You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

931 lines
35 KiB

/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <aidl/Gtest.h>
#include <aidl/Vintf.h>
#include <android/hardware/vibrator/BnVibratorCallback.h>
#include <android/hardware/vibrator/IVibrator.h>
#include <android/hardware/vibrator/IVibratorManager.h>
#include <binder/IServiceManager.h>
#include <binder/ProcessState.h>
#include <cmath>
#include <future>
using android::ProcessState;
using android::sp;
using android::String16;
using android::binder::Status;
using android::hardware::vibrator::ActivePwle;
using android::hardware::vibrator::BnVibratorCallback;
using android::hardware::vibrator::Braking;
using android::hardware::vibrator::BrakingPwle;
using android::hardware::vibrator::CompositeEffect;
using android::hardware::vibrator::CompositePrimitive;
using android::hardware::vibrator::Effect;
using android::hardware::vibrator::EffectStrength;
using android::hardware::vibrator::IVibrator;
using android::hardware::vibrator::IVibratorManager;
using android::hardware::vibrator::PrimitivePwle;
using std::chrono::high_resolution_clock;
const std::vector<Effect> kEffects{android::enum_range<Effect>().begin(),
android::enum_range<Effect>().end()};
const std::vector<EffectStrength> kEffectStrengths{android::enum_range<EffectStrength>().begin(),
android::enum_range<EffectStrength>().end()};
const std::vector<Effect> kInvalidEffects = {
static_cast<Effect>(static_cast<int32_t>(kEffects.front()) - 1),
static_cast<Effect>(static_cast<int32_t>(kEffects.back()) + 1),
};
const std::vector<EffectStrength> kInvalidEffectStrengths = {
static_cast<EffectStrength>(static_cast<int8_t>(kEffectStrengths.front()) - 1),
static_cast<EffectStrength>(static_cast<int8_t>(kEffectStrengths.back()) + 1),
};
const std::vector<CompositePrimitive> kCompositePrimitives{
android::enum_range<CompositePrimitive>().begin(),
android::enum_range<CompositePrimitive>().end()};
const std::vector<CompositePrimitive> kRequiredPrimitives = {
CompositePrimitive::CLICK, CompositePrimitive::LIGHT_TICK,
CompositePrimitive::QUICK_RISE, CompositePrimitive::SLOW_RISE,
CompositePrimitive::QUICK_FALL,
};
const std::vector<CompositePrimitive> kInvalidPrimitives = {
static_cast<CompositePrimitive>(static_cast<int32_t>(kCompositePrimitives.front()) - 1),
static_cast<CompositePrimitive>(static_cast<int32_t>(kCompositePrimitives.back()) + 1),
};
class CompletionCallback : public BnVibratorCallback {
public:
CompletionCallback(const std::function<void()> &callback) : mCallback(callback) {}
Status onComplete() override {
mCallback();
return Status::ok();
}
private:
std::function<void()> mCallback;
};
class VibratorAidl : public testing::TestWithParam<std::tuple<int32_t, int32_t>> {
public:
virtual void SetUp() override {
int32_t managerIdx = std::get<0>(GetParam());
int32_t vibratorId = std::get<1>(GetParam());
auto managerAidlNames = android::getAidlHalInstanceNames(IVibratorManager::descriptor);
if (managerIdx < 0) {
// Testing a unmanaged vibrator, using vibratorId as index from registered HALs
auto vibratorAidlNames = android::getAidlHalInstanceNames(IVibrator::descriptor);
ASSERT_LT(vibratorId, vibratorAidlNames.size());
auto vibratorName = String16(vibratorAidlNames[vibratorId].c_str());
vibrator = android::waitForDeclaredService<IVibrator>(vibratorName);
} else {
// Testing a managed vibrator, using vibratorId to retrieve it from the manager
ASSERT_LT(managerIdx, managerAidlNames.size());
auto managerName = String16(managerAidlNames[managerIdx].c_str());
auto vibratorManager = android::waitForDeclaredService<IVibratorManager>(managerName);
auto vibratorResult = vibratorManager->getVibrator(vibratorId, &vibrator);
ASSERT_TRUE(vibratorResult.isOk());
