You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1027 lines
48 KiB

/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "ValidateHal"
#include "ValidateHal.h"
#include <android-base/logging.h>
#include <algorithm>
#include <set>
#include <utility>
#include <vector>
#include "NeuralNetworks.h"
#include "OperationsUtils.h"
#include "Tracing.h"
#include "Utils.h"
#include "nnapi/TypeUtils.h"
namespace android {
namespace nn {
template <class T_Model>
struct ModelToHalVersion;
template <>
struct ModelToHalVersion<V1_0::Model> {
static constexpr HalVersion version = HalVersion::V1_0;
};
template <>
struct ModelToHalVersion<V1_1::Model> {
static constexpr HalVersion version = HalVersion::V1_1;
};
template <>
struct ModelToHalVersion<V1_2::Model> {
static constexpr HalVersion version = HalVersion::V1_2;
};
template <>
struct ModelToHalVersion<V1_3::Model> {
static constexpr HalVersion version = HalVersion::V1_3;
};
class MemoryAccessVerifier {
public:
MemoryAccessVerifier(const hardware::hidl_vec<hardware::hidl_memory>& pools)
: mPoolCount(pools.size()), mPoolSizes(mPoolCount) {
for (size_t i = 0; i < mPoolCount; i++) {
mPoolSizes[i] = pools[i].size();
}
}
MemoryAccessVerifier(const hardware::hidl_vec<V1_3::Request::MemoryPool>& pools)
: mPoolCount(pools.size()), mPoolSizes(mPoolCount) {
for (size_t i = 0; i < mPoolCount; i++) {
switch (pools[i].getDiscriminator()) {
case V1_3::Request::MemoryPool::hidl_discriminator::hidlMemory:
mPoolSizes[i] = pools[i].hidlMemory().size();
break;
case V1_3::Request::MemoryPool::hidl_discriminator::token:
// Set size to 0 to enforce length == 0 && offset == 0.
mPoolSizes[i] = 0;
break;
}
}
}
bool validate(const V1_0::DataLocation& location) const {
if (location.poolIndex >= mPoolCount) {
LOG(ERROR) << "Invalid poolIndex " << location.poolIndex << "/" << mPoolCount;
return false;
}
const size_t size = mPoolSizes[location.poolIndex];
// Do the addition using size_t to avoid potential wrap-around problems.
if (static_cast<size_t>(location.offset) + location.length > size) {
LOG(ERROR) << "Reference to pool " << location.poolIndex << " with offset "
<< location.offset << " and length " << location.length
<< " exceeds pool size of " << size;
return false;
}
return true;
}
private:
size_t mPoolCount;
std::vector<size_t> mPoolSizes;
};
static bool validateOperandExtraParams(const V1_3::Operand& operand, uint32_t index) {
switch (operand.type) {
case V1_3::OperandType::FLOAT32:
case V1_3::OperandType::INT32:
case V1_3::OperandType::UINT32:
case V1_3::OperandType::BOOL:
case V1_3::OperandType::SUBGRAPH:
case V1_3::OperandType::TENSOR_FLOAT32:
case V1_3::OperandType::TENSOR_FLOAT16:
case V1_3::OperandType::TENSOR_INT32:
case V1_3::OperandType::TENSOR_QUANT8_ASYMM:
case V1_3::OperandType::TENSOR_QUANT8_ASYMM_SIGNED:
case V1_3::OperandType::TENSOR_QUANT8_SYMM:
case V1_3::OperandType::TENSOR_QUANT16_ASYMM:
case V1_3::OperandType::TENSOR_QUANT16_SYMM:
case V1_3::OperandType::TENSOR_BOOL8: {
NN_RET_CHECK(operand.extraParams.getDiscriminator() ==
V1_2::Operand::ExtraParams::hidl_discriminator::none)
<< "Operand " << index << ": Operand of type "
<< getOperandTypeName(operand.type)
<< " has incorrect extraParams: " << toString(operand.extraParams);
} break;
case V1_3::OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL: {
NN_RET_CHECK(operand.extraParams.getDiscriminator() ==
V1_2::Operand::ExtraParams::hidl_discriminator::channelQuant)
<< "Operand " << index << ": Operand of type "
<< getOperandTypeName(operand.type) << " without a Channel Quantization params";
auto& channelQuant = operand.extraParams.channelQuant();
size_t count = operand.dimensions.size();
NN_RET_CHECK_LT(channelQuant.channelDim, count)
<< "Operand " << index << ": Operand of type "
<< getOperandTypeName(operand.type)
<< " with an invalid channelQuant.channelDim " << channelQuant.channelDim
<< ", must be valid dimension index in range [0, " << count << ")";
uint32_t expected = operand.dimensions[channelQuant.channelDim];
NN_RET_CHECK_EQ(channelQuant.scales.size(), expected)
<< "Operand " << index << ": Operand of type "
<< getOperandTypeName(operand.type) << " with a wrong-sized scales, "
<< "expected " << expected << " was " << channelQuant.scales.size();
NN_RET_CHECK_NE(expected, 0)
<< "Operand " << index << ": Operand of type "
<< getOperandTypeName(operand.type) << " channel dimension "
<< channelQuant.channelDim << " is underspecified (can't be 0)";
for (uint32_t i = 0; i < expected; ++i) {
NN_RET_CHECK_GT(channelQuant.scales[i], .0f)
<< "Operand " << index << ": Operand of type "
<< getOperandTypeName(operand.type) << " with a negative value in scales["
<< i << "]=" << channelQuant.scales[i];
}
} break;
default: {
if (isExtensionOperandType(operand.type)) {
NN_RET_CHECK(operand.extraParams.getDiscriminator() ==
V1_2::Operand::ExtraParams::hidl_discriminator::extension ||
operand.extraParams.getDiscriminator() ==
V1_2::Operand::ExtraParams::hidl_discriminator::none)
<< "Operand " << index << ": Extension operand of type "
<< getOperandTypeName(operand.type)
<< " has incorrect extraParams: " << toString(operand.extraParams);
}
// No validation for OEM types.
