You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1027 lines
48 KiB
1027 lines
48 KiB
/*
|
|
* Copyright (C) 2017 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#define LOG_TAG "ValidateHal"
|
|
|
|
#include "ValidateHal.h"
|
|
|
|
#include <android-base/logging.h>
|
|
|
|
#include <algorithm>
|
|
#include <set>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include "NeuralNetworks.h"
|
|
#include "OperationsUtils.h"
|
|
#include "Tracing.h"
|
|
#include "Utils.h"
|
|
#include "nnapi/TypeUtils.h"
|
|
|
|
namespace android {
|
|
namespace nn {
|
|
|
|
template <class T_Model>
|
|
struct ModelToHalVersion;
|
|
template <>
|
|
struct ModelToHalVersion<V1_0::Model> {
|
|
static constexpr HalVersion version = HalVersion::V1_0;
|
|
};
|
|
template <>
|
|
struct ModelToHalVersion<V1_1::Model> {
|
|
static constexpr HalVersion version = HalVersion::V1_1;
|
|
};
|
|
template <>
|
|
struct ModelToHalVersion<V1_2::Model> {
|
|
static constexpr HalVersion version = HalVersion::V1_2;
|
|
};
|
|
template <>
|
|
struct ModelToHalVersion<V1_3::Model> {
|
|
static constexpr HalVersion version = HalVersion::V1_3;
|
|
};
|
|
|
|
class MemoryAccessVerifier {
|
|
public:
|
|
MemoryAccessVerifier(const hardware::hidl_vec<hardware::hidl_memory>& pools)
|
|
: mPoolCount(pools.size()), mPoolSizes(mPoolCount) {
|
|
for (size_t i = 0; i < mPoolCount; i++) {
|
|
mPoolSizes[i] = pools[i].size();
|
|
}
|
|
}
|
|
MemoryAccessVerifier(const hardware::hidl_vec<V1_3::Request::MemoryPool>& pools)
|
|
: mPoolCount(pools.size()), mPoolSizes(mPoolCount) {
|
|
for (size_t i = 0; i < mPoolCount; i++) {
|
|
switch (pools[i].getDiscriminator()) {
|
|
case V1_3::Request::MemoryPool::hidl_discriminator::hidlMemory:
|
|
mPoolSizes[i] = pools[i].hidlMemory().size();
|
|
break;
|
|
case V1_3::Request::MemoryPool::hidl_discriminator::token:
|
|
// Set size to 0 to enforce length == 0 && offset == 0.
|
|
mPoolSizes[i] = 0;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
bool validate(const V1_0::DataLocation& location) const {
|
|
if (location.poolIndex >= mPoolCount) {
|
|
LOG(ERROR) << "Invalid poolIndex " << location.poolIndex << "/" << mPoolCount;
|
|
return false;
|
|
}
|
|
const size_t size = mPoolSizes[location.poolIndex];
|
|
// Do the addition using size_t to avoid potential wrap-around problems.
|
|
if (static_cast<size_t>(location.offset) + location.length > size) {
|
|
LOG(ERROR) << "Reference to pool " << location.poolIndex << " with offset "
|
|
<< location.offset << " and length " << location.length
|
|
<< " exceeds pool size of " << size;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
private:
|
|
size_t mPoolCount;
|
|
std::vector<size_t> mPoolSizes;
|
|
};
|
|
|
|
static bool validateOperandExtraParams(const V1_3::Operand& operand, uint32_t index) {
|
|
switch (operand.type) {
|
|
case V1_3::OperandType::FLOAT32:
|
|
case V1_3::OperandType::INT32:
|
|
case V1_3::OperandType::UINT32:
|
|
case V1_3::OperandType::BOOL:
|
|
case V1_3::OperandType::SUBGRAPH:
|
|
case V1_3::OperandType::TENSOR_FLOAT32:
|
|
case V1_3::OperandType::TENSOR_FLOAT16:
|
|
case V1_3::OperandType::TENSOR_INT32:
|
|
case V1_3::OperandType::TENSOR_QUANT8_ASYMM:
|
|
case V1_3::OperandType::TENSOR_QUANT8_ASYMM_SIGNED:
|
|
case V1_3::OperandType::TENSOR_QUANT8_SYMM:
|
|
case V1_3::OperandType::TENSOR_QUANT16_ASYMM:
|
|
case V1_3::OperandType::TENSOR_QUANT16_SYMM:
|
|
case V1_3::OperandType::TENSOR_BOOL8: {
|
|
NN_RET_CHECK(operand.extraParams.getDiscriminator() ==
|
|
V1_2::Operand::ExtraParams::hidl_discriminator::none)
|
|
<< "Operand " << index << ": Operand of type "
|
|
<< getOperandTypeName(operand.type)
|
|
<< " has incorrect extraParams: " << toString(operand.extraParams);
|
|
} break;
|
|
case V1_3::OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL: {
|
|
NN_RET_CHECK(operand.extraParams.getDiscriminator() ==
|
|
V1_2::Operand::ExtraParams::hidl_discriminator::channelQuant)
|
|
<< "Operand " << index << ": Operand of type "
|
|
<< getOperandTypeName(operand.type) << " without a Channel Quantization params";
|
|
auto& channelQuant = operand.extraParams.channelQuant();
|
|
|
|
size_t count = operand.dimensions.size();
|
|
NN_RET_CHECK_LT(channelQuant.channelDim, count)
|
|
<< "Operand " << index << ": Operand of type "
|
|
<< getOperandTypeName(operand.type)
|
|
<< " with an invalid channelQuant.channelDim " << channelQuant.channelDim
|
|
<< ", must be valid dimension index in range [0, " << count << ")";
|
|
uint32_t expected = operand.dimensions[channelQuant.channelDim];
|
|
NN_RET_CHECK_EQ(channelQuant.scales.size(), expected)
|
|
<< "Operand " << index << ": Operand of type "
|
|
<< getOperandTypeName(operand.type) << " with a wrong-sized scales, "
|
|
<< "expected " << expected << " was " << channelQuant.scales.size();
|
|
NN_RET_CHECK_NE(expected, 0)
|
|
<< "Operand " << index << ": Operand of type "
|
|
<< getOperandTypeName(operand.type) << " channel dimension "
|
|
<< channelQuant.channelDim << " is underspecified (can't be 0)";
|
|
for (uint32_t i = 0; i < expected; ++i) {
|
|
NN_RET_CHECK_GT(channelQuant.scales[i], .0f)
|
|
<< "Operand " << index << ": Operand of type "
|
|
<< getOperandTypeName(operand.type) << " with a negative value in scales["
|
|
<< i << "]=" << channelQuant.scales[i];
|
|
}
|
|
} break;
|
|
default: {
|
|
if (isExtensionOperandType(operand.type)) {
|
|
NN_RET_CHECK(operand.extraParams.getDiscriminator() ==
|
|
V1_2::Operand::ExtraParams::hidl_discriminator::extension ||
|
|
operand.extraParams.getDiscriminator() ==
|
|
V1_2::Operand::ExtraParams::hidl_discriminator::none)
|
|
<< "Operand " << index << ": Extension operand of type "
|
|
<< getOperandTypeName(operand.type)
|
|
<< " has incorrect extraParams: " << toString(operand.extraParams);
|
|
}
|
|
// No validation for OEM types.