}
ASSERT_NE(vibrator, nullptr);
ASSERT_TRUE(vibrator->getCapabilities(&capabilities).isOk());
}
sp<IVibrator> vibrator;
int32_t capabilities;
};
inline bool isUnknownOrUnsupported(Status status) {
return status.exceptionCode() == Status::EX_UNSUPPORTED_OPERATION ||
status.transactionError() == android::UNKNOWN_TRANSACTION;
}
static float getResonantFrequencyHz(sp<IVibrator> vibrator, int32_t capabilities) {
float resonantFrequencyHz;
Status status = vibrator->getResonantFrequency(&resonantFrequencyHz);
if (capabilities & IVibrator::CAP_GET_RESONANT_FREQUENCY) {
EXPECT_GT(resonantFrequencyHz, 0);
EXPECT_EQ(status.exceptionCode(), Status::EX_NONE);
} else {
EXPECT_TRUE(isUnknownOrUnsupported(status)) << status;
}
return resonantFrequencyHz;
}
static float getFrequencyResolutionHz(sp<IVibrator> vibrator, int32_t capabilities) {
float freqResolutionHz;
Status status = vibrator->getFrequencyResolution(&freqResolutionHz);
if (capabilities & IVibrator::CAP_FREQUENCY_CONTROL) {
EXPECT_GT(freqResolutionHz, 0);
EXPECT_EQ(status.exceptionCode(), Status::EX_NONE);
} else {
EXPECT_TRUE(isUnknownOrUnsupported(status)) << status;
}
return freqResolutionHz;
}
static float getFrequencyMinimumHz(sp<IVibrator> vibrator, int32_t capabilities) {
float freqMinimumHz;
Status status = vibrator->getFrequencyMinimum(&freqMinimumHz);
if (capabilities & IVibrator::CAP_FREQUENCY_CONTROL) {
EXPECT_EQ(status.exceptionCode(), Status::EX_NONE);
float resonantFrequencyHz = getResonantFrequencyHz(vibrator, capabilities);
EXPECT_GT(freqMinimumHz, 0);
EXPECT_LE(freqMinimumHz, resonantFrequencyHz);
} else {
EXPECT_TRUE(isUnknownOrUnsupported(status)) << status;
}
return freqMinimumHz;
}
static float getFrequencyMaximumHz(sp<IVibrator> vibrator, int32_t capabilities) {
std::vector<float> bandwidthAmplitudeMap;
Status status = vibrator->getBandwidthAmplitudeMap(&bandwidthAmplitudeMap);
if (capabilities & IVibrator::CAP_FREQUENCY_CONTROL) {
EXPECT_EQ(status.exceptionCode(), Status::EX_NONE);
} else {
EXPECT_TRUE(isUnknownOrUnsupported(status)) << status;
}
float freqMaximumHz =
(bandwidthAmplitudeMap.size() * getFrequencyResolutionHz(vibrator, capabilities)) +
getFrequencyMinimumHz(vibrator, capabilities);
return freqMaximumHz;
}
static float getAmplitudeMin() {
return 0.0;
}
static float getAmplitudeMax() {
return 1.0;
}
static ActivePwle composeValidActivePwle(sp<IVibrator> vibrator, int32_t capabilities) {
float frequencyHz;
if (capabilities & IVibrator::CAP_GET_RESONANT_FREQUENCY) {
frequencyHz = getResonantFrequencyHz(vibrator, capabilities);
} else if (capabilities & IVibrator::CAP_FREQUENCY_CONTROL) {
frequencyHz = getFrequencyMinimumHz(vibrator, capabilities);
} else {
frequencyHz = 150.0; // default value commonly used
}
ActivePwle active;
active.startAmplitude = (getAmplitudeMin() + getAmplitudeMax()) / 2;
active.startFrequency = frequencyHz;
active.endAmplitude = (getAmplitudeMin() + getAmplitudeMax()) / 2;
active.endFrequency = frequencyHz;
active.duration = 1000;
return active;
}
TEST_P(VibratorAidl, OnThenOffBeforeTimeout) {
EXPECT_TRUE(vibrator->on(2000, nullptr /*callback*/).isOk());
sleep(1);
EXPECT_TRUE(vibrator->off().isOk());
}
TEST_P(VibratorAidl, OnWithCallback) {
if (!(capabilities & IVibrator::CAP_ON_CALLBACK))
return;
std::promise<void> completionPromise;
std::future<void> completionFuture{completionPromise.get_future()};
sp<CompletionCallback> callback =
new CompletionCallback([&completionPromise] { completionPromise.set_value(); });
uint32_t durationMs = 250;
std::chrono::milliseconds timeout{durationMs * 2};
EXPECT_TRUE(vibrator->on(durationMs, callback).isOk());
EXPECT_EQ(completionFuture.wait_for(timeout), std::future_status::ready);
EXPECT_TRUE(vibrator->off().isOk());
