You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
498 lines
19 KiB
498 lines
19 KiB
/* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "modules/video_coding/receiver.h"
|
|
|
|
#include <string.h>
|
|
|
|
#include <cstdint>
|
|
#include <memory>
|
|
#include <queue>
|
|
#include <vector>
|
|
|
|
#include "modules/video_coding/encoded_frame.h"
|
|
#include "modules/video_coding/jitter_buffer_common.h"
|
|
#include "modules/video_coding/packet.h"
|
|
#include "modules/video_coding/test/stream_generator.h"
|
|
#include "modules/video_coding/timing.h"
|
|
#include "rtc_base/checks.h"
|
|
#include "system_wrappers/include/clock.h"
|
|
#include "test/gtest.h"
|
|
|
|
namespace webrtc {
|
|
|
|
class TestVCMReceiver : public ::testing::Test {
|
|
protected:
|
|
TestVCMReceiver()
|
|
: clock_(new SimulatedClock(0)),
|
|
timing_(clock_.get()),
|
|
receiver_(&timing_, clock_.get()) {
|
|
stream_generator_.reset(
|
|
new StreamGenerator(0, clock_->TimeInMilliseconds()));
|
|
}
|
|
|
|
virtual void SetUp() {}
|
|
|
|
int32_t InsertPacket(int index) {
|
|
VCMPacket packet;
|
|
bool packet_available = stream_generator_->GetPacket(&packet, index);
|
|
EXPECT_TRUE(packet_available);
|
|
if (!packet_available)
|
|
return kGeneralError; // Return here to avoid crashes below.
|
|
return receiver_.InsertPacket(packet);
|
|
}
|
|
|
|
int32_t InsertPacketAndPop(int index) {
|
|
VCMPacket packet;
|
|
bool packet_available = stream_generator_->PopPacket(&packet, index);
|
|
EXPECT_TRUE(packet_available);
|
|
if (!packet_available)
|
|
return kGeneralError; // Return here to avoid crashes below.
|
|
return receiver_.InsertPacket(packet);
|
|
}
|
|
|
|
int32_t InsertFrame(VideoFrameType frame_type, bool complete) {
|
|
int num_of_packets = complete ? 1 : 2;
|
|
stream_generator_->GenerateFrame(
|
|
frame_type,
|
|
(frame_type != VideoFrameType::kEmptyFrame) ? num_of_packets : 0,
|
|
(frame_type == VideoFrameType::kEmptyFrame) ? 1 : 0,
|
|
clock_->TimeInMilliseconds());
|
|
int32_t ret = InsertPacketAndPop(0);
|
|
if (!complete) {
|
|
// Drop the second packet.
|
|
VCMPacket packet;
|
|
stream_generator_->PopPacket(&packet, 0);
|
|
}
|
|
clock_->AdvanceTimeMilliseconds(kDefaultFramePeriodMs);
|
|
return ret;
|
|
}
|
|
|
|
bool DecodeNextFrame() {
|
|
VCMEncodedFrame* frame = receiver_.FrameForDecoding(0, false);
|
|
if (!frame)
|
|
return false;
|
|
receiver_.ReleaseFrame(frame);
|
|
return true;
|
|
}
|
|
|
|
std::unique_ptr<SimulatedClock> clock_;
|
|
VCMTiming timing_;
|
|
VCMReceiver receiver_;
|
|
std::unique_ptr<StreamGenerator> stream_generator_;
|
|
};
|
|
|
|
TEST_F(TestVCMReceiver, NonDecodableDuration_Empty) {
|
|
const size_t kMaxNackListSize = 1000;
|
|
const int kMaxPacketAgeToNack = 1000;
|
|
const int kMaxNonDecodableDuration = 500;
|
|
const int kMinDelayMs = 500;
|
|
receiver_.SetNackSettings(kMaxNackListSize, kMaxPacketAgeToNack,
|
|
kMaxNonDecodableDuration);
|
|
EXPECT_GE(InsertFrame(VideoFrameType::kVideoFrameKey, true), kNoError);
|
|
// Advance time until it's time to decode the key frame.