|
|
} break;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template <typename VersionedOperand>
|
|
static bool validateOperands(const hardware::hidl_vec<VersionedOperand>& operands,
|
|
const hardware::hidl_vec<uint8_t>& operandValues,
|
|
const hardware::hidl_vec<hardware::hidl_memory>& pools,
|
|
const hardware::hidl_vec<V1_3::Subgraph>& subgraphs,
|
|
bool allowUnspecifiedRank) {
|
|
uint32_t index = 0;
|
|
MemoryAccessVerifier poolVerifier(pools);
|
|
for (auto& versionedOperand : operands) {
|
|
if (!validOperandType(versionedOperand.type)) {
|
|
LOG(ERROR) << "Operand is not supported by this version: "
|
|
<< toString(versionedOperand.type);
|
|
return false;
|
|
}
|
|
// Once we are sure the operand is supported by its version, it is safe
|
|
// to convert it to the latest version for the rest of the validations.
|
|
V1_3::Operand operand = convertToV1_3(versionedOperand);
|
|
// Validate type and dimensions.
|
|
switch (operand.type) {
|
|
case V1_3::OperandType::FLOAT16:
|
|
case V1_3::OperandType::FLOAT32:
|
|
case V1_3::OperandType::INT32:
|
|
case V1_3::OperandType::UINT32:
|
|
case V1_3::OperandType::BOOL:
|
|
case V1_3::OperandType::SUBGRAPH:
|
|
case V1_3::OperandType::OEM: {
|
|
size_t count = operand.dimensions.size();
|
|
if (count != 0) {
|
|
LOG(ERROR) << "Operand " << index << ": Scalar data has dimensions of rank "
|
|
<< count;
|
|
return false;
|
|
}
|
|
break;
|
|
}
|
|
case V1_3::OperandType::TENSOR_FLOAT16:
|
|
case V1_3::OperandType::TENSOR_FLOAT32:
|
|
case V1_3::OperandType::TENSOR_INT32:
|
|
case V1_3::OperandType::TENSOR_QUANT8_ASYMM:
|
|
case V1_3::OperandType::TENSOR_QUANT8_ASYMM_SIGNED:
|
|
case V1_3::OperandType::TENSOR_QUANT8_SYMM:
|
|
case V1_3::OperandType::TENSOR_QUANT16_ASYMM:
|
|
case V1_3::OperandType::TENSOR_QUANT16_SYMM:
|
|
case V1_3::OperandType::TENSOR_BOOL8:
|
|
case V1_3::OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL:
|
|
case V1_3::OperandType::TENSOR_OEM_BYTE: {
|
|
if ((!allowUnspecifiedRank ||
|
|
operand.lifetime == V1_3::OperandLifeTime::CONSTANT_COPY ||
|
|
operand.lifetime == V1_3::OperandLifeTime::CONSTANT_REFERENCE) &&
|
|
operand.dimensions.size() == 0) {
|
|
LOG(ERROR) << "Operand " << index << ": Tensor has dimensions of rank 0";
|
|
return false;
|
|
}
|
|
break;
|
|
}
|
|
default: {
|
|
if (!isExtensionOperandType(operand.type)) {
|
|
LOG(ERROR) << "Operand " << index << ": Invalid operand type "
|
|
<< toString(operand.type);
|
|
return false;
|
|
}
|
|
} break;
|
|
}
|
|
|
|
// Validate the scale.
|
|
switch (operand.type) {
|
|
case V1_3::OperandType::FLOAT16:
|
|
case V1_3::OperandType::FLOAT32:
|
|
case V1_3::OperandType::INT32:
|
|
case V1_3::OperandType::UINT32:
|
|
case V1_3::OperandType::BOOL:
|
|
case V1_3::OperandType::SUBGRAPH:
|
|
case V1_3::OperandType::TENSOR_FLOAT16:
|
|
case V1_3::OperandType::TENSOR_FLOAT32:
|
|
case V1_3::OperandType::TENSOR_BOOL8:
|
|
case V1_3::OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL:
|
|
if (operand.scale != 0.f) {
|
|
LOG(ERROR) << "Operand " << index << ": Operand of type "
|
|
<< getOperandTypeName(operand.type) << " with a non-zero scale ("
|
|
<< operand.scale << ")";
|
|
return false;
|
|
}
|
|
break;
|
|
case V1_3::OperandType::TENSOR_INT32:
|
|
// TENSOR_INT32 may be used with or without scale, depending on the operation.
|
|
if (operand.scale < 0.f) {
|
|
LOG(ERROR) << "Operand " << index << ": Operand of type "
|
|
<< getOperandTypeName(operand.type) << " with a negative scale";
|
|
return false;
|
|
}
|
|
break;
|
|
case V1_3::OperandType::TENSOR_QUANT8_ASYMM:
|
|
case V1_3::OperandType::TENSOR_QUANT8_ASYMM_SIGNED:
|
|
case V1_3::OperandType::TENSOR_QUANT8_SYMM:
|
|
case V1_3::OperandType::TENSOR_QUANT16_ASYMM:
|
|
case V1_3::OperandType::TENSOR_QUANT16_SYMM:
|
|
if (operand.scale <= 0.f) {
|
|
LOG(ERROR) << "Operand " << index << ": Operand of type "
|
|
<< getOperandTypeName(operand.type) << " with a non-positive scale";
|
|
return false;
|
|
}
|
|
break;
|
|
default:
|
|
if (isExtensionOperandType(operand.type) && operand.scale != 0.f) {
|
|
LOG(ERROR) << "Operand " << index << ": Operand of type "
|
|
<< getOperandTypeName(operand.type) << " with a non-zero scale ("
|
|
<< operand.scale << ")";
|
|
return false;
|
|
}
|
|
// No validation for OEM types.