} break;
}
return true;
}
template <typename VersionedOperand>
static bool validateOperands(const hardware::hidl_vec<VersionedOperand>& operands,
const hardware::hidl_vec<uint8_t>& operandValues,
const hardware::hidl_vec<hardware::hidl_memory>& pools,
const hardware::hidl_vec<V1_3::Subgraph>& subgraphs,
bool allowUnspecifiedRank) {
uint32_t index = 0;
MemoryAccessVerifier poolVerifier(pools);
for (auto& versionedOperand : operands) {
if (!validOperandType(versionedOperand.type)) {
LOG(ERROR) << "Operand is not supported by this version: "
<< toString(versionedOperand.type);
return false;
}
// Once we are sure the operand is supported by its version, it is safe
// to convert it to the latest version for the rest of the validations.
V1_3::Operand operand = convertToV1_3(versionedOperand);
// Validate type and dimensions.
switch (operand.type) {
case V1_3::OperandType::FLOAT16:
case V1_3::OperandType::FLOAT32:
case V1_3::OperandType::INT32:
case V1_3::OperandType::UINT32:
case V1_3::OperandType::BOOL:
case V1_3::OperandType::SUBGRAPH:
case V1_3::OperandType::OEM: {
size_t count = operand.dimensions.size();
if (count != 0) {
LOG(ERROR) << "Operand " << index << ": Scalar data has dimensions of rank "
<< count;
return false;
}
break;
}
case V1_3::OperandType::TENSOR_FLOAT16:
case V1_3::OperandType::TENSOR_FLOAT32:
case V1_3::OperandType::TENSOR_INT32:
case V1_3::OperandType::TENSOR_QUANT8_ASYMM:
case V1_3::OperandType::TENSOR_QUANT8_ASYMM_SIGNED:
case V1_3::OperandType::TENSOR_QUANT8_SYMM:
case V1_3::OperandType::TENSOR_QUANT16_ASYMM:
case V1_3::OperandType::TENSOR_QUANT16_SYMM:
case V1_3::OperandType::TENSOR_BOOL8:
case V1_3::OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL:
case V1_3::OperandType::TENSOR_OEM_BYTE: {
if ((!allowUnspecifiedRank ||
operand.lifetime == V1_3::OperandLifeTime::CONSTANT_COPY ||
operand.lifetime == V1_3::OperandLifeTime::CONSTANT_REFERENCE) &&
operand.dimensions.size() == 0) {
LOG(ERROR) << "Operand " << index << ": Tensor has dimensions of rank 0";
return false;
}
break;
}
default: {
if (!isExtensionOperandType(operand.type)) {
LOG(ERROR) << "Operand " << index << ": Invalid operand type "
<< toString(operand.type);
return false;
}
} break;
}
// Validate the scale.
switch (operand.type) {
case V1_3::OperandType::FLOAT16:
case V1_3::OperandType::FLOAT32:
case V1_3::OperandType::INT32:
case V1_3::OperandType::UINT32:
case V1_3::OperandType::BOOL:
case V1_3::OperandType::SUBGRAPH:
case V1_3::OperandType::TENSOR_FLOAT16:
case V1_3::OperandType::TENSOR_FLOAT32:
case V1_3::OperandType::TENSOR_BOOL8:
case V1_3::OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL:
if (operand.scale != 0.f) {
LOG(ERROR) << "Operand " << index << ": Operand of type "
<< getOperandTypeName(operand.type) << " with a non-zero scale ("
<< operand.scale << ")";
return false;
}
break;
case V1_3::OperandType::TENSOR_INT32:
// TENSOR_INT32 may be used with or without scale, depending on the operation.
if (operand.scale < 0.f) {
LOG(ERROR) << "Operand " << index << ": Operand of type "
<< getOperandTypeName(operand.type) << " with a negative scale";
return false;
}
break;
case V1_3::OperandType::TENSOR_QUANT8_ASYMM:
case V1_3::OperandType::TENSOR_QUANT8_ASYMM_SIGNED:
case V1_3::OperandType::TENSOR_QUANT8_SYMM:
case V1_3::OperandType::TENSOR_QUANT16_ASYMM:
case V1_3::OperandType::TENSOR_QUANT16_SYMM:
if (operand.scale <= 0.f) {
LOG(ERROR) << "Operand " << index << ": Operand of type "
<< getOperandTypeName(operand.type) << " with a non-positive scale";
return false;
}
break;
default:
if (isExtensionOperandType(operand.type) && operand.scale != 0.f) {
LOG(ERROR) << "Operand " << index << ": Operand of type "
<< getOperandTypeName(operand.type) << " with a non-zero scale ("
<< operand.scale << ")";
return false;
}
// No validation for OEM types.