|
|
clock_->AdvanceTimeMilliseconds(kMinDelayMs);
|
|
EXPECT_TRUE(DecodeNextFrame());
|
|
bool request_key_frame = false;
|
|
std::vector<uint16_t> nack_list = receiver_.NackList(&request_key_frame);
|
|
EXPECT_FALSE(request_key_frame);
|
|
}
|
|
|
|
TEST_F(TestVCMReceiver, NonDecodableDuration_NoKeyFrame) {
|
|
const size_t kMaxNackListSize = 1000;
|
|
const int kMaxPacketAgeToNack = 1000;
|
|
const int kMaxNonDecodableDuration = 500;
|
|
receiver_.SetNackSettings(kMaxNackListSize, kMaxPacketAgeToNack,
|
|
kMaxNonDecodableDuration);
|
|
const int kNumFrames = kDefaultFrameRate * kMaxNonDecodableDuration / 1000;
|
|
for (int i = 0; i < kNumFrames; ++i) {
|
|
EXPECT_GE(InsertFrame(VideoFrameType::kVideoFrameDelta, true), kNoError);
|
|
}
|
|
bool request_key_frame = false;
|
|
std::vector<uint16_t> nack_list = receiver_.NackList(&request_key_frame);
|
|
EXPECT_TRUE(request_key_frame);
|
|
}
|
|
|
|
TEST_F(TestVCMReceiver, NonDecodableDuration_OneIncomplete) {
|
|
const size_t kMaxNackListSize = 1000;
|
|
const int kMaxPacketAgeToNack = 1000;
|
|
const int kMaxNonDecodableDuration = 500;
|
|
const int kMaxNonDecodableDurationFrames =
|
|
(kDefaultFrameRate * kMaxNonDecodableDuration + 500) / 1000;
|
|
const int kMinDelayMs = 500;
|
|
receiver_.SetNackSettings(kMaxNackListSize, kMaxPacketAgeToNack,
|
|
kMaxNonDecodableDuration);
|
|
timing_.set_min_playout_delay(kMinDelayMs);
|
|
int64_t key_frame_inserted = clock_->TimeInMilliseconds();
|
|
EXPECT_GE(InsertFrame(VideoFrameType::kVideoFrameKey, true), kNoError);
|
|
// Insert an incomplete frame.
|
|
EXPECT_GE(InsertFrame(VideoFrameType::kVideoFrameDelta, false), kNoError);
|
|
// Insert enough frames to have too long non-decodable sequence.
|
|
for (int i = 0; i < kMaxNonDecodableDurationFrames; ++i) {
|
|
EXPECT_GE(InsertFrame(VideoFrameType::kVideoFrameDelta, true), kNoError);
|
|
}
|
|
// Advance time until it's time to decode the key frame.
|
|
clock_->AdvanceTimeMilliseconds(kMinDelayMs - clock_->TimeInMilliseconds() -
|
|
key_frame_inserted);
|
|
EXPECT_TRUE(DecodeNextFrame());
|
|
// Make sure we get a key frame request.
|
|
bool request_key_frame = false;
|
|
std::vector<uint16_t> nack_list = receiver_.NackList(&request_key_frame);
|
|
EXPECT_TRUE(request_key_frame);
|
|
}
|
|
|
|
TEST_F(TestVCMReceiver, NonDecodableDuration_NoTrigger) {
|
|
const size_t kMaxNackListSize = 1000;
|
|
const int kMaxPacketAgeToNack = 1000;
|
|
const int kMaxNonDecodableDuration = 500;
|
|
const int kMaxNonDecodableDurationFrames =
|
|
(kDefaultFrameRate * kMaxNonDecodableDuration + 500) / 1000;
|
|
const int kMinDelayMs = 500;
|
|
receiver_.SetNackSettings(kMaxNackListSize, kMaxPacketAgeToNack,
|
|
kMaxNonDecodableDuration);
|
|
timing_.set_min_playout_delay(kMinDelayMs);
|
|
int64_t key_frame_inserted = clock_->TimeInMilliseconds();
|
|
EXPECT_GE(InsertFrame(VideoFrameType::kVideoFrameKey, true), kNoError);
|
|
// Insert an incomplete frame.
|
|
EXPECT_GE(InsertFrame(VideoFrameType::kVideoFrameDelta, false), kNoError);
|
|
// Insert all but one frame to not trigger a key frame request due to
|
|
// too long duration of non-decodable frames.