|
|
// TODO(b/119869082) We should have a separate type for TENSOR_INT32 with a scale.
|
|
break;
|
|
}
|
|
|
|
// Validate the zeroPoint.
|
|
switch (operand.type) {
|
|
case V1_3::OperandType::FLOAT16:
|
|
case V1_3::OperandType::FLOAT32:
|
|
case V1_3::OperandType::INT32:
|
|
case V1_3::OperandType::UINT32:
|
|
case V1_3::OperandType::BOOL:
|
|
case V1_3::OperandType::SUBGRAPH:
|
|
case V1_3::OperandType::TENSOR_FLOAT16:
|
|
case V1_3::OperandType::TENSOR_FLOAT32:
|
|
case V1_3::OperandType::TENSOR_INT32:
|
|
case V1_3::OperandType::TENSOR_BOOL8:
|
|
case V1_3::OperandType::TENSOR_QUANT8_SYMM:
|
|
case V1_3::OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL:
|
|
if (operand.zeroPoint != 0) {
|
|
LOG(ERROR) << "Operand " << index << ": Operand of type "
|
|
<< getOperandTypeName(operand.type) << " with a non-zero zeroPoint "
|
|
<< operand.zeroPoint;
|
|
return false;
|
|
}
|
|
break;
|
|
case V1_3::OperandType::TENSOR_QUANT8_ASYMM:
|
|
if (operand.zeroPoint < 0 || operand.zeroPoint > 255) {
|
|
LOG(ERROR) << "Operand " << index << ": Operand of type "
|
|
<< getOperandTypeName(operand.type) << " with an invalid zeroPoint "
|
|
<< operand.zeroPoint << ", must be in range [0, 255]";
|
|
return false;
|
|
}
|
|
break;
|
|
case V1_3::OperandType::TENSOR_QUANT8_ASYMM_SIGNED:
|
|
if (operand.zeroPoint < -128 || operand.zeroPoint > 127) {
|
|
LOG(ERROR) << "Operand " << index << ": Operand of type "
|
|
<< getOperandTypeName(operand.type) << " with an invalid zeroPoint "
|
|
<< operand.zeroPoint << ", must be in range [-128, 127]";
|
|
return false;
|
|
}
|
|
break;
|
|
case V1_3::OperandType::TENSOR_QUANT16_ASYMM:
|
|
if (operand.zeroPoint < 0 || operand.zeroPoint > 65535) {
|
|
LOG(ERROR) << "Operand " << index << ": Operand of type "
|
|
<< getOperandTypeName(operand.type) << " with an invalid zeroPoint "
|
|
<< operand.zeroPoint << ", must be in range [0, 65535]";
|
|
return false;
|
|
}
|
|
break;
|
|
case V1_3::OperandType::TENSOR_QUANT16_SYMM:
|
|
if (operand.zeroPoint != 0) {
|
|
LOG(ERROR) << "Operand " << index << ": Operand of type "
|
|
<< getOperandTypeName(operand.type) << " with a non-zero zeroPoint "
|
|
<< operand.zeroPoint;
|
|
return false;
|
|
}
|
|
break;
|
|
default:
|
|
if (isExtensionOperandType(operand.type) && operand.zeroPoint != 0) {
|
|
LOG(ERROR) << "Operand " << index << ": Operand of type "
|
|
<< getOperandTypeName(operand.type) << " with a non-zero zeroPoint "
|
|
<< operand.zeroPoint;
|
|
return false;
|
|
}
|
|
// No validation for OEM types.
|
|
break;
|
|
}
|
|
|
|
NN_RET_CHECK(validateOperandExtraParams(operand, index));
|
|
|
|
// Validate the lifetime and the location.
|
|
const V1_0::DataLocation& location = operand.location;
|
|
switch (operand.lifetime) {
|
|
case V1_3::OperandLifeTime::CONSTANT_COPY:
|
|
if (location.poolIndex != 0) {
|
|
LOG(ERROR) << "Operand " << index
|
|
<< ": CONSTANT_COPY with a non-zero poolIndex "
|
|
<< location.poolIndex;
|
|
return false;
|
|
}
|
|
// Do the addition using size_t to avoid potential wrap-around problems.
|
|
if (static_cast<size_t>(location.offset) + location.length > operandValues.size()) {
|
|
LOG(ERROR) << "Operand " << index
|
|
<< ": OperandValue location out of range. Starts at "
|
|
<< location.offset << ", length " << location.length << ", max "
|
|
<< operandValues.size();
|
|
return false;
|
|
}
|
|
break;
|
|
case V1_3::OperandLifeTime::CONSTANT_REFERENCE:
|
|
if (!poolVerifier.validate(location)) {
|
|
return false;
|
|
}
|
|
break;
|
|
case V1_3::OperandLifeTime::TEMPORARY_VARIABLE:
|
|
case V1_3::OperandLifeTime::SUBGRAPH_INPUT:
|
|
case V1_3::OperandLifeTime::SUBGRAPH_OUTPUT:
|
|
case V1_3::OperandLifeTime::NO_VALUE:
|
|
if (location.poolIndex != 0 || location.offset != 0 || location.length != 0) {
|
|
LOG(ERROR) << "Operand " << index << ": Unexpected poolIndex "
|
|
<< location.poolIndex << ", offset " << location.offset
|
|
<< ", or length " << location.length << " for operand of lifetime "
|
|
<< toString(operand.lifetime);
|
|
return false;
|
|
}
|
|
break;
|
|
case V1_3::OperandLifeTime::SUBGRAPH: {
|
|
if (location.poolIndex != 0) {
|
|
LOG(ERROR) << "Operand " << index << ": SUBGRAPH with a non-zero poolIndex "
|
|
<< location.poolIndex;
|
|
return false;
|
|
}
|
|
if (location.offset >= subgraphs.size()) {
|
|
LOG(ERROR) << "Model::Subgraph index out of range: " << location.offset
|
|
<< " >= " << subgraphs.size();
|
|
return false;
|
|
}
|
|
if (location.length != 0) {
|
|
LOG(ERROR) << "Operand " << index << ": SUBGRAPH with a non-zero length "
|
|
<< location.length;
|
|
return false;
|
|
}
|
|
} break;
|
|
default:
|
|
LOG(ERROR) << "Operand " << index << ": Invalid lifetime "
|
|
<< toString(operand.lifetime);
|
|
return false;
|
|
}
|
|
|
|
// Make sure SUBGRAPH operand type and lifetime always go together.