// TODO(b/119869082) We should have a separate type for TENSOR_INT32 with a scale.
break;
}
// Validate the zeroPoint.
switch (operand.type) {
case V1_3::OperandType::FLOAT16:
case V1_3::OperandType::FLOAT32:
case V1_3::OperandType::INT32:
case V1_3::OperandType::UINT32:
case V1_3::OperandType::BOOL:
case V1_3::OperandType::SUBGRAPH:
case V1_3::OperandType::TENSOR_FLOAT16:
case V1_3::OperandType::TENSOR_FLOAT32:
case V1_3::OperandType::TENSOR_INT32:
case V1_3::OperandType::TENSOR_BOOL8:
case V1_3::OperandType::TENSOR_QUANT8_SYMM:
case V1_3::OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL:
if (operand.zeroPoint != 0) {
LOG(ERROR) << "Operand " << index << ": Operand of type "
<< getOperandTypeName(operand.type) << " with a non-zero zeroPoint "
<< operand.zeroPoint;
return false;
}
break;
case V1_3::OperandType::TENSOR_QUANT8_ASYMM:
if (operand.zeroPoint < 0 || operand.zeroPoint > 255) {
LOG(ERROR) << "Operand " << index << ": Operand of type "
<< getOperandTypeName(operand.type) << " with an invalid zeroPoint "
<< operand.zeroPoint << ", must be in range [0, 255]";
return false;
}
break;
case V1_3::OperandType::TENSOR_QUANT8_ASYMM_SIGNED:
if (operand.zeroPoint < -128 || operand.zeroPoint > 127) {
LOG(ERROR) << "Operand " << index << ": Operand of type "
<< getOperandTypeName(operand.type) << " with an invalid zeroPoint "
<< operand.zeroPoint << ", must be in range [-128, 127]";
return false;
}
break;
case V1_3::OperandType::TENSOR_QUANT16_ASYMM:
if (operand.zeroPoint < 0 || operand.zeroPoint > 65535) {
LOG(ERROR) << "Operand " << index << ": Operand of type "
<< getOperandTypeName(operand.type) << " with an invalid zeroPoint "
<< operand.zeroPoint << ", must be in range [0, 65535]";
return false;
}
break;
case V1_3::OperandType::TENSOR_QUANT16_SYMM:
if (operand.zeroPoint != 0) {
LOG(ERROR) << "Operand " << index << ": Operand of type "
<< getOperandTypeName(operand.type) << " with a non-zero zeroPoint "
<< operand.zeroPoint;
return false;
}
break;
default:
if (isExtensionOperandType(operand.type) && operand.zeroPoint != 0) {
LOG(ERROR) << "Operand " << index << ": Operand of type "
<< getOperandTypeName(operand.type) << " with a non-zero zeroPoint "
<< operand.zeroPoint;
return false;
}
// No validation for OEM types.
break;
}
NN_RET_CHECK(validateOperandExtraParams(operand, index));
// Validate the lifetime and the location.
const V1_0::DataLocation& location = operand.location;
switch (operand.lifetime) {
case V1_3::OperandLifeTime::CONSTANT_COPY:
if (location.poolIndex != 0) {
LOG(ERROR) << "Operand " << index
<< ": CONSTANT_COPY with a non-zero poolIndex "
<< location.poolIndex;
return false;
}
// Do the addition using size_t to avoid potential wrap-around problems.
if (static_cast<size_t>(location.offset) + location.length > operandValues.size()) {
LOG(ERROR) << "Operand " << index
<< ": OperandValue location out of range. Starts at "
<< location.offset << ", length " << location.length << ", max "
<< operandValues.size();
return false;
}
break;
case V1_3::OperandLifeTime::CONSTANT_REFERENCE:
if (!poolVerifier.validate(location)) {
return false;
}
break;
case V1_3::OperandLifeTime::TEMPORARY_VARIABLE:
case V1_3::OperandLifeTime::SUBGRAPH_INPUT:
case V1_3::OperandLifeTime::SUBGRAPH_OUTPUT:
case V1_3::OperandLifeTime::NO_VALUE:
if (location.poolIndex != 0 || location.offset != 0 || location.length != 0) {
LOG(ERROR) << "Operand " << index << ": Unexpected poolIndex "
<< location.poolIndex << ", offset " << location.offset
<< ", or length " << location.length << " for operand of lifetime "
<< toString(operand.lifetime);
return false;
}
break;
case V1_3::OperandLifeTime::SUBGRAPH: {
if (location.poolIndex != 0) {
LOG(ERROR) << "Operand " << index << ": SUBGRAPH with a non-zero poolIndex "
<< location.poolIndex;
return false;
}
if (location.offset >= subgraphs.size()) {
LOG(ERROR) << "Model::Subgraph index out of range: " << location.offset
<< " >= " << subgraphs.size();
return false;
}
if (location.length != 0) {
LOG(ERROR) << "Operand " << index << ": SUBGRAPH with a non-zero length "
<< location.length;
return false;
}
} break;
default:
LOG(ERROR) << "Operand " << index << ": Invalid lifetime "
<< toString(operand.lifetime);
return false;
}
// Make sure SUBGRAPH operand type and lifetime always go together.
if ((operand.type == V1_3::OperandType::SUBGRAPH) !=
(operand.lifetime == V1_3::OperandLifeTime::SUBGRAPH)) {
LOG(ERROR) << "Operand " << index << ": Operand of type " << toString(operand.type)
<< " cannot have lifetime " << toString(operand.lifetime);
return false;
}
// For constants, validate that the length is as expected. The other lifetimes
// expect the length to be 0. Don't validate for OEM types.