|
|
for (int i = 0; i < kMaxNonDecodableDurationFrames - 1; ++i) {
|
|
EXPECT_GE(InsertFrame(VideoFrameType::kVideoFrameDelta, true), kNoError);
|
|
}
|
|
// Advance time until it's time to decode the key frame.
|
|
clock_->AdvanceTimeMilliseconds(kMinDelayMs - clock_->TimeInMilliseconds() -
|
|
key_frame_inserted);
|
|
EXPECT_TRUE(DecodeNextFrame());
|
|
// Make sure we don't get a key frame request since we haven't generated
|
|
// enough frames.
|
|
bool request_key_frame = false;
|
|
std::vector<uint16_t> nack_list = receiver_.NackList(&request_key_frame);
|
|
EXPECT_FALSE(request_key_frame);
|
|
}
|
|
|
|
TEST_F(TestVCMReceiver, NonDecodableDuration_NoTrigger2) {
|
|
const size_t kMaxNackListSize = 1000;
|
|
const int kMaxPacketAgeToNack = 1000;
|
|
const int kMaxNonDecodableDuration = 500;
|
|
const int kMaxNonDecodableDurationFrames =
|
|
(kDefaultFrameRate * kMaxNonDecodableDuration + 500) / 1000;
|
|
const int kMinDelayMs = 500;
|
|
receiver_.SetNackSettings(kMaxNackListSize, kMaxPacketAgeToNack,
|
|
kMaxNonDecodableDuration);
|
|
timing_.set_min_playout_delay(kMinDelayMs);
|
|
int64_t key_frame_inserted = clock_->TimeInMilliseconds();
|
|
EXPECT_GE(InsertFrame(VideoFrameType::kVideoFrameKey, true), kNoError);
|
|
// Insert enough frames to have too long non-decodable sequence, except that
|
|
// we don't have any losses.
|
|
for (int i = 0; i < kMaxNonDecodableDurationFrames; ++i) {
|
|
EXPECT_GE(InsertFrame(VideoFrameType::kVideoFrameDelta, true), kNoError);
|
|
}
|
|
// Insert an incomplete frame.
|
|
EXPECT_GE(InsertFrame(VideoFrameType::kVideoFrameDelta, false), kNoError);
|
|
// Advance time until it's time to decode the key frame.
|
|
clock_->AdvanceTimeMilliseconds(kMinDelayMs - clock_->TimeInMilliseconds() -
|
|
key_frame_inserted);
|
|
EXPECT_TRUE(DecodeNextFrame());
|
|
// Make sure we don't get a key frame request since the non-decodable duration
|
|
// is only one frame.
|
|
bool request_key_frame = false;
|
|
std::vector<uint16_t> nack_list = receiver_.NackList(&request_key_frame);
|
|
EXPECT_FALSE(request_key_frame);
|
|
}
|
|
|
|
TEST_F(TestVCMReceiver, NonDecodableDuration_KeyFrameAfterIncompleteFrames) {
|
|
const size_t kMaxNackListSize = 1000;
|
|
const int kMaxPacketAgeToNack = 1000;
|
|
const int kMaxNonDecodableDuration = 500;
|
|
const int kMaxNonDecodableDurationFrames =
|
|
(kDefaultFrameRate * kMaxNonDecodableDuration + 500) / 1000;
|
|
const int kMinDelayMs = 500;
|
|
receiver_.SetNackSettings(kMaxNackListSize, kMaxPacketAgeToNack,
|
|
kMaxNonDecodableDuration);
|
|
timing_.set_min_playout_delay(kMinDelayMs);
|
|
int64_t key_frame_inserted = clock_->TimeInMilliseconds();
|
|
EXPECT_GE(InsertFrame(VideoFrameType::kVideoFrameKey, true), kNoError);
|
|
// Insert an incomplete frame.
|
|
EXPECT_GE(InsertFrame(VideoFrameType::kVideoFrameDelta, false), kNoError);
|
|
// Insert enough frames to have too long non-decodable sequence.
|
|
for (int i = 0; i < kMaxNonDecodableDurationFrames; ++i) {
|
|
EXPECT_GE(InsertFrame(VideoFrameType::kVideoFrameDelta, true), kNoError);
|
|
}
|
|
EXPECT_GE(InsertFrame(VideoFrameType::kVideoFrameKey, true), kNoError);
|
|
// Advance time until it's time to decode the key frame.