}
TEST_P(VibratorAidl, OnCallbackNotSupported) {
if (!(capabilities & IVibrator::CAP_ON_CALLBACK)) {
sp<CompletionCallback> callback = new CompletionCallback([] {});
Status status = vibrator->on(250, callback);
EXPECT_TRUE(isUnknownOrUnsupported(status)) << status;
}
}
TEST_P(VibratorAidl, ValidateEffect) {
std::vector<Effect> supported;
ASSERT_TRUE(vibrator->getSupportedEffects(&supported).isOk());
for (Effect effect : kEffects) {
bool isEffectSupported =
std::find(supported.begin(), supported.end(), effect) != supported.end();
for (EffectStrength strength : kEffectStrengths) {
int32_t lengthMs = 0;
Status status = vibrator->perform(effect, strength, nullptr /*callback*/, &lengthMs);
if (isEffectSupported) {
EXPECT_TRUE(status.isOk()) << toString(effect) << " " << toString(strength);
EXPECT_GT(lengthMs, 0);
usleep(lengthMs * 1000);
} else {
EXPECT_TRUE(isUnknownOrUnsupported(status))
<< status << " " << toString(effect) << " " << toString(strength);
}
}
}
}
TEST_P(VibratorAidl, ValidateEffectWithCallback) {
if (!(capabilities & IVibrator::CAP_PERFORM_CALLBACK))
return;
std::vector<Effect> supported;
ASSERT_TRUE(vibrator->getSupportedEffects(&supported).isOk());
for (Effect effect : kEffects) {
bool isEffectSupported =
std::find(supported.begin(), supported.end(), effect) != supported.end();
for (EffectStrength strength : kEffectStrengths) {
std::promise<void> completionPromise;
std::future<void> completionFuture{completionPromise.get_future()};
sp<CompletionCallback> callback =
new CompletionCallback([&completionPromise] { completionPromise.set_value(); });
int lengthMs = 0;
Status status = vibrator->perform(effect, strength, callback, &lengthMs);
if (isEffectSupported) {
EXPECT_TRUE(status.isOk());
EXPECT_GT(lengthMs, 0);
} else {
EXPECT_TRUE(isUnknownOrUnsupported(status)) << status;
}
if (!status.isOk())
continue;
//TODO(b/187207798): revert back to conservative timeout values once
//latencies have been fixed
std::chrono::milliseconds timeout{lengthMs * 8};
EXPECT_EQ(completionFuture.wait_for(timeout), std::future_status::ready);
}
}
}
TEST_P(VibratorAidl, ValidateEffectWithCallbackNotSupported) {
if (capabilities & IVibrator::CAP_PERFORM_CALLBACK)
return;
for (Effect effect : kEffects) {
for (EffectStrength strength : kEffectStrengths) {
sp<CompletionCallback> callback = new CompletionCallback([] {});
int lengthMs;
Status status = vibrator->perform(effect, strength, callback, &lengthMs);
EXPECT_TRUE(isUnknownOrUnsupported(status)) << status;
}
}
}
TEST_P(VibratorAidl, InvalidEffectsUnsupported) {
for (Effect effect : kInvalidEffects) {
for (EffectStrength strength : kEffectStrengths) {
int32_t lengthMs;
Status status = vibrator->perform(effect, strength, nullptr /*callback*/, &lengthMs);
EXPECT_TRUE(isUnknownOrUnsupported(status))
<< status << toString(effect) << " " << toString(strength);
}
}
for (Effect effect : kEffects) {
for (EffectStrength strength : kInvalidEffectStrengths) {
int32_t lengthMs;
Status status = vibrator->perform(effect, strength, nullptr /*callback*/, &lengthMs);
EXPECT_TRUE(isUnknownOrUnsupported(status))
<< status << " " << toString(effect) << " " << toString(strength);
}
}
}
TEST_P(VibratorAidl, ChangeVibrationAmplitude) {
if (capabilities & IVibrator::CAP_AMPLITUDE_CONTROL) {
EXPECT_EQ(Status::EX_NONE, vibrator->setAmplitude(0.1f).exceptionCode());
EXPECT_TRUE(vibrator->on(2000, nullptr /*callback*/).isOk());
EXPECT_EQ(Status::EX_NONE, vibrator->setAmplitude(0.5f).exceptionCode());
sleep(1);
EXPECT_EQ(Status::EX_NONE, vibrator->setAmplitude(1.0f).exceptionCode());
sleep(1);
}
}
TEST_P(VibratorAidl, AmplitudeOutsideRangeFails) {
if (capabilities & IVibrator::CAP_AMPLITUDE_CONTROL) {