if (operand.lifetime == V1_3::OperandLifeTime::CONSTANT_REFERENCE ||
operand.lifetime == V1_3::OperandLifeTime::CONSTANT_COPY) {
if (!isExtensionOperandType(operand.type) && operand.type != V1_3::OperandType::OEM &&
operand.type != V1_3::OperandType::TENSOR_OEM_BYTE) {
uint32_t expectedLength = nonExtensionOperandSizeOfData(operand);
if (location.length != expectedLength) {
LOG(ERROR) << "Operand " << index << ": For operand " << toString(operand)
<< " expected a size of " << expectedLength << " but got "
<< location.length;
return false;
}
}
}
index++;
}
return true;
}
static HalVersion getHalVersion(const V1_0::Operation&) {
return HalVersion::V1_0;
}
static HalVersion getHalVersion(const V1_1::Operation&) {
return HalVersion::V1_1;
}
static HalVersion getHalVersion(const V1_2::Operation&) {
return HalVersion::V1_2;
}
static HalVersion getHalVersion(const V1_3::Operation&) {
return HalVersion::V1_3;
}
template <typename VersionedOperation>
static bool validateOperations(const hardware::hidl_vec<VersionedOperation>& operations,
const hardware::hidl_vec<V1_3::Operand>& operands,
const hardware::hidl_vec<V1_3::Subgraph>& subgraphs,
ValidationMode mode) {
auto canonicalSubgraphs = uncheckedConvert(subgraphs);
auto isValidSubgraphReference = [&canonicalSubgraphs](const Operand& modelOperand) -> bool {
NN_RET_CHECK(modelOperand.type == OperandType::SUBGRAPH)
<< "Unexpected operand type: " << modelOperand.type;
NN_RET_CHECK_LT(modelOperand.location.offset, canonicalSubgraphs.size())
<< "Invalid subgraph reference";
return true;
};
auto getSubgraph =
[&canonicalSubgraphs](const Operand& modelOperand) -> const Model::Subgraph* {
CHECK_LT(modelOperand.location.offset, canonicalSubgraphs.size());
return &canonicalSubgraphs[modelOperand.location.offset];
};
auto getInputCount = [&getSubgraph](const Operand& modelOperand) -> uint32_t {
return getSubgraph(modelOperand)->inputIndexes.size();
};
auto getOutputCount = [&getSubgraph](const Operand& modelOperand) -> uint32_t {
return getSubgraph(modelOperand)->outputIndexes.size();
};
auto getInputOperand = [&getSubgraph](const Operand& modelOperand,
uint32_t index) -> const Operand* {
const Model::Subgraph& subgraph = *getSubgraph(modelOperand);
CHECK_LT(subgraph.inputIndexes[index], subgraph.operands.size());
return &subgraph.operands[subgraph.inputIndexes[index]];
};
auto getOutputOperand = [&getSubgraph](const Operand& modelOperand,
uint32_t index) -> const Operand* {
const Model::Subgraph& subgraph = *getSubgraph(modelOperand);
CHECK_LT(subgraph.outputIndexes[index], subgraph.operands.size());
return &subgraph.operands[subgraph.outputIndexes[index]];
};
for (auto& op : operations) {
// TODO Validate the shapes and any known values. This is currently
// done in CpuExecutor but should be done here for all drivers.
int error = validateOperation(static_cast<int32_t>(op.type), op.inputs.size(),
op.inputs.size() > 0 ? op.inputs.data() : nullptr,
op.outputs.size(),
op.outputs.size() > 0 ? op.outputs.data() : nullptr,
uncheckedConvert(operands), getHalVersion(op),
{.isValidSubgraphReference = isValidSubgraphReference,
.getSubgraphInputCount = getInputCount,
.getSubgraphOutputCount = getOutputCount,
.getSubgraphInputOperand = getInputOperand,
.getSubgraphOutputOperand = getOutputOperand,
// 1.3 HAL does not support CF operations with operands of
// unknown size. See http://b/132458982#comment63.
.allowControlFlowOperationWithOperandOfUnknownSize =
mode == ValidationMode::RUNTIME});
if (error != ANEURALNETWORKS_NO_ERROR) {
LOG(ERROR) << "Invalid operation " << toString(op.type);
return false;
}
// This is redundant because of the checks in validateGraph(),
// but it is retained here in order to emit more informative
// error messages.