|
|
clock_->AdvanceTimeMilliseconds(kMinDelayMs - clock_->TimeInMilliseconds() -
|
|
key_frame_inserted);
|
|
EXPECT_TRUE(DecodeNextFrame());
|
|
// Make sure we don't get a key frame request since we have a key frame
|
|
// in the list.
|
|
bool request_key_frame = false;
|
|
std::vector<uint16_t> nack_list = receiver_.NackList(&request_key_frame);
|
|
EXPECT_FALSE(request_key_frame);
|
|
}
|
|
|
|
// A simulated clock, when time elapses, will insert frames into the jitter
|
|
// buffer, based on initial settings.
|
|
class SimulatedClockWithFrames : public SimulatedClock {
|
|
public:
|
|
SimulatedClockWithFrames(StreamGenerator* stream_generator,
|
|
VCMReceiver* receiver)
|
|
: SimulatedClock(0),
|
|
stream_generator_(stream_generator),
|
|
receiver_(receiver) {}
|
|
virtual ~SimulatedClockWithFrames() {}
|
|
|
|
// If |stop_on_frame| is true and next frame arrives between now and
|
|
// now+|milliseconds|, the clock will be advanced to the arrival time of next
|
|
// frame.
|
|
// Otherwise, the clock will be advanced by |milliseconds|.
|
|
//
|
|
// For both cases, a frame will be inserted into the jitter buffer at the
|
|
// instant when the clock time is timestamps_.front().arrive_time.
|
|
//
|
|
// Return true if some frame arrives between now and now+|milliseconds|.
|
|
bool AdvanceTimeMilliseconds(int64_t milliseconds, bool stop_on_frame) {
|
|
return AdvanceTimeMicroseconds(milliseconds * 1000, stop_on_frame);
|
|
}
|
|
|
|
bool AdvanceTimeMicroseconds(int64_t microseconds, bool stop_on_frame) {
|
|
int64_t start_time = TimeInMicroseconds();
|
|
int64_t end_time = start_time + microseconds;
|
|
bool frame_injected = false;
|
|
while (!timestamps_.empty() &&
|
|
timestamps_.front().arrive_time <= end_time) {
|
|
RTC_DCHECK_GE(timestamps_.front().arrive_time, start_time);
|
|
|
|
SimulatedClock::AdvanceTimeMicroseconds(timestamps_.front().arrive_time -
|
|
TimeInMicroseconds());
|
|
GenerateAndInsertFrame((timestamps_.front().render_time + 500) / 1000);
|
|
timestamps_.pop();
|
|
frame_injected = true;
|
|
|
|
if (stop_on_frame)
|
|
return frame_injected;
|
|
}
|
|
|
|
if (TimeInMicroseconds() < end_time) {
|
|
SimulatedClock::AdvanceTimeMicroseconds(end_time - TimeInMicroseconds());
|
|
}
|
|
return frame_injected;
|
|
}
|
|
|
|
// Input timestamps are in unit Milliseconds.
|
|
// And |arrive_timestamps| must be positive and in increasing order.
|
|
// |arrive_timestamps| determine when we are going to insert frames into the
|
|
// jitter buffer.
|
|
// |render_timestamps| are the timestamps on the frame.
|
|
void SetFrames(const int64_t* arrive_timestamps,
|
|
const int64_t* render_timestamps,
|
|
size_t size) {
|
|
int64_t previous_arrive_timestamp = 0;
|
|
for (size_t i = 0; i < size; i++) {
|
|
RTC_CHECK_GE(arrive_timestamps[i], previous_arrive_timestamp);
|
|
timestamps_.push(TimestampPair(arrive_timestamps[i] * 1000,
|
|
render_timestamps[i] * 1000));
|
|
previous_arrive_timestamp = arrive_timestamps[i];
|
|
}
|
|
}
|
|
|
|
private:
|
|
struct TimestampPair {
|
|
TimestampPair(int64_t arrive_timestamp, int64_t render_timestamp)
|
|
: arrive_time(arrive_timestamp), render_time(render_timestamp) {}
|
|
|
|
int64_t arrive_time;
|
|
int64_t render_time;
|
|
};
|
|
|
|
void GenerateAndInsertFrame(int64_t render_timestamp_ms) {
|
|
VCMPacket packet;
|
|
stream_generator_->GenerateFrame(VideoFrameType::kVideoFrameKey,
|
|
1, // media packets
|
|
0, // empty packets
|
|
render_timestamp_ms);
|
|
|
|
bool packet_available = stream_generator_->PopPacket(&packet, 0);
|
|
EXPECT_TRUE(packet_available);
|
|
if (!packet_available)
|
|
return; // Return here to avoid crashes below.