|
|
if ((operand.type == V1_3::OperandType::SUBGRAPH) !=
|
|
(operand.lifetime == V1_3::OperandLifeTime::SUBGRAPH)) {
|
|
LOG(ERROR) << "Operand " << index << ": Operand of type " << toString(operand.type)
|
|
<< " cannot have lifetime " << toString(operand.lifetime);
|
|
return false;
|
|
}
|
|
|
|
// For constants, validate that the length is as expected. The other lifetimes
|
|
// expect the length to be 0. Don't validate for OEM types.
|
|
if (operand.lifetime == V1_3::OperandLifeTime::CONSTANT_REFERENCE ||
|
|
operand.lifetime == V1_3::OperandLifeTime::CONSTANT_COPY) {
|
|
if (!isExtensionOperandType(operand.type) && operand.type != V1_3::OperandType::OEM &&
|
|
operand.type != V1_3::OperandType::TENSOR_OEM_BYTE) {
|
|
uint32_t expectedLength = nonExtensionOperandSizeOfData(operand);
|
|
if (location.length != expectedLength) {
|
|
LOG(ERROR) << "Operand " << index << ": For operand " << toString(operand)
|
|
<< " expected a size of " << expectedLength << " but got "
|
|
<< location.length;
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
index++;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static HalVersion getHalVersion(const V1_0::Operation&) {
|
|
return HalVersion::V1_0;
|
|
}
|
|
|
|
static HalVersion getHalVersion(const V1_1::Operation&) {
|
|
return HalVersion::V1_1;
|
|
}
|
|
|
|
static HalVersion getHalVersion(const V1_2::Operation&) {
|
|
return HalVersion::V1_2;
|
|
}
|
|
|
|
static HalVersion getHalVersion(const V1_3::Operation&) {
|
|
return HalVersion::V1_3;
|
|
}
|
|
|
|
template <typename VersionedOperation>
|
|
static bool validateOperations(const hardware::hidl_vec<VersionedOperation>& operations,
|
|
const hardware::hidl_vec<V1_3::Operand>& operands,
|
|
const hardware::hidl_vec<V1_3::Subgraph>& subgraphs,
|
|
ValidationMode mode) {
|
|
auto canonicalSubgraphs = uncheckedConvert(subgraphs);
|
|
auto isValidSubgraphReference = [&canonicalSubgraphs](const Operand& modelOperand) -> bool {
|
|
NN_RET_CHECK(modelOperand.type == OperandType::SUBGRAPH)
|
|
<< "Unexpected operand type: " << modelOperand.type;
|
|
NN_RET_CHECK_LT(modelOperand.location.offset, canonicalSubgraphs.size())
|
|
<< "Invalid subgraph reference";
|
|
return true;
|
|
};
|
|
auto getSubgraph =
|
|
[&canonicalSubgraphs](const Operand& modelOperand) -> const Model::Subgraph* {
|
|
CHECK_LT(modelOperand.location.offset, canonicalSubgraphs.size());
|
|
return &canonicalSubgraphs[modelOperand.location.offset];
|
|
};
|
|
auto getInputCount = [&getSubgraph](const Operand& modelOperand) -> uint32_t {
|
|
return getSubgraph(modelOperand)->inputIndexes.size();
|
|
};
|
|
auto getOutputCount = [&getSubgraph](const Operand& modelOperand) -> uint32_t {
|
|
return getSubgraph(modelOperand)->outputIndexes.size();
|
|
};
|
|
auto getInputOperand = [&getSubgraph](const Operand& modelOperand,
|
|
uint32_t index) -> const Operand* {
|
|
const Model::Subgraph& subgraph = *getSubgraph(modelOperand);
|
|
CHECK_LT(subgraph.inputIndexes[index], subgraph.operands.size());
|
|
return &subgraph.operands[subgraph.inputIndexes[index]];
|
|
};
|
|
auto getOutputOperand = [&getSubgraph](const Operand& modelOperand,
|
|
uint32_t index) -> const Operand* {
|
|
const Model::Subgraph& subgraph = *getSubgraph(modelOperand);
|
|
CHECK_LT(subgraph.outputIndexes[index], subgraph.operands.size());
|
|
return &subgraph.operands[subgraph.outputIndexes[index]];
|
|
};
|
|
for (auto& op : operations) {
|
|
// TODO Validate the shapes and any known values. This is currently
|
|
// done in CpuExecutor but should be done here for all drivers.
|
|
int error = validateOperation(static_cast<int32_t>(op.type), op.inputs.size(),
|
|
op.inputs.size() > 0 ? op.inputs.data() : nullptr,
|
|
op.outputs.size(),
|
|
op.outputs.size() > 0 ? op.outputs.data() : nullptr,
|
|
uncheckedConvert(operands), getHalVersion(op),
|
|
{.isValidSubgraphReference = isValidSubgraphReference,
|
|
.getSubgraphInputCount = getInputCount,
|
|
.getSubgraphOutputCount = getOutputCount,
|
|
.getSubgraphInputOperand = getInputOperand,
|
|
.getSubgraphOutputOperand = getOutputOperand,
|
|
// 1.3 HAL does not support CF operations with operands of
|
|
// unknown size. See http://b/132458982#comment63.
|
|
.allowControlFlowOperationWithOperandOfUnknownSize =
|
|
mode == ValidationMode::RUNTIME});
|
|
if (error != ANEURALNETWORKS_NO_ERROR) {
|
|
LOG(ERROR) << "Invalid operation " << toString(op.type);
|
|
return false;
|
|
}
|
|
|
|
// This is redundant because of the checks in validateGraph(),
|
|
// but it is retained here in order to emit more informative
|
|
// error messages.