for (uint32_t i : op.outputs) {
const V1_3::Operand& operand = operands[i];
if (operand.lifetime != V1_3::OperandLifeTime::TEMPORARY_VARIABLE &&
operand.lifetime != V1_3::OperandLifeTime::SUBGRAPH_OUTPUT) {
LOG(ERROR) << "Writing to operand " << i << " with incompatible lifetime "
<< toString(operand.lifetime);
return false;
}
}
}
return true;
}
bool validatePool(const hardware::hidl_memory& pool, HalVersion ver) {
const auto& name = pool.name();
if (name != "ashmem" && name != "mmap_fd" &&
((ver < HalVersion::V1_2) ||
(name != "hardware_buffer_blob" && name != "hardware_buffer"))) {
LOG(ERROR) << "Unsupported memory type " << name;
return false;
}
if (pool.handle() == nullptr) {
LOG(ERROR) << "Memory of type " << name << " is null";
return false;
}
return true;
}
bool validatePool(const V1_3::Request::MemoryPool& pool, HalVersion ver) {
switch (pool.getDiscriminator()) {
case V1_3::Request::MemoryPool::hidl_discriminator::hidlMemory:
return validatePool(pool.hidlMemory(), ver);
case V1_3::Request::MemoryPool::hidl_discriminator::token:
return pool.token() > 0;
}
LOG(FATAL) << "unknown MemoryPool discriminator";
return false;
}
template <class T_MemoryPool>
static bool validatePools(const hardware::hidl_vec<T_MemoryPool>& pools, HalVersion ver) {
return std::all_of(pools.begin(), pools.end(),
[ver](const auto& pool) { return validatePool(pool, ver); });
}
static bool validateModelInputOutputs(const hardware::hidl_vec<uint32_t> indexes,
const hardware::hidl_vec<V1_3::Operand>& operands,
V1_3::OperandLifeTime lifetime) {
const size_t operandCount = operands.size();
for (uint32_t i : indexes) {
if (i >= operandCount) {
LOG(ERROR) << "Model input or output index out of range: " << i << "/" << operandCount;
return false;
}
const V1_3::Operand& operand = operands[i];
if (operand.lifetime != lifetime) {
LOG(ERROR) << "Model input or output operand " << i << " has lifetime of "
<< toString(operand.lifetime) << " instead of the expected "
<< toString(lifetime);
return false;
}
}
std::vector<uint32_t> sortedIndexes = indexes;
std::sort(sortedIndexes.begin(), sortedIndexes.end());
auto adjacentI = std::adjacent_find(sortedIndexes.begin(), sortedIndexes.end());
if (adjacentI != sortedIndexes.end()) {
LOG(ERROR) << "Model input or output occurs multiple times: " << *adjacentI;
return false;
}
for (size_t i = 0; i < operands.size(); ++i) {
if (operands[i].lifetime == lifetime &&
!binary_search(sortedIndexes.begin(), sortedIndexes.end(), i)) {
LOG(ERROR) << "Operand " << i << " marked as " << toString(lifetime)
<< " but is not included in Model input or output indexes";
return false;
}
}
return true;
}
template <typename VersionedModelOrSubgraph>
static bool validateGraph(const VersionedModelOrSubgraph& model) {
// set up counts
std::vector<uint32_t> operandNumberOfConsumers(model.operands.size(), 0);
// Either the operand has a known value before model execution
// begins, or we've seen a writer for this operand while
// walking operands in execution order.
std::vector<bool> operandValueKnown(model.operands.size(), false);
// mark known operands
for (size_t i = 0; i < model.operands.size(); ++i) {
const auto& operand = model.operands[i];
const V1_3::OperandLifeTime lifetime = convertToV1_3(operand.lifetime);
operandValueKnown[i] = lifetime == V1_3::OperandLifeTime::SUBGRAPH_INPUT ||
lifetime == V1_3::OperandLifeTime::CONSTANT_COPY ||
lifetime == V1_3::OperandLifeTime::CONSTANT_REFERENCE ||
lifetime == V1_3::OperandLifeTime::NO_VALUE ||
lifetime == V1_3::OperandLifeTime::SUBGRAPH;
}
// Validate that operations are sorted into execution order.
//
// If there is a cycle in the graph, the operations will not
// appear to be sorted into execution order: Some operation will
// have an input for which operandValueKnown[] is false.
for (size_t i = 0; i < model.operations.size(); ++i) {
const auto& operation = model.operations[i];
for (size_t j = 0; j < operation.inputs.size(); ++j) {
uint32_t k = operation.inputs[j];
if (!operandValueKnown[k]) {
LOG(ERROR) << "Operation " << i << " input " << j << " (operand " << k
<< ") is read before it is written";
return false;
}
operandNumberOfConsumers[k]++;
}
for (size_t j = 0; j < operation.outputs.size(); ++j) {
uint32_t k = operation.outputs[j];
if (operandValueKnown[k]) {
// Assuming validateOperations() has returned true, we
// know that this output is TEMPORARY_VARIABLE or
// MODEL_OUTPUT, and so the only way
// operandValueKnown[k] can be true is if we've
// already seen a writer for this operand.
LOG(ERROR) << "Operation " << i << " output " << j << " (operand " << k
<< ") has already been written";
return false;
}
operandValueKnown[k] = true;
}
}
// validate number of consumers
//
// TODO Because we have to validate it, there was no point in including it
// in struct Operand. For the next release, consider removing unless we have
// an additional process in system space that creates this value. In that
// case, it would not have to be validated.
for (size_t i = 0; i < model.operands.size(); ++i) {
if (model.operands[i].numberOfConsumers != operandNumberOfConsumers[i]) {
LOG(ERROR) << "Operand " << i << " has incorrect number of consumers "
<< model.operands[i].numberOfConsumers << ", expected "
<< operandNumberOfConsumers[i];
return false;
}
}
// verify all operands are written
for (size_t i = 0; i < model.operands.size(); ++i) {
if (!operandValueKnown[i]) {
LOG(ERROR) << "Operand " << i << " is never written";
return false;
}
}
return true;
}
// Makes sure the model does not contain subgraph reference cycles.