|
|
receiver_->InsertPacket(packet);
|
|
}
|
|
|
|
std::queue<TimestampPair> timestamps_;
|
|
StreamGenerator* stream_generator_;
|
|
VCMReceiver* receiver_;
|
|
};
|
|
|
|
// Use a SimulatedClockWithFrames
|
|
// Wait call will do either of these:
|
|
// 1. If |stop_on_frame| is true, the clock will be turned to the exact instant
|
|
// that the first frame comes and the frame will be inserted into the jitter
|
|
// buffer, or the clock will be turned to now + |max_time| if no frame comes in
|
|
// the window.
|
|
// 2. If |stop_on_frame| is false, the clock will be turn to now + |max_time|,
|
|
// and all the frames arriving between now and now + |max_time| will be
|
|
// inserted into the jitter buffer.
|
|
//
|
|
// This is used to simulate the JitterBuffer getting packets from internet as
|
|
// time elapses.
|
|
|
|
class FrameInjectEvent : public EventWrapper {
|
|
public:
|
|
FrameInjectEvent(SimulatedClockWithFrames* clock, bool stop_on_frame)
|
|
: clock_(clock), stop_on_frame_(stop_on_frame) {}
|
|
|
|
bool Set() override { return true; }
|
|
|
|
EventTypeWrapper Wait(int max_time_ms) override {
|
|
if (clock_->AdvanceTimeMilliseconds(max_time_ms, stop_on_frame_) &&
|
|
stop_on_frame_) {
|
|
return EventTypeWrapper::kEventSignaled;
|
|
} else {
|
|
return EventTypeWrapper::kEventTimeout;
|
|
}
|
|
}
|
|
|
|
private:
|
|
SimulatedClockWithFrames* clock_;
|
|
bool stop_on_frame_;
|
|
};
|
|
|
|
class VCMReceiverTimingTest : public ::testing::Test {
|
|
protected:
|
|
VCMReceiverTimingTest()
|
|
|
|
: clock_(&stream_generator_, &receiver_),
|
|
stream_generator_(0, clock_.TimeInMilliseconds()),
|
|
timing_(&clock_),
|
|
receiver_(
|
|
&timing_,
|
|
&clock_,
|
|
std::unique_ptr<EventWrapper>(new FrameInjectEvent(&clock_, false)),
|
|
std::unique_ptr<EventWrapper>(
|
|
new FrameInjectEvent(&clock_, true))) {}
|
|
|
|
virtual void SetUp() {}
|
|
|
|
SimulatedClockWithFrames clock_;
|
|
StreamGenerator stream_generator_;
|
|
VCMTiming timing_;
|
|
VCMReceiver receiver_;
|
|
};
|
|
|
|
// Test whether VCMReceiver::FrameForDecoding handles parameter
|
|
// |max_wait_time_ms| correctly:
|
|
// 1. The function execution should never take more than |max_wait_time_ms|.
|
|
// 2. If the function exit before now + |max_wait_time_ms|, a frame must be
|
|
// returned.
|
|
TEST_F(VCMReceiverTimingTest, FrameForDecoding) {
|
|
const size_t kNumFrames = 100;
|
|
const int kFramePeriod = 40;
|
|
int64_t arrive_timestamps[kNumFrames];
|
|
int64_t render_timestamps[kNumFrames];
|
|
|
|
// Construct test samples.
|
|
// render_timestamps are the timestamps stored in the Frame;
|
|
// arrive_timestamps controls when the Frame packet got received.
|
|
for (size_t i = 0; i < kNumFrames; i++) {
|
|
// Preset frame rate to 25Hz.
|
|
// But we add a reasonable deviation to arrive_timestamps to mimic Internet
|
|
// fluctuation.