|
|
for (uint32_t i : op.outputs) {
|
|
const V1_3::Operand& operand = operands[i];
|
|
if (operand.lifetime != V1_3::OperandLifeTime::TEMPORARY_VARIABLE &&
|
|
operand.lifetime != V1_3::OperandLifeTime::SUBGRAPH_OUTPUT) {
|
|
LOG(ERROR) << "Writing to operand " << i << " with incompatible lifetime "
|
|
<< toString(operand.lifetime);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool validatePool(const hardware::hidl_memory& pool, HalVersion ver) {
|
|
const auto& name = pool.name();
|
|
if (name != "ashmem" && name != "mmap_fd" &&
|
|
((ver < HalVersion::V1_2) ||
|
|
(name != "hardware_buffer_blob" && name != "hardware_buffer"))) {
|
|
LOG(ERROR) << "Unsupported memory type " << name;
|
|
return false;
|
|
}
|
|
if (pool.handle() == nullptr) {
|
|
LOG(ERROR) << "Memory of type " << name << " is null";
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool validatePool(const V1_3::Request::MemoryPool& pool, HalVersion ver) {
|
|
switch (pool.getDiscriminator()) {
|
|
case V1_3::Request::MemoryPool::hidl_discriminator::hidlMemory:
|
|
return validatePool(pool.hidlMemory(), ver);
|
|
case V1_3::Request::MemoryPool::hidl_discriminator::token:
|
|
return pool.token() > 0;
|
|
}
|
|
LOG(FATAL) << "unknown MemoryPool discriminator";
|
|
return false;
|
|
}
|
|
|
|
template <class T_MemoryPool>
|
|
static bool validatePools(const hardware::hidl_vec<T_MemoryPool>& pools, HalVersion ver) {
|
|
return std::all_of(pools.begin(), pools.end(),
|
|
[ver](const auto& pool) { return validatePool(pool, ver); });
|
|
}
|
|
|
|
static bool validateModelInputOutputs(const hardware::hidl_vec<uint32_t> indexes,
|
|
const hardware::hidl_vec<V1_3::Operand>& operands,
|
|
V1_3::OperandLifeTime lifetime) {
|
|
const size_t operandCount = operands.size();
|
|
for (uint32_t i : indexes) {
|
|
if (i >= operandCount) {
|
|
LOG(ERROR) << "Model input or output index out of range: " << i << "/" << operandCount;
|
|
return false;
|
|
}
|
|
const V1_3::Operand& operand = operands[i];
|
|
if (operand.lifetime != lifetime) {
|
|
LOG(ERROR) << "Model input or output operand " << i << " has lifetime of "
|
|
<< toString(operand.lifetime) << " instead of the expected "
|
|
<< toString(lifetime);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
std::vector<uint32_t> sortedIndexes = indexes;
|
|
std::sort(sortedIndexes.begin(), sortedIndexes.end());
|
|
auto adjacentI = std::adjacent_find(sortedIndexes.begin(), sortedIndexes.end());
|
|
if (adjacentI != sortedIndexes.end()) {
|
|
LOG(ERROR) << "Model input or output occurs multiple times: " << *adjacentI;
|
|
return false;
|
|
}
|
|
|
|
for (size_t i = 0; i < operands.size(); ++i) {
|
|
if (operands[i].lifetime == lifetime &&
|
|
!binary_search(sortedIndexes.begin(), sortedIndexes.end(), i)) {
|
|
LOG(ERROR) << "Operand " << i << " marked as " << toString(lifetime)
|
|
<< " but is not included in Model input or output indexes";
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
template <typename VersionedModelOrSubgraph>
|
|
static bool validateGraph(const VersionedModelOrSubgraph& model) {
|
|
// set up counts
|
|
std::vector<uint32_t> operandNumberOfConsumers(model.operands.size(), 0);
|
|
// Either the operand has a known value before model execution
|
|
// begins, or we've seen a writer for this operand while
|
|
// walking operands in execution order.
|
|
std::vector<bool> operandValueKnown(model.operands.size(), false);
|
|
|
|
// mark known operands
|
|
for (size_t i = 0; i < model.operands.size(); ++i) {
|
|
const auto& operand = model.operands[i];
|
|
const V1_3::OperandLifeTime lifetime = convertToV1_3(operand.lifetime);
|
|
operandValueKnown[i] = lifetime == V1_3::OperandLifeTime::SUBGRAPH_INPUT ||
|
|
lifetime == V1_3::OperandLifeTime::CONSTANT_COPY ||
|
|
lifetime == V1_3::OperandLifeTime::CONSTANT_REFERENCE ||
|
|
lifetime == V1_3::OperandLifeTime::NO_VALUE ||
|
|
lifetime == V1_3::OperandLifeTime::SUBGRAPH;
|
|
}
|
|
|
|
// Validate that operations are sorted into execution order.
|
|
//
|
|
// If there is a cycle in the graph, the operations will not
|
|
// appear to be sorted into execution order: Some operation will
|
|
// have an input for which operandValueKnown[] is false.
|
|
for (size_t i = 0; i < model.operations.size(); ++i) {
|
|
const auto& operation = model.operations[i];
|
|
|
|
for (size_t j = 0; j < operation.inputs.size(); ++j) {
|
|
uint32_t k = operation.inputs[j];
|
|
if (!operandValueKnown[k]) {
|
|
LOG(ERROR) << "Operation " << i << " input " << j << " (operand " << k
|
|
<< ") is read before it is written";
|
|
return false;
|
|
}
|
|
operandNumberOfConsumers[k]++;
|
|
}
|
|
|
|
for (size_t j = 0; j < operation.outputs.size(); ++j) {
|
|
uint32_t k = operation.outputs[j];
|
|
if (operandValueKnown[k]) {
|
|
// Assuming validateOperations() has returned true, we
|
|
// know that this output is TEMPORARY_VARIABLE or
|
|
// MODEL_OUTPUT, and so the only way
|
|
// operandValueKnown[k] can be true is if we've
|
|
// already seen a writer for this operand.
|
|
LOG(ERROR) << "Operation " << i << " output " << j << " (operand " << k
|
|
<< ") has already been written";
|
|
return false;
|
|
}
|
|
operandValueKnown[k] = true;
|
|
}
|
|
}
|
|
|
|
// validate number of consumers
|
|
//
|
|
// TODO Because we have to validate it, there was no point in including it
|
|
// in struct Operand. For the next release, consider removing unless we have
|
|
// an additional process in system space that creates this value. In that
|
|
// case, it would not have to be validated.
|
|
for (size_t i = 0; i < model.operands.size(); ++i) {
|
|
if (model.operands[i].numberOfConsumers != operandNumberOfConsumers[i]) {
|
|
LOG(ERROR) << "Operand " << i << " has incorrect number of consumers "
|
|
<< model.operands[i].numberOfConsumers << ", expected "
|
|
<< operandNumberOfConsumers[i];
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// verify all operands are written
|
|
for (size_t i = 0; i < model.operands.size(); ++i) {
|
|
if (!operandValueKnown[i]) {
|
|
LOG(ERROR) << "Operand " << i << " is never written";
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Makes sure the model does not contain subgraph reference cycles.