EXPECT_EQ(Status::EX_ILLEGAL_ARGUMENT, vibrator->setAmplitude(-1).exceptionCode());
EXPECT_EQ(Status::EX_ILLEGAL_ARGUMENT, vibrator->setAmplitude(0).exceptionCode());
EXPECT_EQ(Status::EX_ILLEGAL_ARGUMENT, vibrator->setAmplitude(1.1).exceptionCode());
}
}
TEST_P(VibratorAidl, AmplitudeReturnsUnsupportedMatchingCapabilities) {
if ((capabilities & IVibrator::CAP_AMPLITUDE_CONTROL) == 0) {
Status status = vibrator->setAmplitude(1);
EXPECT_TRUE(isUnknownOrUnsupported(status)) << status;
}
}
TEST_P(VibratorAidl, ChangeVibrationExternalControl) {
if (capabilities & IVibrator::CAP_EXTERNAL_CONTROL) {
EXPECT_TRUE(vibrator->setExternalControl(true).isOk());
sleep(1);
EXPECT_TRUE(vibrator->setExternalControl(false).isOk());
sleep(1);
}
}
TEST_P(VibratorAidl, ExternalAmplitudeControl) {
const bool supportsExternalAmplitudeControl =
(capabilities & IVibrator::CAP_EXTERNAL_AMPLITUDE_CONTROL) > 0;
if (capabilities & IVibrator::CAP_EXTERNAL_CONTROL) {
EXPECT_TRUE(vibrator->setExternalControl(true).isOk());
Status amplitudeStatus = vibrator->setAmplitude(0.5);
if (supportsExternalAmplitudeControl) {
EXPECT_TRUE(amplitudeStatus.isOk());
} else {
EXPECT_TRUE(isUnknownOrUnsupported(amplitudeStatus)) << amplitudeStatus;
}
EXPECT_TRUE(vibrator->setExternalControl(false).isOk());
} else {
EXPECT_FALSE(supportsExternalAmplitudeControl);
}
}
TEST_P(VibratorAidl, ExternalControlUnsupportedMatchingCapabilities) {
if ((capabilities & IVibrator::CAP_EXTERNAL_CONTROL) == 0) {
Status status = vibrator->setExternalControl(true);
EXPECT_TRUE(isUnknownOrUnsupported(status)) << status;
}
}
TEST_P(VibratorAidl, GetSupportedPrimitives) {
if (capabilities & IVibrator::CAP_COMPOSE_EFFECTS) {
std::vector<CompositePrimitive> supported;
EXPECT_EQ(Status::EX_NONE, vibrator->getSupportedPrimitives(&supported).exceptionCode());
for (auto primitive : kCompositePrimitives) {
bool isPrimitiveSupported =
std::find(supported.begin(), supported.end(), primitive) != supported.end();
bool isPrimitiveRequired =
std::find(kRequiredPrimitives.begin(), kRequiredPrimitives.end(), primitive) !=
kRequiredPrimitives.end();
EXPECT_TRUE(isPrimitiveSupported || !isPrimitiveRequired) << toString(primitive);
}
}
}
TEST_P(VibratorAidl, GetPrimitiveDuration) {
if (capabilities & IVibrator::CAP_COMPOSE_EFFECTS) {
std::vector<CompositePrimitive> supported;
ASSERT_TRUE(vibrator->getSupportedPrimitives(&supported).isOk());
for (auto primitive : kCompositePrimitives) {
bool isPrimitiveSupported =
std::find(supported.begin(), supported.end(), primitive) != supported.end();
int32_t duration;
Status status = vibrator->getPrimitiveDuration(primitive, &duration);
if (isPrimitiveSupported) {
EXPECT_EQ(Status::EX_NONE, status.exceptionCode());
} else {
EXPECT_TRUE(isUnknownOrUnsupported(status)) << status;
}
}
}
}
TEST_P(VibratorAidl, ComposeValidPrimitives) {
if (capabilities & IVibrator::CAP_COMPOSE_EFFECTS) {
std::vector<CompositePrimitive> supported;
int32_t maxDelay, maxSize;
ASSERT_TRUE(vibrator->getSupportedPrimitives(&supported).isOk());
EXPECT_EQ(Status::EX_NONE, vibrator->getCompositionDelayMax(&maxDelay).exceptionCode());
EXPECT_EQ(Status::EX_NONE, vibrator->getCompositionSizeMax(&maxSize).exceptionCode());
std::vector<CompositeEffect> composite;
for (auto primitive : supported) {
CompositeEffect effect;
effect.delayMs = std::rand() % (maxDelay + 1);
effect.primitive = primitive;
effect.scale = static_cast<float>(std::rand()) / RAND_MAX;
composite.emplace_back(effect);
if (composite.size() == maxSize) {
EXPECT_EQ(Status::EX_NONE, vibrator->compose(composite, nullptr).exceptionCode());
composite.clear();
vibrator->off();
}
}
if (composite.size() != 0) {
EXPECT_EQ(Status::EX_NONE, vibrator->compose(composite, nullptr).exceptionCode());
vibrator->off();
}
}
}