|
|
arrive_timestamps[i] =
|
|
(i + 1) * kFramePeriod + (i % 10) * ((i % 2) ? 1 : -1);
|
|
render_timestamps[i] = (i + 1) * kFramePeriod;
|
|
}
|
|
|
|
clock_.SetFrames(arrive_timestamps, render_timestamps, kNumFrames);
|
|
|
|
// Record how many frames we finally get out of the receiver.
|
|
size_t num_frames_return = 0;
|
|
|
|
const int64_t kMaxWaitTime = 30;
|
|
|
|
// Ideally, we should get all frames that we input in InitializeFrames.
|
|
// In the case that FrameForDecoding kills frames by error, we rely on the
|
|
// build bot to kill the test.
|
|
while (num_frames_return < kNumFrames) {
|
|
int64_t start_time = clock_.TimeInMilliseconds();
|
|
VCMEncodedFrame* frame = receiver_.FrameForDecoding(kMaxWaitTime, false);
|
|
int64_t end_time = clock_.TimeInMilliseconds();
|
|
|
|
// In any case the FrameForDecoding should not wait longer than
|
|
// max_wait_time.
|
|
// In the case that we did not get a frame, it should have been waiting for
|
|
// exactly max_wait_time. (By the testing samples we constructed above, we
|
|
// are sure there is no timing error, so the only case it returns with NULL
|
|
// is that it runs out of time.)
|
|
if (frame) {
|
|
receiver_.ReleaseFrame(frame);
|
|
++num_frames_return;
|
|
EXPECT_GE(kMaxWaitTime, end_time - start_time);
|
|
} else {
|
|
EXPECT_EQ(kMaxWaitTime, end_time - start_time);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Test whether VCMReceiver::FrameForDecoding handles parameter
|
|
// |prefer_late_decoding| and |max_wait_time_ms| correctly:
|
|
// 1. The function execution should never take more than |max_wait_time_ms|.
|
|
// 2. If the function exit before now + |max_wait_time_ms|, a frame must be
|
|
// returned and the end time must be equal to the render timestamp - delay
|
|
// for decoding and rendering.
|
|
TEST_F(VCMReceiverTimingTest, FrameForDecodingPreferLateDecoding) {
|
|
const size_t kNumFrames = 100;
|
|
const int kFramePeriod = 40;
|
|
|
|
int64_t arrive_timestamps[kNumFrames];
|
|
int64_t render_timestamps[kNumFrames];
|
|
|
|
int render_delay_ms;
|
|
int max_decode_ms;
|
|
int dummy;
|
|
timing_.GetTimings(&max_decode_ms, &dummy, &dummy, &dummy, &dummy,
|
|
&render_delay_ms);
|
|
|
|
// Construct test samples.
|
|
// render_timestamps are the timestamps stored in the Frame;
|
|
// arrive_timestamps controls when the Frame packet got received.
|
|
for (size_t i = 0; i < kNumFrames; i++) {
|
|
// Preset frame rate to 25Hz.
|
|
// But we add a reasonable deviation to arrive_timestamps to mimic Internet
|
|
// fluctuation.
|
|
arrive_timestamps[i] =
|
|
(i + 1) * kFramePeriod + (i % 10) * ((i % 2) ? 1 : -1);
|
|
render_timestamps[i] = (i + 1) * kFramePeriod;
|
|
}
|
|
|
|
clock_.SetFrames(arrive_timestamps, render_timestamps, kNumFrames);
|
|
|
|
// Record how many frames we finally get out of the receiver.
|
|
size_t num_frames_return = 0;
|
|
const int64_t kMaxWaitTime = 30;
|
|
bool prefer_late_decoding = true;
|
|
while (num_frames_return < kNumFrames) {
|
|
int64_t start_time = clock_.TimeInMilliseconds();
|
|
|
|
VCMEncodedFrame* frame =
|
|
receiver_.FrameForDecoding(kMaxWaitTime, prefer_late_decoding);
|
|
int64_t end_time = clock_.TimeInMilliseconds();
|
|
if (frame) {
|
|
EXPECT_EQ(frame->RenderTimeMs() - max_decode_ms - render_delay_ms,
|
|
end_time);
|
|
receiver_.ReleaseFrame(frame);
|
|
++num_frames_return;
|
|
} else {
|
|
EXPECT_EQ(kMaxWaitTime, end_time - start_time);
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace webrtc
|