|
|
static bool checkNoReferenceCycles(const V1_3::Model& model, const V1_3::Subgraph& subgraph,
|
|
std::set<const V1_3::Subgraph*>* path) {
|
|
auto [_, isNew] = path->insert(&subgraph);
|
|
if (!isNew) {
|
|
LOG(ERROR) << "Model contains a circular subgraph reference";
|
|
return false;
|
|
}
|
|
for (const V1_3::Operand& operand : subgraph.operands) {
|
|
if (operand.lifetime == V1_3::OperandLifeTime::SUBGRAPH) {
|
|
uint32_t refSubgraphIndex = operand.location.offset;
|
|
if (!checkNoReferenceCycles(model, model.referenced[refSubgraphIndex], path)) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
path->erase(&subgraph);
|
|
return true;
|
|
}
|
|
|
|
static bool checkNoReferenceCycles(const V1_3::Model& model) {
|
|
std::set<const V1_3::Subgraph*> path;
|
|
return checkNoReferenceCycles(model, model.main, &path);
|
|
}
|
|
|
|
template <class T_Model>
|
|
bool validateModel(const T_Model& model, ValidationMode mode) {
|
|
NNTRACE_FULL(NNTRACE_LAYER_UTILITY, NNTRACE_PHASE_UNSPECIFIED, "validateModel");
|
|
HalVersion version = ModelToHalVersion<T_Model>::version;
|
|
if (model.operations.size() == 0 || model.operands.size() == 0) {
|
|
LOG(ERROR) << "Invalid empty model.";
|
|
return false;
|
|
}
|
|
// We only need versioned operands for their validation. For all the other
|
|
// validations we can use operands upcasted to the latest version.
|
|
const hardware::hidl_vec<V1_3::Operand> latestVersionOperands = convertToV1_3(model.operands);
|
|
return (validateOperands(model.operands, model.operandValues, model.pools, /*subgraphs=*/{},
|
|
/*allowUnspecifiedRank=*/version >= HalVersion::V1_2) &&
|
|
validateOperations(model.operations, latestVersionOperands, /*subgraphs=*/{}, mode) &&
|
|
validateModelInputOutputs(model.inputIndexes, latestVersionOperands,
|
|
V1_3::OperandLifeTime::SUBGRAPH_INPUT) &&
|
|
validateModelInputOutputs(model.outputIndexes, latestVersionOperands,
|
|
V1_3::OperandLifeTime::SUBGRAPH_OUTPUT) &&
|
|
validatePools(model.pools, version) && validateGraph(model));
|
|
}
|
|
|
|
template bool validateModel<V1_0::Model>(const V1_0::Model& model, ValidationMode mode);
|
|
template bool validateModel<V1_1::Model>(const V1_1::Model& model, ValidationMode mode);
|
|
template bool validateModel<V1_2::Model>(const V1_2::Model& model, ValidationMode mode);
|
|
|
|
template <>
|
|
bool validateModel(const V1_3::Model& model, ValidationMode mode) {
|
|
NNTRACE_FULL(NNTRACE_LAYER_UTILITY, NNTRACE_PHASE_UNSPECIFIED, "validateModel");
|
|
if (model.main.operations.size() == 0 || model.main.operands.size() == 0) {
|
|
LOG(ERROR) << "Invalid empty model.";
|
|
return false;
|
|
}
|
|
auto validateSubgraph = [&model, mode](const V1_3::Subgraph& subgraph) -> bool {
|
|
return (validateOperands(subgraph.operands, model.operandValues, model.pools,
|
|
model.referenced, /*allowUnspecifiedRank=*/true) &&
|
|
validateOperations(subgraph.operations, subgraph.operands, model.referenced,
|
|
mode) &&
|
|
validateModelInputOutputs(subgraph.inputIndexes, subgraph.operands,
|
|
V1_3::OperandLifeTime::SUBGRAPH_INPUT) &&
|
|
validateModelInputOutputs(subgraph.outputIndexes, subgraph.operands,
|
|
V1_3::OperandLifeTime::SUBGRAPH_OUTPUT) &&
|
|
validateGraph(subgraph));
|
|
};
|
|
return (validateSubgraph(model.main) &&
|
|
std::all_of(model.referenced.begin(), model.referenced.end(), validateSubgraph) &&
|
|
validatePools(model.pools, HalVersion::V1_3) && checkNoReferenceCycles(model));
|
|
}
|
|
|
|
// Validates the arguments of a request. type is either "input" or "output" and is used
|
|
// for printing error messages. The operandIndexes is the appropriate array of input
|
|
// or output operand indexes that was passed to the ANeuralNetworksModel_identifyInputsAndOutputs.
|
|
static bool validateRequestArguments(
|
|
const hardware::hidl_vec<V1_0::RequestArgument>& requestArguments,
|
|
const hardware::hidl_vec<uint32_t>& operandIndexes,
|
|
const hardware::hidl_vec<V1_3::Operand>& operands, const MemoryAccessVerifier& poolVerifier,
|
|
bool allowUnspecified, const char* type) {
|
|
// The request should specify as many arguments as were described in the model.
|
|
const size_t requestArgumentCount = requestArguments.size();
|
|
if (requestArgumentCount != operandIndexes.size()) {
|
|
LOG(ERROR) << "Request specifies " << requestArgumentCount << " " << type
|
|
<< "s but the model has " << operandIndexes.size();
|
|
return false;
|
|
}
|
|
for (size_t requestArgumentIndex = 0; requestArgumentIndex < requestArgumentCount;
|
|
requestArgumentIndex++) {
|
|
const V1_0::RequestArgument& requestArgument = requestArguments[requestArgumentIndex];
|
|
const V1_0::DataLocation& location = requestArgument.location;
|
|
// Get the operand index for this argument. We extract it from the list
|
|
// that was provided in the call to ANeuralNetworksModel_identifyInputsAndOutputs.
|
|
// We assume in this function that the model has been validated already.
|
|
const uint32_t operandIndex = operandIndexes[requestArgumentIndex];
|
|
const V1_3::Operand& operand = operands[operandIndex];
|
|
if (requestArgument.hasNoValue) {
|
|
if (location.poolIndex != 0 || location.offset != 0 || location.length != 0 ||
|
|
requestArgument.dimensions.size() != 0) {
|
|
LOG(ERROR) << "Request " << type << " " << requestArgumentIndex
|
|
<< " has no value yet has details.";
|
|
return false;
|
|
}
|
|
} else {
|
|
// Validate the location.
