =
|
|
(kPaddingTarget * kPacingDataRate).bytes();
|
|
EXPECT_CALL(callback_, SendPadding(expected_padding_target_bytes))
|
|
.WillOnce(Return(expected_padding_target_bytes));
|
|
AdvanceTimeAndProcess();
|
|
|
|
// Half the padding rate - expect half the padding target.
|
|
pacer_->SetPacingRates(kPacingDataRate, kPacingDataRate / 2);
|
|
EXPECT_CALL(callback_, SendPadding(expected_padding_target_bytes / 2))
|
|
.WillOnce(Return(expected_padding_target_bytes / 2));
|
|
AdvanceTimeAndProcess();
|
|
}
|
|
|
|
TEST_P(PacingControllerTest, SendsDeferredFecPackets) {
|
|
ScopedFieldTrials trial("WebRTC-DeferredFecGeneration/Enabled/");
|
|
SetUp();
|
|
|
|
const uint32_t kSsrc = 12345;
|
|
const uint32_t kFlexSsrc = 54321;
|
|
uint16_t sequence_number = 1234;
|
|
uint16_t flexfec_sequence_number = 4321;
|
|
const size_t kPacketSize = 123;
|
|
|
|
// Set pacing rate to 1000 packet/s, no padding.
|
|
pacer_->SetPacingRates(
|
|
DataSize::Bytes(1000 * kPacketSize) / TimeDelta::Seconds(1),
|
|
DataRate::Zero());
|
|
|
|
int64_t now = clock_.TimeInMilliseconds();
|
|
Send(RtpPacketMediaType::kVideo, kSsrc, sequence_number, now, kPacketSize);
|
|
EXPECT_CALL(callback_, SendPacket(kSsrc, sequence_number, now, false, false));
|
|
EXPECT_CALL(callback_, FetchFec).WillOnce([&]() {
|
|
EXPECT_CALL(callback_, SendPacket(kFlexSsrc, flexfec_sequence_number, now,
|
|
false, false));
|
|
EXPECT_CALL(callback_, FetchFec);
|
|
std::vector<std::unique_ptr<RtpPacketToSend>> fec_packets;
|
|
fec_packets.push_back(
|
|
BuildPacket(RtpPacketMediaType::kForwardErrorCorrection, kFlexSsrc,
|
|
flexfec_sequence_number, now, kPacketSize));
|
|
return fec_packets;
|
|
});
|
|
AdvanceTimeAndProcess();
|
|
AdvanceTimeAndProcess();
|
|
}
|
|
|
|
INSTANTIATE_TEST_SUITE_P(
|
|
WithAndWithoutIntervalBudget,
|
|
PacingControllerTest,
|
|
::testing::Values(PacingController::ProcessMode::kPeriodic,
|
|
PacingController::ProcessMode::kDynamic));
|
|
|
|
} // namespace test
|
|
} // namespace webrtc
|