TEST_P(VibratorAidl, ComposeUnsupportedPrimitives) {
if (capabilities & IVibrator::CAP_COMPOSE_EFFECTS) {
auto unsupported = kInvalidPrimitives;
std::vector<CompositePrimitive> supported;
ASSERT_TRUE(vibrator->getSupportedPrimitives(&supported).isOk());
for (auto primitive : kCompositePrimitives) {
bool isPrimitiveSupported =
std::find(supported.begin(), supported.end(), primitive) != supported.end();
if (!isPrimitiveSupported) {
unsupported.push_back(primitive);
}
}
for (auto primitive : unsupported) {
std::vector<CompositeEffect> composite(1);
for (auto &effect : composite) {
effect.delayMs = 0;
effect.primitive = primitive;
effect.scale = 1.0f;
}
Status status = vibrator->compose(composite, nullptr);
EXPECT_TRUE(isUnknownOrUnsupported(status)) << status;
vibrator->off();
}
}
}
TEST_P(VibratorAidl, ComposeScaleBoundary) {
if (capabilities & IVibrator::CAP_COMPOSE_EFFECTS) {
std::vector<CompositeEffect> composite(1);
CompositeEffect &effect = composite[0];
effect.delayMs = 0;
effect.primitive = CompositePrimitive::CLICK;
effect.scale = std::nextafter(0.0f, -1.0f);
EXPECT_EQ(Status::EX_ILLEGAL_ARGUMENT,
vibrator->compose(composite, nullptr).exceptionCode());
effect.scale = 0.0f;
EXPECT_EQ(Status::EX_NONE, vibrator->compose(composite, nullptr).exceptionCode());
effect.scale = 1.0f;
EXPECT_EQ(Status::EX_NONE, vibrator->compose(composite, nullptr).exceptionCode());
effect.scale = std::nextafter(1.0f, 2.0f);
EXPECT_EQ(Status::EX_ILLEGAL_ARGUMENT,
vibrator->compose(composite, nullptr).exceptionCode());
vibrator->off();
}
}
TEST_P(VibratorAidl, ComposeDelayBoundary) {
if (capabilities & IVibrator::CAP_COMPOSE_EFFECTS) {
int32_t maxDelay;
EXPECT_EQ(Status::EX_NONE, vibrator->getCompositionDelayMax(&maxDelay).exceptionCode());
std::vector<CompositeEffect> composite(1);
CompositeEffect effect;
effect.delayMs = 1;
effect.primitive = CompositePrimitive::CLICK;
effect.scale = 1.0f;
std::fill(composite.begin(), composite.end(), effect);
EXPECT_EQ(Status::EX_NONE, vibrator->compose(composite, nullptr).exceptionCode());
effect.delayMs = maxDelay + 1;
std::fill(composite.begin(), composite.end(), effect);
EXPECT_EQ(Status::EX_ILLEGAL_ARGUMENT,
vibrator->compose(composite, nullptr).exceptionCode());
vibrator->off();
}
}
TEST_P(VibratorAidl, ComposeSizeBoundary) {
if (capabilities & IVibrator::CAP_COMPOSE_EFFECTS) {
int32_t maxSize;
EXPECT_EQ(Status::EX_NONE, vibrator->getCompositionSizeMax(&maxSize).exceptionCode());
std::vector<CompositeEffect> composite(maxSize);
CompositeEffect effect;
effect.delayMs = 1;
effect.primitive = CompositePrimitive::CLICK;
effect.scale = 1.0f;
std::fill(composite.begin(), composite.end(), effect);
EXPECT_EQ(Status::EX_NONE, vibrator->compose(composite, nullptr).exceptionCode());
composite.emplace_back(effect);
EXPECT_EQ(Status::EX_ILLEGAL_ARGUMENT,
vibrator->compose(composite, nullptr).exceptionCode());
vibrator->off();
}
}
TEST_P(VibratorAidl, ComposeCallback) {
if (capabilities & IVibrator::CAP_COMPOSE_EFFECTS) {
std::vector<CompositePrimitive> supported;
ASSERT_TRUE(vibrator->getSupportedPrimitives(&supported).isOk());
for (auto primitive : supported) {
if (primitive == CompositePrimitive::NOOP) {
continue;
}
std::promise<void> completionPromise;
std::future<void> completionFuture{completionPromise.get_future()};
sp<CompletionCallback> callback =
new CompletionCallback([&completionPromise] { completionPromise.set_value(); });
CompositeEffect effect;
std::vector<CompositeEffect> composite;
int32_t durationMs;
std::chrono::milliseconds duration;
std::chrono::time_point<high_resolution_clock> start, end;
std::chrono::milliseconds elapsed;
effect.delayMs = 0;
effect.primitive = primitive;
effect.scale = 1.0f;
composite.emplace_back(effect);