|
|
if (!poolVerifier.validate(location)) {
|
|
return false;
|
|
}
|
|
// If the argument specified a dimension, validate it.
|
|
uint32_t modelRank = operand.dimensions.size();
|
|
uint32_t requestRank = requestArgument.dimensions.size();
|
|
if (requestRank == 0) {
|
|
if (!allowUnspecified) {
|
|
// NOTE: validateRequestArguments cannot validate unknown tensor rank with
|
|
// extension operand type.
|
|
if (!isExtensionOperandType(operand.type) &&
|
|
!nonExtensionOperandTypeIsScalar(static_cast<int>(operand.type))) {
|
|
NN_RET_CHECK_GT(modelRank, 0)
|
|
<< "Model " << type << " " << requestArgumentIndex
|
|
<< " has unknown rank but the request does not specify the rank.";
|
|
}
|
|
// Validate that all the dimensions are specified in the model.
|
|
for (size_t i = 0; i < modelRank; i++) {
|
|
if (operand.dimensions[i] == 0) {
|
|
LOG(ERROR)
|
|
<< "Model has dimension " << i
|
|
<< " set to 0 but the request does not specify the dimension.";
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
if (modelRank != 0 && requestRank != modelRank) {
|
|
LOG(ERROR) << "Request " << type << " " << requestArgumentIndex
|
|
<< " has number of dimensions (" << requestRank
|
|
<< ") different than the model's (" << modelRank << ")";
|
|
return false;
|
|
}
|
|
for (size_t i = 0; i < requestRank; i++) {
|
|
if (modelRank != 0 && requestArgument.dimensions[i] != operand.dimensions[i] &&
|
|
operand.dimensions[i] != 0) {
|
|
LOG(ERROR)
|
|
<< "Request " << type << " " << requestArgumentIndex
|
|
<< " has dimension " << i << " of " << requestArgument.dimensions[i]
|
|
<< " different than the model's " << operand.dimensions[i];
|
|
return false;
|
|
}
|
|
if (requestArgument.dimensions[i] == 0 && !allowUnspecified) {
|
|
LOG(ERROR) << "Request " << type << " " << requestArgumentIndex
|
|
<< " has dimension " << i << " of zero";
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template <class T_Request, class T_Model>
|
|
bool validateRequest(const T_Request& request, const T_Model& model, bool allowUnspecifiedOutput) {
|
|
HalVersion version = ModelToHalVersion<T_Model>::version;
|
|
MemoryAccessVerifier poolVerifier(request.pools);
|
|
return (validateRequestArguments(request.inputs, model.inputIndexes,
|
|
convertToV1_3(model.operands), poolVerifier,
|
|
/*allowUnspecified=*/false, "input") &&
|
|
validateRequestArguments(
|
|
request.outputs, model.outputIndexes, convertToV1_3(model.operands),
|
|
poolVerifier,
|
|
/*allowUnspecified=*/version >= HalVersion::V1_2 && allowUnspecifiedOutput,
|
|
"output") &&
|
|
validatePools(request.pools, version));
|
|
}
|
|
|
|
template bool validateRequest<V1_0::Request, V1_0::Model>(const V1_0::Request& request,
|
|
const V1_0::Model& model,
|
|
bool allowUnspecifiedOutput);
|
|
template bool validateRequest<V1_0::Request, V1_1::Model>(const V1_0::Request& request,
|
|
const V1_1::Model& model,
|
|
bool allowUnspecifiedOutput);
|
|
template bool validateRequest<V1_0::Request, V1_2::Model>(const V1_0::Request& request,
|
|
const V1_2::Model& model,
|
|
bool allowUnspecifiedOutput);
|
|
|
|
template <>
|
|
bool validateRequest(const V1_3::Request& request, const V1_3::Model& model,
|
|
bool allowUnspecifiedOutput) {
|
|
return (validateRequestArguments(request.inputs, model.main.inputIndexes, model.main.operands,
|
|
request.pools,
|
|
/*allowUnspecified=*/false, "input") &&
|
|
validateRequestArguments(request.outputs, model.main.outputIndexes, model.main.operands,
|
|
request.pools, allowUnspecifiedOutput, "output") &&
|
|
validatePools(request.pools, HalVersion::V1_3));
|
|
}
|
|
|
|
bool validateMemoryDesc(const V1_3::BufferDesc& desc,
|
|
const hardware::hidl_vec<sp<V1_3::IPreparedModel>>& preparedModels,
|
|
const hardware::hidl_vec<V1_3::BufferRole>& inputRoles,
|
|
const hardware::hidl_vec<V1_3::BufferRole>& outputRoles,
|
|
std::function<const V1_3::Model*(const sp<V1_3::IPreparedModel>&)> getModel,
|
|
std::set<HalPreparedModelRole>* preparedModelRoles,
|
|
V1_3::Operand* combinedOperand) {
|
|
NN_RET_CHECK(preparedModels.size() != 0);
|
|
NN_RET_CHECK(inputRoles.size() != 0 || outputRoles.size() != 0);
|
|
|
|
std::set<HalPreparedModelRole> roles;
|
|
std::vector<V1_3::Operand> operands;
|
|
operands.reserve(inputRoles.size() + outputRoles.size());
|
|
for (const auto& role : inputRoles) {
|
|
NN_RET_CHECK_LT(role.modelIndex, preparedModels.size());
|
|
const auto& preparedModel = preparedModels[role.modelIndex];
|
|
NN_RET_CHECK(preparedModel != nullptr);
|
|
const auto* model = getModel(preparedModel);
|
|
NN_RET_CHECK(model != nullptr);
|
|
const auto& inputIndexes = model->main.inputIndexes;
|
|
NN_RET_CHECK_LT(role.ioIndex, inputIndexes.size());
|
|
NN_RET_CHECK_GT(role.frequency, 0.0f);
|
|
NN_RET_CHECK_LE(role.frequency, 1.0f);
|
|
const auto [it, success] = roles.emplace(preparedModel.get(), IOType::INPUT, role.ioIndex);
|
|
NN_RET_CHECK(success);
|
|
operands.push_back(model->main.operands[inputIndexes[role.ioIndex]]);
|
|
}
|
|
for (const auto& role : outputRoles) {
|
|
NN_RET_CHECK_LT(role.modelIndex, preparedModels.size());
|
|
const auto& preparedModel = preparedModels[role.modelIndex];
|
|
NN_RET_CHECK(preparedModel != nullptr);
|
|
const auto* model = getModel(preparedModel);
|
|
NN_RET_CHECK(model != nullptr);
|
|
const auto& outputIndexes = model->main.outputIndexes;
|
|
NN_RET_CHECK_LT(role.ioIndex, outputIndexes.size());
|
|
NN_RET_CHECK_GT(role.frequency, 0.0f);
|
|
NN_RET_CHECK_LE(role.frequency, 1.0f);
|
|
const auto [it, success] = roles.emplace(preparedModel.get(), IOType::OUTPUT, role.ioIndex);
|
|
NN_RET_CHECK(success);
|
|
operands.push_back(model->main.operands[outputIndexes[role.ioIndex]]);
|
|
}
|
|
|
|
CHECK(!operands.empty());
|
|
const auto opType = operands[0].type;
|
|
const bool isExtension = isExtensionOperandType(opType);
|
|
|
|
std::vector<uint32_t> dimensions = desc.dimensions;
|
|
for (const auto& operand : operands) {
|
|
NN_RET_CHECK(operand.type == operands[0].type)
|
|
<< toString(operand.type) << " vs " << toString(operands[0].type);
|
|
NN_RET_CHECK_EQ(operand.scale, operands[0].scale);
|
|
NN_RET_CHECK_EQ(operand.zeroPoint, operands[0].zeroPoint);
|
|
// NOTE: validateMemoryDesc cannot validate extra parameters for extension operand type.