static bool checkNoReferenceCycles(const V1_3::Model& model, const V1_3::Subgraph& subgraph,
std::set<const V1_3::Subgraph*>* path) {
auto [_, isNew] = path->insert(&subgraph);
if (!isNew) {
LOG(ERROR) << "Model contains a circular subgraph reference";
return false;
}
for (const V1_3::Operand& operand : subgraph.operands) {
if (operand.lifetime == V1_3::OperandLifeTime::SUBGRAPH) {
uint32_t refSubgraphIndex = operand.location.offset;
if (!checkNoReferenceCycles(model, model.referenced[refSubgraphIndex], path)) {
return false;
}
}
}
path->erase(&subgraph);
return true;
}
static bool checkNoReferenceCycles(const V1_3::Model& model) {
std::set<const V1_3::Subgraph*> path;
return checkNoReferenceCycles(model, model.main, &path);
}
template <class T_Model>
bool validateModel(const T_Model& model, ValidationMode mode) {
NNTRACE_FULL(NNTRACE_LAYER_UTILITY, NNTRACE_PHASE_UNSPECIFIED, "validateModel");
HalVersion version = ModelToHalVersion<T_Model>::version;
if (model.operations.size() == 0 || model.operands.size() == 0) {
LOG(ERROR) << "Invalid empty model.";
return false;
}
// We only need versioned operands for their validation. For all the other
// validations we can use operands upcasted to the latest version.
const hardware::hidl_vec<V1_3::Operand> latestVersionOperands = convertToV1_3(model.operands);
return (validateOperands(model.operands, model.operandValues, model.pools, /*subgraphs=*/{},
/*allowUnspecifiedRank=*/version >= HalVersion::V1_2) &&
validateOperations(model.operations, latestVersionOperands, /*subgraphs=*/{}, mode) &&
validateModelInputOutputs(model.inputIndexes, latestVersionOperands,
V1_3::OperandLifeTime::SUBGRAPH_INPUT) &&
validateModelInputOutputs(model.outputIndexes, latestVersionOperands,
V1_3::OperandLifeTime::SUBGRAPH_OUTPUT) &&
validatePools(model.pools, version) && validateGraph(model));
}
template bool validateModel<V1_0::Model>(const V1_0::Model& model, ValidationMode mode);
template bool validateModel<V1_1::Model>(const V1_1::Model& model, ValidationMode mode);
template bool validateModel<V1_2::Model>(const V1_2::Model& model, ValidationMode mode);
template <>
bool validateModel(const V1_3::Model& model, ValidationMode mode) {
NNTRACE_FULL(NNTRACE_LAYER_UTILITY, NNTRACE_PHASE_UNSPECIFIED, "validateModel");
if (model.main.operations.size() == 0 || model.main.operands.size() == 0) {
LOG(ERROR) << "Invalid empty model.";
return false;
}
auto validateSubgraph = [&model, mode](const V1_3::Subgraph& subgraph) -> bool {
return (validateOperands(subgraph.operands, model.operandValues, model.pools,
model.referenced, /*allowUnspecifiedRank=*/true) &&
validateOperations(subgraph.operations, subgraph.operands, model.referenced,
mode) &&
validateModelInputOutputs(subgraph.inputIndexes, subgraph.operands,
V1_3::OperandLifeTime::SUBGRAPH_INPUT) &&
validateModelInputOutputs(subgraph.outputIndexes, subgraph.operands,
V1_3::OperandLifeTime::SUBGRAPH_OUTPUT) &&
validateGraph(subgraph));
};
return (validateSubgraph(model.main) &&
std::all_of(model.referenced.begin(), model.referenced.end(), validateSubgraph) &&
validatePools(model.pools, HalVersion::V1_3) && checkNoReferenceCycles(model));
}
// Validates the arguments of a request. type is either "input" or "output" and is used
// for printing error messages. The operandIndexes is the appropriate array of input
// or output operand indexes that was passed to the ANeuralNetworksModel_identifyInputsAndOutputs.
static bool validateRequestArguments(
const hardware::hidl_vec<V1_0::RequestArgument>& requestArguments,
const hardware::hidl_vec<uint32_t>& operandIndexes,
const hardware::hidl_vec<V1_3::Operand>& operands, const MemoryAccessVerifier& poolVerifier,
bool allowUnspecified, const char* type) {
// The request should specify as many arguments as were described in the model.
const size_t requestArgumentCount = requestArguments.size();
if (requestArgumentCount != operandIndexes.size()) {
LOG(ERROR) << "Request specifies " << requestArgumentCount << " " << type
<< "s but the model has " << operandIndexes.size();
return false;
}
for (size_t requestArgumentIndex = 0; requestArgumentIndex < requestArgumentCount;
requestArgumentIndex++) {
const V1_0::RequestArgument& requestArgument = requestArguments[requestArgumentIndex];
const V1_0::DataLocation& location = requestArgument.location;
// Get the operand index for this argument. We extract it from the list
// that was provided in the call to ANeuralNetworksModel_identifyInputsAndOutputs.