EXPECT_EQ(Status::EX_NONE,
vibrator->getPrimitiveDuration(primitive, &durationMs).exceptionCode())
<< toString(primitive);
duration = std::chrono::milliseconds(durationMs);
start = high_resolution_clock::now();
EXPECT_EQ(Status::EX_NONE, vibrator->compose(composite, callback).exceptionCode())
<< toString(primitive);
//TODO(b/187207798): revert back to conservative timeout values once
//latencies have been fixed
EXPECT_EQ(completionFuture.wait_for(duration * 4), std::future_status::ready)
<< toString(primitive);
end = high_resolution_clock::now();
elapsed = std::chrono::duration_cast<std::chrono::milliseconds>(end - start);
EXPECT_GE(elapsed.count(), duration.count()) << toString(primitive);
}
}
}
TEST_P(VibratorAidl, AlwaysOn) {
if (capabilities & IVibrator::CAP_ALWAYS_ON_CONTROL) {
std::vector<Effect> supported;
ASSERT_TRUE(vibrator->getSupportedAlwaysOnEffects(&supported).isOk());
for (Effect effect : kEffects) {
bool isEffectSupported =
std::find(supported.begin(), supported.end(), effect) != supported.end();
for (EffectStrength strength : kEffectStrengths) {
Status status = vibrator->alwaysOnEnable(0, effect, strength);
if (isEffectSupported) {
EXPECT_EQ(Status::EX_NONE, status.exceptionCode())
<< toString(effect) << " " << toString(strength);
} else {
EXPECT_TRUE(isUnknownOrUnsupported(status))
<< status << " " << toString(effect) << " " << toString(strength);
}
}
}
EXPECT_EQ(Status::EX_NONE, vibrator->alwaysOnDisable(0).exceptionCode());
}
}
TEST_P(VibratorAidl, GetResonantFrequency) {
getResonantFrequencyHz(vibrator, capabilities);
}
TEST_P(VibratorAidl, GetQFactor) {
float qFactor;
Status status = vibrator->getQFactor(&qFactor);
if (capabilities & IVibrator::CAP_GET_Q_FACTOR) {
ASSERT_GT(qFactor, 0);
EXPECT_EQ(status.exceptionCode(), Status::EX_NONE);
} else {
EXPECT_TRUE(isUnknownOrUnsupported(status)) << status;
}
}
TEST_P(VibratorAidl, GetFrequencyResolution) {
getFrequencyResolutionHz(vibrator, capabilities);
}
TEST_P(VibratorAidl, GetFrequencyMinimum) {
getFrequencyMinimumHz(vibrator, capabilities);
}
TEST_P(VibratorAidl, GetBandwidthAmplitudeMap) {
std::vector<float> bandwidthAmplitudeMap;
Status status = vibrator->getBandwidthAmplitudeMap(&bandwidthAmplitudeMap);
if (capabilities & IVibrator::CAP_FREQUENCY_CONTROL) {
EXPECT_EQ(status.exceptionCode(), Status::EX_NONE);
ASSERT_FALSE(bandwidthAmplitudeMap.empty());
int minMapSize = (getResonantFrequencyHz(vibrator, capabilities) -
getFrequencyMinimumHz(vibrator, capabilities)) /
getFrequencyResolutionHz(vibrator, capabilities);
ASSERT_GT(bandwidthAmplitudeMap.size(), minMapSize);
for (float e : bandwidthAmplitudeMap) {
ASSERT_GE(e, 0.0);
ASSERT_LE(e, 1.0);
}
} else {
EXPECT_TRUE(isUnknownOrUnsupported(status)) << status;
}
}
TEST_P(VibratorAidl, GetPwlePrimitiveDurationMax) {
int32_t durationMs;
Status status = vibrator->getPwlePrimitiveDurationMax(&durationMs);
if (capabilities & IVibrator::CAP_COMPOSE_PWLE_EFFECTS) {
ASSERT_NE(durationMs, 0);
EXPECT_EQ(status.exceptionCode(), Status::EX_NONE);
} else {
EXPECT_TRUE(isUnknownOrUnsupported(status)) << status;
}
}
TEST_P(VibratorAidl, GetPwleCompositionSizeMax) {
int32_t maxSize;
Status status = vibrator->getPwleCompositionSizeMax(&maxSize);
if (capabilities & IVibrator::CAP_COMPOSE_PWLE_EFFECTS) {
ASSERT_NE(maxSize, 0);
EXPECT_EQ(status.exceptionCode(), Status::EX_NONE);
} else {
EXPECT_TRUE(isUnknownOrUnsupported(status)) << status;
}
}
TEST_P(VibratorAidl, GetSupportedBraking) {
std::vector<Braking> supported;
Status status = vibrator->getSupportedBraking(&supported);
if (capabilities & IVibrator::CAP_COMPOSE_PWLE_EFFECTS) {
bool isDefaultNoneSupported =
std::find(supported.begin(), supported.end(), Braking::NONE) != supported.end();
ASSERT_TRUE(isDefaultNoneSupported);
