You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

353 lines
12 KiB

/*
* Copyright (C) 2009-2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "rsContext.h"
#include "rsScriptC.h"
#include "rsMatrix4x4.h"
#include "rsMatrix3x3.h"
#include "rsMatrix2x2.h"
#include "rsgApiStructs.h"
#include <time.h>
#include <sstream>
namespace android {
namespace renderscript {
//////////////////////////////////////////////////////////////////////////////
// Math routines
//////////////////////////////////////////////////////////////////////////////
#if 0
static float SC_sinf_fast(float x) {
const float A = 1.0f / (2.0f * M_PI);
const float B = -16.0f;
const float C = 8.0f;
// scale angle for easy argument reduction
x *= A;
if (fabsf(x) >= 0.5f) {
// argument reduction
x = x - ceilf(x + 0.5f) + 1.0f;
}
const float y = B * x * fabsf(x) + C * x;
return 0.2215f * (y * fabsf(y) - y) + y;
}
static float SC_cosf_fast(float x) {
x += float(M_PI / 2);
const float A = 1.0f / (2.0f * M_PI);
const float B = -16.0f;
const float C = 8.0f;
// scale angle for easy argument reduction
x *= A;
if (fabsf(x) >= 0.5f) {
// argument reduction
x = x - ceilf(x + 0.5f) + 1.0f;
}
const float y = B * x * fabsf(x) + C * x;
return 0.2215f * (y * fabsf(y) - y) + y;
}
#endif
//////////////////////////////////////////////////////////////////////////////
// Time routines
//////////////////////////////////////////////////////////////////////////////
time_t rsrTime(Context *rsc, time_t *timer) {
return time(timer);
}
tm* rsrLocalTime(Context *rsc, tm *local, time_t *timer) {
if (!local) {
return nullptr;
}
// The native localtime function is not thread-safe, so we
// have to apply locking for proper behavior in RenderScript.
pthread_mutex_lock(&rsc->gLibMutex);
tm *tmp = localtime(timer);
memcpy(local, tmp, sizeof(int)*9);
pthread_mutex_unlock(&rsc->gLibMutex);
return local;
}
int64_t rsrUptimeMillis(Context *rsc) {
return nanoseconds_to_milliseconds(systemTime(SYSTEM_TIME_MONOTONIC));
}
int64_t rsrUptimeNanos(Context *rsc) {
return systemTime(SYSTEM_TIME_MONOTONIC);
}
float rsrGetDt(Context *rsc, const Script *sc) {
int64_t l = sc->mEnviroment.mLastDtTime;
sc->mEnviroment.mLastDtTime = systemTime(SYSTEM_TIME_MONOTONIC);
return ((float)(sc->mEnviroment.mLastDtTime - l)) / 1.0e9;
}
//////////////////////////////////////////////////////////////////////////////
//
//////////////////////////////////////////////////////////////////////////////
static void SetObjectRef(const Context *rsc, const ObjectBase *dst, const ObjectBase *src) {
//ALOGE("setObjectRef %p,%p %p", rsc, dst, src);
if (src) {
CHECK_OBJ(src);
src->incSysRef();
}
if (dst) {
CHECK_OBJ(dst);
dst->decSysRef();
}
}
// Legacy, remove when drivers are updated
void rsrClearObject(const Context *rsc, void *dst) {
ObjectBase **odst = (ObjectBase **)dst;
if (ObjectBase::gDebugReferences) {
ALOGE("rsrClearObject %p,%p", odst, *odst);
}
if (odst[0]) {
CHECK_OBJ(odst[0]);
odst[0]->decSysRef();
}
*odst = nullptr;
}
void rsrClearObject(rs_object_base *dst) {
if (ObjectBase::gDebugReferences) {
