You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
151 lines
4.6 KiB
151 lines
4.6 KiB
/*
|
|
* Copyright 2011 The WebRTC Project Authors. All rights reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "rtc_base/rolling_accumulator.h"
|
|
|
|
#include <random>
|
|
|
|
#include "test/gtest.h"
|
|
|
|
namespace rtc {
|
|
|
|
namespace {
|
|
|
|
const double kLearningRate = 0.5;
|
|
|
|
// Add |n| samples drawn from uniform distribution in [a;b].
|
|
void FillStatsFromUniformDistribution(RollingAccumulator<double>& stats,
|
|
int n,
|
|
double a,
|
|
double b) {
|
|
std::mt19937 gen{std::random_device()()};
|
|
std::uniform_real_distribution<> dis(a, b);
|
|
|
|
for (int i = 1; i <= n; i++) {
|
|
stats.AddSample(dis(gen));
|
|
}
|
|
}
|
|
} // namespace
|
|
|
|
TEST(RollingAccumulatorTest, ZeroSamples) {
|
|
RollingAccumulator<int> accum(10);
|
|
|
|
EXPECT_EQ(0U, accum.count());
|
|
EXPECT_DOUBLE_EQ(0.0, accum.ComputeMean());
|
|
EXPECT_DOUBLE_EQ(0.0, accum.ComputeVariance());
|
|
EXPECT_EQ(0, accum.ComputeMin());
|
|
EXPECT_EQ(0, accum.ComputeMax());
|
|
}
|
|
|
|
TEST(RollingAccumulatorTest, SomeSamples) {
|
|
RollingAccumulator<int> accum(10);
|
|
for (int i = 0; i < 4; ++i) {
|
|
accum.AddSample(i);
|
|
}
|
|
|
|
EXPECT_EQ(4U, accum.count());
|
|
EXPECT_DOUBLE_EQ(1.5, accum.ComputeMean());
|
|
EXPECT_NEAR(2.26666, accum.ComputeWeightedMean(kLearningRate), 0.01);
|
|
EXPECT_DOUBLE_EQ(1.25, accum.ComputeVariance());
|
|
EXPECT_EQ(0, accum.ComputeMin());
|
|
EXPECT_EQ(3, accum.ComputeMax());
|
|
}
|
|
|
|
TEST(RollingAccumulatorTest, RollingSamples) {
|
|
RollingAccumulator<int> accum(10);
|
|
for (int i = 0; i < 12; ++i) {
|
|
accum.AddSample(i);
|
|
}
|
|
|
|
EXPECT_EQ(10U, accum.count());
|
|
EXPECT_DOUBLE_EQ(6.5, accum.ComputeMean());
|
|
EXPECT_NEAR(10.0, accum.ComputeWeightedMean(kLearningRate), 0.01);
|
|
EXPECT_NEAR(9.0, accum.ComputeVariance(), 1.0);
|
|
EXPECT_EQ(2, accum.ComputeMin());
|
|
EXPECT_EQ(11, accum.ComputeMax());
|
|
}
|
|
|
|
TEST(RollingAccumulatorTest, ResetSamples) {
|
|
RollingAccumulator<int> accum(10);
|
|
|
|
for (int i = 0; i < 10; ++i) {
|
|
accum.AddSample(100);
|
|
}
|
|
EXPECT_EQ(10U, accum.count());
|
|
EXPECT_DOUBLE_EQ(100.0, accum.ComputeMean());
|
|
EXPECT_EQ(100, accum.ComputeMin());
|
|
EXPECT_EQ(100, accum.ComputeMax());
|
|
|
|
accum.Reset();
|
|
EXPECT_EQ(0U, accum.count());
|
|
|
|
for (int i = 0; i < 5; ++i) {
|
|
accum.AddSample(i);
|
|
}
|
|
|
|
EXPECT_EQ(5U, accum.count());
|
|
EXPECT_DOUBLE_EQ(2.0, accum.ComputeMean());
|
|
EXPECT_EQ(0, accum.ComputeMin());
|
|
EXPECT_EQ(4, accum.ComputeMax());
|
|
}
|
|
|
|
TEST(RollingAccumulatorTest, RollingSamplesDouble) {
|
|
RollingAccumulator<double> accum(10);
|
|
for (int i = 0; i < 23; ++i) {
|
|
accum.AddSample(5 * i);
|
|
}
|
|
|
|
EXPECT_EQ(10u, accum.count());
|
|
EXPECT_DOUBLE_EQ(87.5, accum.ComputeMean());
|
|
EXPECT_NEAR(105.049, accum.ComputeWeightedMean(kLearningRate), 0.1);
|
|
EXPECT_NEAR(229.166667, accum.ComputeVariance(), 25);
|
|
EXPECT_DOUBLE_EQ(65.0, accum.ComputeMin());
|
|
EXPECT_DOUBLE_EQ(110.0, accum.ComputeMax());
|
|
}
|
|
|
|
TEST(RollingAccumulatorTest, ComputeWeightedMeanCornerCases) {
|
|
RollingAccumulator<int> accum(10);
|
|
EXPECT_DOUBLE_EQ(0.0, accum.ComputeWeightedMean(kLearningRate));
|
|
EXPECT_DOUBLE_EQ(0.0, accum.ComputeWeightedMean(0.0));
|
|
EXPECT_DOUBLE_EQ(0.0, accum.ComputeWeightedMean(1.1));
|
|
|
|
for (int i = 0; i < 8; ++i) {
|
|
accum.AddSample(i);
|
|
}
|
|
|
|
EXPECT_DOUBLE_EQ(3.5, accum.ComputeMean());
|
|
EXPECT_DOUBLE_EQ(3.5, accum.ComputeWeightedMean(0));
|
|
EXPECT_DOUBLE_EQ(3.5, accum.ComputeWeightedMean(1.1));
|
|
EXPECT_NEAR(6.0, accum.ComputeWeightedMean(kLearningRate), 0.1);
|
|
}
|
|
|
|
TEST(RollingAccumulatorTest, VarianceFromUniformDistribution) {
|
|
// Check variance converge to 1/12 for [0;1) uniform distribution.
|
|
// Acts as a sanity check for NumericStabilityForVariance test.
|
|
RollingAccumulator<double> stats(/*max_count=*/0.5e6);
|
|
FillStatsFromUniformDistribution(stats, 1e6, 0, 1);
|
|
|
|
EXPECT_NEAR(stats.ComputeVariance(), 1. / 12, 1e-3);
|
|
}
|
|
|
|
TEST(RollingAccumulatorTest, NumericStabilityForVariance) {
|
|
// Same test as VarianceFromUniformDistribution,
|
|
// except the range is shifted to [1e9;1e9+1).
|
|
// Variance should also converge to 1/12.
|
|
// NB: Although we lose precision for the samples themselves, the fractional
|
|
// part still enjoys 22 bits of mantissa and errors should even out,
|
|
// so that couldn't explain a mismatch.
|
|
RollingAccumulator<double> stats(/*max_count=*/0.5e6);
|
|
FillStatsFromUniformDistribution(stats, 1e6, 1e9, 1e9 + 1);
|
|
|
|
EXPECT_NEAR(stats.ComputeVariance(), 1. / 12, 1e-3);
|
|
}
|
|
} // namespace rtc
|