|
|
if (!isExtension) {
|
|
NN_RET_CHECK(operand.extraParams == operands[0].extraParams)
|
|
<< toString(operand.extraParams) << " vs " << toString(operands[0].extraParams);
|
|
}
|
|
const auto combined = combineDimensions(dimensions, operand.dimensions);
|
|
NN_RET_CHECK(combined.has_value());
|
|
dimensions = combined.value();
|
|
}
|
|
|
|
// NOTE: validateMemoryDesc cannot validate scalar dimensions with extension operand type.
|
|
if (!isExtension) {
|
|
NN_RET_CHECK(!nonExtensionOperandTypeIsScalar(static_cast<int>(opType)) ||
|
|
dimensions.empty())
|
|
<< "invalid dimensions with scalar operand type.";
|
|
}
|
|
|
|
if (preparedModelRoles != nullptr) {
|
|
*preparedModelRoles = std::move(roles);
|
|
}
|
|
if (combinedOperand != nullptr) {
|
|
*combinedOperand = operands[0];
|
|
combinedOperand->dimensions = dimensions;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool validateExecutionPreference(V1_1::ExecutionPreference preference) {
|
|
return preference == V1_1::ExecutionPreference::LOW_POWER ||
|
|
preference == V1_1::ExecutionPreference::FAST_SINGLE_ANSWER ||
|
|
preference == V1_1::ExecutionPreference::SUSTAINED_SPEED;
|
|
}
|
|
|
|
bool validatePriority(V1_3::Priority priority) {
|
|
return priority == V1_3::Priority::LOW || priority == V1_3::Priority::MEDIUM ||
|
|
priority == V1_3::Priority::HIGH;
|
|
}
|
|
|
|
bool validOperandType(V1_0::OperandType operandType) {
|
|
switch (operandType) {
|
|
case V1_0::OperandType::FLOAT32:
|
|
case V1_0::OperandType::INT32:
|
|
case V1_0::OperandType::UINT32:
|
|
case V1_0::OperandType::TENSOR_FLOAT32:
|
|
case V1_0::OperandType::TENSOR_INT32:
|
|
case V1_0::OperandType::TENSOR_QUANT8_ASYMM:
|
|
case V1_0::OperandType::OEM:
|
|
case V1_0::OperandType::TENSOR_OEM_BYTE:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool validOperandType(V1_2::OperandType operandType) {
|
|
switch (operandType) {
|
|
case V1_2::OperandType::FLOAT16:
|
|
case V1_2::OperandType::FLOAT32:
|
|
case V1_2::OperandType::INT32:
|
|
case V1_2::OperandType::UINT32:
|
|
case V1_2::OperandType::BOOL:
|
|
case V1_2::OperandType::TENSOR_FLOAT16:
|
|
case V1_2::OperandType::TENSOR_FLOAT32:
|
|
case V1_2::OperandType::TENSOR_INT32:
|
|
case V1_2::OperandType::TENSOR_QUANT8_ASYMM:
|
|
case V1_2::OperandType::TENSOR_QUANT8_SYMM:
|
|
case V1_2::OperandType::TENSOR_QUANT16_ASYMM:
|
|
case V1_2::OperandType::TENSOR_QUANT16_SYMM:
|
|
case V1_2::OperandType::TENSOR_BOOL8:
|
|
case V1_2::OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL:
|
|
case V1_2::OperandType::OEM:
|
|
case V1_2::OperandType::TENSOR_OEM_BYTE:
|
|
return true;
|
|
default:
|
|
return isExtensionOperandType(static_cast<V1_3::OperandType>(operandType));
|
|
}
|
|
}
|
|
|
|
bool validOperandType(V1_3::OperandType operandType) {
|
|
switch (operandType) {
|
|
case V1_3::OperandType::FLOAT16:
|
|
case V1_3::OperandType::FLOAT32:
|
|
case V1_3::OperandType::INT32:
|
|
case V1_3::OperandType::UINT32:
|
|
case V1_3::OperandType::BOOL:
|
|
case V1_3::OperandType::TENSOR_FLOAT16:
|
|
case V1_3::OperandType::TENSOR_FLOAT32:
|
|
case V1_3::OperandType::TENSOR_INT32:
|
|
case V1_3::OperandType::TENSOR_QUANT8_ASYMM:
|
|
case V1_3::OperandType::TENSOR_QUANT8_SYMM:
|
|
case V1_3::OperandType::TENSOR_QUANT16_ASYMM:
|
|
case V1_3::OperandType::TENSOR_QUANT16_SYMM:
|
|
case V1_3::OperandType::TENSOR_BOOL8:
|
|
case V1_3::OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL:
|
|
case V1_3::OperandType::TENSOR_QUANT8_ASYMM_SIGNED:
|
|
case V1_3::OperandType::SUBGRAPH:
|
|
case V1_3::OperandType::OEM:
|
|
case V1_3::OperandType::TENSOR_OEM_BYTE:
|
|
return true;
|
|
default:
|
|
return isExtensionOperandType(operandType);
|
|
}
|
|
}
|
|
|
|
} // namespace nn
|
|
} // namespace android
|