ALOGE("rsrClearObject %p,%p", dst, dst->p);
}
if (dst->p) {
CHECK_OBJ(dst->p);
dst->p->decSysRef();
}
dst->p = nullptr;
}
// Legacy, remove when drivers are updated
void rsrClearObject(const Context *rsc, rs_object_base *dst) {
rsrClearObject(dst);
}
// Legacy, remove when drivers are updated
void rsrSetObject(const Context *rsc, void *dst, ObjectBase *src) {
if (src == nullptr) {
rsrClearObject(rsc, dst);
return;
}
ObjectBase **odst = (ObjectBase **)dst;
if (ObjectBase::gDebugReferences) {
ALOGE("rsrSetObject (base) %p,%p %p", dst, *odst, src);
}
SetObjectRef(rsc, odst[0], src);
src->callUpdateCacheObject(rsc, dst);
}
void rsrSetObject(const Context *rsc, rs_object_base *dst, const ObjectBase *src) {
if (src == nullptr) {
rsrClearObject(rsc, dst);
return;
}
ObjectBase **odst = (ObjectBase **)dst;
if (ObjectBase::gDebugReferences) {
ALOGE("rsrSetObject (base) %p,%p %p", dst, *odst, src);
}
SetObjectRef(rsc, odst[0], src);
src->callUpdateCacheObject(rsc, dst);
}
// Legacy, remove when drivers are updated
bool rsrIsObject(const Context *, ObjectBase* src) {
ObjectBase **osrc = (ObjectBase **)src;
return osrc != nullptr;
}
bool rsrIsObject(const Context *rsc, rs_object_base o) {
return o.p != nullptr;
}
uint32_t rsrToClient(Context *rsc, int cmdID, const void *data, int len) {
//ALOGE("SC_toClient %i %i %i", cmdID, len);
return rsc->sendMessageToClient(data, RS_MESSAGE_TO_CLIENT_USER, cmdID, len, false);
}
uint32_t rsrToClientBlocking(Context *rsc, int cmdID, const void *data, int len) {
//ALOGE("SC_toClientBlocking %i %i", cmdID, len);
return rsc->sendMessageToClient(data, RS_MESSAGE_TO_CLIENT_USER, cmdID, len, true);
}
// Keep these two routines (using non-const void pointers) so that we can
// still use existing GPU drivers.
uint32_t rsrToClient(Context *rsc, int cmdID, void *data, int len) {
return rsrToClient(rsc, cmdID, (const void *)data, len);
}
uint32_t rsrToClientBlocking(Context *rsc, int cmdID, void *data, int len) {
return rsrToClientBlocking(rsc, cmdID, (const void *)data, len);
}
void rsrAllocationIoSend(Context *rsc, Allocation *src) {
src->ioSend(rsc);
}
void rsrAllocationIoReceive(Context *rsc, Allocation *src) {
src->ioReceive(rsc);
}
void rsrForEach(Context *rsc,
Script *target,
uint32_t slot,
uint32_t numInputs,
Allocation **in, Allocation *out,
const void *usr, uint32_t usrBytes,
const RsScriptCall *call) {
target->runForEach(rsc, slot, (const Allocation**)in, numInputs, out, usr, usrBytes, call);
}
void rsrAllocationSyncAll(Context *rsc, Allocation *a, RsAllocationUsageType usage) {
a->syncAll(rsc, usage);
}
// Helper for validateCopyArgs() - initialize the error message; only called on
// infrequently executed paths
static void initializeErrorMsg(std::stringstream &ss, int expectDim, bool isSrc) {
ss << (expectDim == 1 ? "rsAllocationCopy1DRange" : "rsAllocationCopy2DRange") << ": ";
ss << (isSrc? "source" : "destination") << " ";
}
// We are doing the check even in a non-debug context, which is permissible because in that case
// a failed bound check results in unspecified behavior.