EXPECT_EQ(status.exceptionCode(), Status::EX_NONE);
} else {
EXPECT_TRUE(isUnknownOrUnsupported(status)) << status;
}
}
TEST_P(VibratorAidl, ComposeValidPwle) {
if (capabilities & IVibrator::CAP_COMPOSE_PWLE_EFFECTS) {
ActivePwle active = composeValidActivePwle(vibrator, capabilities);
std::vector<Braking> supported;
ASSERT_TRUE(vibrator->getSupportedBraking(&supported).isOk());
bool isClabSupported =
std::find(supported.begin(), supported.end(), Braking::CLAB) != supported.end();
BrakingPwle braking;
braking.braking = isClabSupported ? Braking::CLAB : Braking::NONE;
braking.duration = 100;
std::vector<PrimitivePwle> pwleQueue;
PrimitivePwle pwle;
pwle = active;
pwleQueue.emplace_back(std::move(pwle));
pwle = braking;
pwleQueue.emplace_back(std::move(pwle));
pwle = active;
pwleQueue.emplace_back(std::move(pwle));
EXPECT_EQ(Status::EX_NONE, vibrator->composePwle(pwleQueue, nullptr).exceptionCode());
vibrator->off();
}
}
TEST_P(VibratorAidl, ComposeValidPwleWithCallback) {
if (!((capabilities & IVibrator::CAP_ON_CALLBACK) &&
(capabilities & IVibrator::CAP_COMPOSE_PWLE_EFFECTS)))
return;
std::promise<void> completionPromise;
std::future<void> completionFuture{completionPromise.get_future()};
sp<CompletionCallback> callback =
new CompletionCallback([&completionPromise] { completionPromise.set_value(); });
uint32_t durationMs = 2100; // Sum of 2 active and 1 braking below
//TODO(b/187207798): revert back to conservative timeout values once
//latencies have been fixed
std::chrono::milliseconds timeout{durationMs * 4};
ActivePwle active = composeValidActivePwle(vibrator, capabilities);
std::vector<Braking> supported;
ASSERT_TRUE(vibrator->getSupportedBraking(&supported).isOk());
bool isClabSupported =
std::find(supported.begin(), supported.end(), Braking::CLAB) != supported.end();
BrakingPwle braking;
braking.braking = isClabSupported ? Braking::CLAB : Braking::NONE;
braking.duration = 100;
std::vector<PrimitivePwle> pwleQueue;
PrimitivePwle pwle;
pwle = active;
pwleQueue.emplace_back(std::move(pwle));
pwle = braking;
pwleQueue.emplace_back(std::move(pwle));
pwle = active;
pwleQueue.emplace_back(std::move(pwle));
EXPECT_TRUE(vibrator->composePwle(pwleQueue, callback).isOk());
EXPECT_EQ(completionFuture.wait_for(timeout), std::future_status::ready);
EXPECT_TRUE(vibrator->off().isOk());
}
TEST_P(VibratorAidl, ComposePwleSegmentBoundary) {
if (capabilities & IVibrator::CAP_COMPOSE_PWLE_EFFECTS) {
std::vector<PrimitivePwle> pwleQueue;
// test empty queue
EXPECT_EQ(Status::EX_ILLEGAL_ARGUMENT,
vibrator->composePwle(pwleQueue, nullptr).exceptionCode());
vibrator->off();
ActivePwle active = composeValidActivePwle(vibrator, capabilities);
PrimitivePwle pwle;
pwle = active;
int segmentCountMax;
vibrator->getPwleCompositionSizeMax(&segmentCountMax);
// Create PWLE queue with more segments than allowed
for (int i = 0; i < segmentCountMax + 10; i++) {
pwleQueue.emplace_back(std::move(pwle));
}
EXPECT_EQ(Status::EX_ILLEGAL_ARGUMENT,
vibrator->composePwle(pwleQueue, nullptr).exceptionCode());
vibrator->off();
}
}
TEST_P(VibratorAidl, ComposePwleAmplitudeParameterBoundary) {
if (capabilities & IVibrator::CAP_COMPOSE_PWLE_EFFECTS) {
ActivePwle active = composeValidActivePwle(vibrator, capabilities);
active.startAmplitude = getAmplitudeMax() + 1.0; // Amplitude greater than allowed
active.endAmplitude = getAmplitudeMax() + 1.0; // Amplitude greater than allowed
std::vector<PrimitivePwle> pwleQueueGreater;
PrimitivePwle pwle;
pwle = active;
pwleQueueGreater.emplace_back(std::move(pwle));
EXPECT_EQ(Status::EX_ILLEGAL_ARGUMENT,
vibrator->composePwle(pwleQueueGreater, nullptr).exceptionCode());
vibrator->off();
active.startAmplitude = getAmplitudeMin() - 1.0; // Amplitude less than allowed