// We assume in this function that the model has been validated already.
const uint32_t operandIndex = operandIndexes[requestArgumentIndex];
const V1_3::Operand& operand = operands[operandIndex];
if (requestArgument.hasNoValue) {
if (location.poolIndex != 0 || location.offset != 0 || location.length != 0 ||
requestArgument.dimensions.size() != 0) {
LOG(ERROR) << "Request " << type << " " << requestArgumentIndex
<< " has no value yet has details.";
return false;
}
} else {
// Validate the location.
if (!poolVerifier.validate(location)) {
return false;
}
// If the argument specified a dimension, validate it.
uint32_t modelRank = operand.dimensions.size();
uint32_t requestRank = requestArgument.dimensions.size();
if (requestRank == 0) {
if (!allowUnspecified) {
// NOTE: validateRequestArguments cannot validate unknown tensor rank with
// extension operand type.
if (!isExtensionOperandType(operand.type) &&
!nonExtensionOperandTypeIsScalar(static_cast<int>(operand.type))) {
NN_RET_CHECK_GT(modelRank, 0)
<< "Model " << type << " " << requestArgumentIndex
<< " has unknown rank but the request does not specify the rank.";
}
// Validate that all the dimensions are specified in the model.
for (size_t i = 0; i < modelRank; i++) {
if (operand.dimensions[i] == 0) {
LOG(ERROR)
<< "Model has dimension " << i
<< " set to 0 but the request does not specify the dimension.";
return false;
}
}
}
} else {
if (modelRank != 0 && requestRank != modelRank) {
LOG(ERROR) << "Request " << type << " " << requestArgumentIndex
<< " has number of dimensions (" << requestRank
<< ") different than the model's (" << modelRank << ")";
return false;
}
for (size_t i = 0; i < requestRank; i++) {
if (modelRank != 0 && requestArgument.dimensions[i] != operand.dimensions[i] &&
operand.dimensions[i] != 0) {
LOG(ERROR)
<< "Request " << type << " " << requestArgumentIndex
<< " has dimension " << i << " of " << requestArgument.dimensions[i]
<< " different than the model's " << operand.dimensions[i];
return false;
}
if (requestArgument.dimensions[i] == 0 && !allowUnspecified) {
LOG(ERROR) << "Request " << type << " " << requestArgumentIndex
<< " has dimension " << i << " of zero";
return false;
}
}
}
}
}
return true;
}
template <class T_Request, class T_Model>
bool validateRequest(const T_Request& request, const T_Model& model, bool allowUnspecifiedOutput) {
HalVersion version = ModelToHalVersion<T_Model>::version;
MemoryAccessVerifier poolVerifier(request.pools);
return (validateRequestArguments(request.inputs, model.inputIndexes,
convertToV1_3(model.operands), poolVerifier,
/*allowUnspecified=*/false, "input") &&
validateRequestArguments(
request.outputs, model.outputIndexes, convertToV1_3(model.operands),
poolVerifier,
/*allowUnspecified=*/version >= HalVersion::V1_2 && allowUnspecifiedOutput,
"output") &&
validatePools(request.pools, version));
}
template bool validateRequest<V1_0::Request, V1_0::Model>(const V1_0::Request& request,
const V1_0::Model& model,
bool allowUnspecifiedOutput);
template bool validateRequest<V1_0::Request, V1_1::Model>(const V1_0::Request& request,
const V1_1::Model& model,
bool allowUnspecifiedOutput);
template bool validateRequest<V1_0::Request, V1_2::Model>(const V1_0::Request& request,
const V1_2::Model& model,
bool allowUnspecifiedOutput);
template <>
bool validateRequest(const V1_3::Request& request, const V1_3::Model& model,
bool allowUnspecifiedOutput) {
return (validateRequestArguments(request.inputs, model.main.inputIndexes, model.main.operands,
request.pools,
/*allowUnspecified=*/false, "input") &&
validateRequestArguments(request.outputs, model.main.outputIndexes, model.main.operands,
request.pools, allowUnspecifiedOutput, "output") &&
validatePools(request.pools, HalVersion::V1_3));
}
bool validateMemoryDesc(const V1_3::BufferDesc& desc,
const hardware::hidl_vec<sp<V1_3::IPreparedModel>>& preparedModels,
const hardware::hidl_vec<V1_3::BufferRole>& inputRoles,
const hardware::hidl_vec<V1_3::BufferRole>& outputRoles,
std::function<const V1_3::Model*(const sp<V1_3::IPreparedModel>&)> getModel,
std::set<HalPreparedModelRole>* preparedModelRoles,
V1_3::Operand* combinedOperand) {
NN_RET_CHECK(preparedModels.size() != 0);
NN_RET_CHECK(inputRoles.size() != 0 || outputRoles.size() != 0);
std::set<HalPreparedModelRole> roles;
std::vector<V1_3::Operand> operands;
operands.reserve(inputRoles.size() + outputRoles.size());
for (const auto& role : inputRoles) {
NN_RET_CHECK_LT(role.modelIndex, preparedModels.size());
const auto& preparedModel = preparedModels[role.modelIndex];
NN_RET_CHECK(preparedModel != nullptr);
const auto* model = getModel(preparedModel);
NN_RET_CHECK(model != nullptr);
const auto& inputIndexes = model->main.inputIndexes;
NN_RET_CHECK_LT(role.ioIndex, inputIndexes.size());
NN_RET_CHECK_GT(role.frequency, 0.0f);
NN_RET_CHECK_LE(role.frequency, 1.0f);
const auto [it, success] = roles.emplace(preparedModel.get(), IOType::INPUT, role.ioIndex);
NN_RET_CHECK(success);
operands.push_back(model->main.operands[inputIndexes[role.ioIndex]]);
}
for (const auto& role : outputRoles) {
NN_RET_CHECK_LT(role.modelIndex, preparedModels.size());
const auto& preparedModel = preparedModels[role.modelIndex];
NN_RET_CHECK(preparedModel != nullptr);
const auto* model = getModel(preparedModel);
NN_RET_CHECK(model != nullptr);
const auto& outputIndexes = model->main.outputIndexes;
NN_RET_CHECK_LT(role.ioIndex, outputIndexes.size());
NN_RET_CHECK_GT(role.frequency, 0.0f);
NN_RET_CHECK_LE(role.frequency, 1.0f);
const auto [it, success] = roles.emplace(preparedModel.get(), IOType::OUTPUT, role.ioIndex);
NN_RET_CHECK(success);
operands.push_back(model->main.operands[outputIndexes[role.ioIndex]]);
}
CHECK(!operands.empty());
const auto opType = operands[0].type;
const bool isExtension = isExtensionOperandType(opType);
std::vector<uint32_t> dimensions = desc.dimensions;
for (const auto& operand : operands) {
NN_RET_CHECK(operand.type == operands[0].type)
<< toString(operand.type) << " vs " << toString(operands[0].type);
NN_RET_CHECK_EQ(operand.scale, operands[0].scale);
NN_RET_CHECK_EQ(operand.zeroPoint, operands[0].zeroPoint);
// NOTE: validateMemoryDesc cannot validate extra parameters for extension operand type.