static bool validateCopyArgs(Context *rsc, bool isSrc, uint32_t expectDim,
const Allocation *alloc, uint32_t xoff, uint32_t yoff,
uint32_t lod, uint32_t w, uint32_t h) {
std::stringstream ss;
if (lod >= alloc->mHal.drvState.lodCount) {
initializeErrorMsg(ss, expectDim, isSrc);
ss << "Mip level out of range: ";
ss << lod << " >= " << alloc->mHal.drvState.lodCount;
rsc->setError(RS_ERROR_FATAL_DEBUG, ss.str().c_str());
return false;
}
const uint32_t allocDimX = alloc->mHal.drvState.lod[lod].dimX;
// Check both in case xoff + w overflows
if (xoff >= allocDimX || (xoff + w) > allocDimX) {
initializeErrorMsg(ss, expectDim, isSrc);
ss << "X range: ";
ss << "[" << xoff << ", " << xoff + w << ") outside ";
ss << "[0, " << allocDimX << ")";
rsc->setError(RS_ERROR_FATAL_DEBUG, ss.str().c_str());
return false;
}
const uint32_t allocDimY = alloc->mHal.drvState.lod[lod].dimY;
if (expectDim > 1) {
if (allocDimY == 0) { // Copy2D was given an allocation of 1D
initializeErrorMsg(ss, expectDim, isSrc);
ss << "dimensionality invalid: expected 2D; given 1D rs_allocation";
rsc->setError(RS_ERROR_FATAL_DEBUG, ss.str().c_str());
return false;
}
// Check both in case yoff + h overflows
if (yoff >= allocDimY || (yoff + h) > allocDimY) {
initializeErrorMsg(ss, expectDim, isSrc);
ss << "Y range: ";
ss << "[" << yoff << ", " << yoff + h << ") outside ";
ss << "[0, " << allocDimY << ")";
rsc->setError(RS_ERROR_FATAL_DEBUG, ss.str().c_str());
return false;
}
} else {
if (allocDimY != 0) { // Copy1D was given an allocation of 2D
initializeErrorMsg(ss, expectDim, isSrc);
ss << "dimensionality invalid: expected 1D; given 2D rs_allocation";
rsc->setError(RS_ERROR_FATAL_DEBUG, ss.str().c_str());
return false;
}
}
return true;
}
void rsrAllocationCopy1DRange(Context *rsc, Allocation *dstAlloc,
uint32_t dstOff,
uint32_t dstMip,
uint32_t count,
Allocation *srcAlloc,
uint32_t srcOff, uint32_t srcMip) {
if (!validateCopyArgs(rsc, false, 1, dstAlloc, dstOff, 0, dstMip, count, 1) ||
!validateCopyArgs(rsc, true, 1, srcAlloc, srcOff, 0, srcMip, count, 1)) {
return;
}
rsi_AllocationCopy2DRange(rsc, dstAlloc, dstOff, 0,
dstMip, 0, count, 1,
srcAlloc, srcOff, 0, srcMip, 0);
}
void rsrAllocationCopy2DRange(Context *rsc, Allocation *dstAlloc,
uint32_t dstXoff, uint32_t dstYoff,
uint32_t dstMip, uint32_t dstFace,
uint32_t width, uint32_t height,
Allocation *srcAlloc,
uint32_t srcXoff, uint32_t srcYoff,
uint32_t srcMip, uint32_t srcFace) {
if (!validateCopyArgs(rsc, false, 2, dstAlloc, dstXoff, dstYoff, dstMip, width, height) ||
!validateCopyArgs(rsc, true, 2, srcAlloc, srcXoff, srcYoff, srcMip, width, height)) {
return;
}
rsi_AllocationCopy2DRange(rsc, dstAlloc, dstXoff, dstYoff,
dstMip, dstFace, width, height,
srcAlloc, srcXoff, srcYoff, srcMip, srcFace);
}
RsElement rsrElementCreate(Context *rsc, RsDataType dt, RsDataKind dk,
bool norm, uint32_t vecSize) {
return rsi_ElementCreate(rsc, dt, dk, norm, vecSize);
}
RsType rsrTypeCreate(Context *rsc, const RsElement element, uint32_t dimX,
uint32_t dimY, uint32_t dimZ, bool mipmaps, bool faces,
uint32_t yuv) {
return rsi_TypeCreate(rsc, element, dimX, dimY, dimZ, mipmaps, faces, yuv);
}
RsAllocation rsrAllocationCreateTyped(Context *rsc, const RsType type,
RsAllocationMipmapControl mipmaps,
uint32_t usages, uintptr_t ptr) {
return rsi_AllocationCreateTyped(rsc, type, mipmaps, usages, ptr);
}
} // namespace renderscript
} // namespace android