active.endAmplitude = getAmplitudeMin() - 1.0; // Amplitude less than allowed
std::vector<PrimitivePwle> pwleQueueLess;
pwle = active;
pwleQueueLess.emplace_back(std::move(pwle));
EXPECT_EQ(Status::EX_ILLEGAL_ARGUMENT,
vibrator->composePwle(pwleQueueLess, nullptr).exceptionCode());
vibrator->off();
}
}
TEST_P(VibratorAidl, ComposePwleFrequencyParameterBoundary) {
if ((capabilities & IVibrator::CAP_COMPOSE_PWLE_EFFECTS) &&
(capabilities & IVibrator::CAP_FREQUENCY_CONTROL)) {
float freqMinimumHz = getFrequencyMinimumHz(vibrator, capabilities);
float freqMaximumHz = getFrequencyMaximumHz(vibrator, capabilities);
float freqResolutionHz = getFrequencyResolutionHz(vibrator, capabilities);
ActivePwle active = composeValidActivePwle(vibrator, capabilities);
active.startFrequency =
freqMaximumHz + freqResolutionHz; // Frequency greater than allowed
active.endFrequency = freqMaximumHz + freqResolutionHz; // Frequency greater than allowed
std::vector<PrimitivePwle> pwleQueueGreater;
PrimitivePwle pwle;
pwle = active;
pwleQueueGreater.emplace_back(std::move(pwle));
EXPECT_EQ(Status::EX_ILLEGAL_ARGUMENT,
vibrator->composePwle(pwleQueueGreater, nullptr).exceptionCode());
vibrator->off();
active.startFrequency = freqMinimumHz - freqResolutionHz; // Frequency less than allowed
active.endFrequency = freqMinimumHz - freqResolutionHz; // Frequency less than allowed
std::vector<PrimitivePwle> pwleQueueLess;
pwle = active;
pwleQueueLess.emplace_back(std::move(pwle));
EXPECT_EQ(Status::EX_ILLEGAL_ARGUMENT,
vibrator->composePwle(pwleQueueLess, nullptr).exceptionCode());
vibrator->off();
}
}
TEST_P(VibratorAidl, ComposePwleSegmentDurationBoundary) {
if (capabilities & IVibrator::CAP_COMPOSE_PWLE_EFFECTS) {
ActivePwle active = composeValidActivePwle(vibrator, capabilities);
int segmentDurationMaxMs;
vibrator->getPwlePrimitiveDurationMax(&segmentDurationMaxMs);
active.duration = segmentDurationMaxMs + 10; // Segment duration greater than allowed
std::vector<PrimitivePwle> pwleQueue;
PrimitivePwle pwle;
pwle = active;
pwleQueue.emplace_back(std::move(pwle));
EXPECT_EQ(Status::EX_ILLEGAL_ARGUMENT,
vibrator->composePwle(pwleQueue, nullptr).exceptionCode());
vibrator->off();
}
}
std::vector<std::tuple<int32_t, int32_t>> GenerateVibratorMapping() {
std::vector<std::tuple<int32_t, int32_t>> tuples;
auto managerAidlNames = android::getAidlHalInstanceNames(IVibratorManager::descriptor);
std::vector<int32_t> vibratorIds;
for (int i = 0; i < managerAidlNames.size(); i++) {
auto managerName = String16(managerAidlNames[i].c_str());
auto vibratorManager = android::waitForDeclaredService<IVibratorManager>(managerName);
if (vibratorManager->getVibratorIds(&vibratorIds).isOk()) {
for (auto &vibratorId : vibratorIds) {
tuples.push_back(std::make_tuple(i, vibratorId));
}
}
}
auto vibratorAidlNames = android::getAidlHalInstanceNames(IVibrator::descriptor);
for (int i = 0; i < vibratorAidlNames.size(); i++) {
tuples.push_back(std::make_tuple(-1, i));
}
return tuples;
}
std::string PrintGeneratedTest(const testing::TestParamInfo<VibratorAidl::ParamType> &info) {
const auto &[managerIdx, vibratorId] = info.param;
if (managerIdx < 0) {
return std::string("TOP_LEVEL_VIBRATOR_") + std::to_string(vibratorId);
}
return std::string("MANAGER_") + std::to_string(managerIdx) + "_VIBRATOR_ID_" +
std::to_string(vibratorId);
}
GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(VibratorAidl);
INSTANTIATE_TEST_SUITE_P(Vibrator, VibratorAidl, testing::ValuesIn(GenerateVibratorMapping()),
PrintGeneratedTest);
int main(int argc, char **argv) {
::testing::InitGoogleTest(&argc, argv);
ProcessState::self()->setThreadPoolMaxThreadCount(1);
ProcessState::self()->startThreadPool();
return RUN_ALL_TESTS();
}