if (!isExtension) {
NN_RET_CHECK(operand.extraParams == operands[0].extraParams)
<< toString(operand.extraParams) << " vs " << toString(operands[0].extraParams);
}
const auto combined = combineDimensions(dimensions, operand.dimensions);
NN_RET_CHECK(combined.has_value());
dimensions = combined.value();
}
// NOTE: validateMemoryDesc cannot validate scalar dimensions with extension operand type.
if (!isExtension) {
NN_RET_CHECK(!nonExtensionOperandTypeIsScalar(static_cast<int>(opType)) ||
dimensions.empty())
<< "invalid dimensions with scalar operand type.";
}
if (preparedModelRoles != nullptr) {
*preparedModelRoles = std::move(roles);
}
if (combinedOperand != nullptr) {
*combinedOperand = operands[0];
combinedOperand->dimensions = dimensions;
}
return true;
}
bool validateExecutionPreference(V1_1::ExecutionPreference preference) {
return preference == V1_1::ExecutionPreference::LOW_POWER ||
preference == V1_1::ExecutionPreference::FAST_SINGLE_ANSWER ||
preference == V1_1::ExecutionPreference::SUSTAINED_SPEED;
}
bool validatePriority(V1_3::Priority priority) {
return priority == V1_3::Priority::LOW || priority == V1_3::Priority::MEDIUM ||
priority == V1_3::Priority::HIGH;
}
bool validOperandType(V1_0::OperandType operandType) {
switch (operandType) {
case V1_0::OperandType::FLOAT32:
case V1_0::OperandType::INT32:
case V1_0::OperandType::UINT32:
case V1_0::OperandType::TENSOR_FLOAT32:
case V1_0::OperandType::TENSOR_INT32:
case V1_0::OperandType::TENSOR_QUANT8_ASYMM:
case V1_0::OperandType::OEM:
case V1_0::OperandType::TENSOR_OEM_BYTE:
return true;
default:
return false;
}
}
bool validOperandType(V1_2::OperandType operandType) {
switch (operandType) {
case V1_2::OperandType::FLOAT16:
case V1_2::OperandType::FLOAT32:
case V1_2::OperandType::INT32:
case V1_2::OperandType::UINT32:
case V1_2::OperandType::BOOL:
case V1_2::OperandType::TENSOR_FLOAT16:
case V1_2::OperandType::TENSOR_FLOAT32:
case V1_2::OperandType::TENSOR_INT32:
case V1_2::OperandType::TENSOR_QUANT8_ASYMM:
case V1_2::OperandType::TENSOR_QUANT8_SYMM:
case V1_2::OperandType::TENSOR_QUANT16_ASYMM:
case V1_2::OperandType::TENSOR_QUANT16_SYMM:
case V1_2::OperandType::TENSOR_BOOL8:
case V1_2::OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL:
case V1_2::OperandType::OEM:
case V1_2::OperandType::TENSOR_OEM_BYTE:
return true;
default:
return isExtensionOperandType(static_cast<V1_3::OperandType>(operandType));
}
}
bool validOperandType(V1_3::OperandType operandType) {
switch (operandType) {
case V1_3::OperandType::FLOAT16:
case V1_3::OperandType::FLOAT32:
case V1_3::OperandType::INT32:
case V1_3::OperandType::UINT32:
case V1_3::OperandType::BOOL:
case V1_3::OperandType::TENSOR_FLOAT16:
case V1_3::OperandType::TENSOR_FLOAT32:
case V1_3::OperandType::TENSOR_INT32:
case V1_3::OperandType::TENSOR_QUANT8_ASYMM:
case V1_3::OperandType::TENSOR_QUANT8_SYMM:
case V1_3::OperandType::TENSOR_QUANT16_ASYMM:
case V1_3::OperandType::TENSOR_QUANT16_SYMM:
case V1_3::OperandType::TENSOR_BOOL8:
case V1_3::OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL:
case V1_3::OperandType::TENSOR_QUANT8_ASYMM_SIGNED:
case V1_3::OperandType::SUBGRAPH:
case V1_3::OperandType::OEM:
case V1_3::OperandType::TENSOR_OEM_BYTE:
return true;
default:
return isExtensionOperandType(operandType);
}
}
} // namespace nn
} // namespace android