You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

104 lines
3.7 KiB

/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "Operations"
#include "Cast.h"
#include <algorithm>
#include "Operations.h"
#include "Tracing.h"
namespace android {
namespace nn {
namespace cast {
namespace {
template <typename FromT, typename ToT>
void copyCast(const FromT* in, ToT* out, int numElements) {
std::transform(in, in + numElements, out, [](FromT a) -> ToT {
if constexpr (std::is_same_v<ToT, uint8_t>) {
if (a < 0) return 0;
if (a > 255) return 255;
}
return static_cast<ToT>(a);
});
}
template <typename FromT>
bool copyToTensor(const FromT* inputData, int numElements, uint8_t* outputData,
const Shape& outputShape) {
#define ANDROID_NN_COPY_CAST(operandType, dataType) \
case operandType: { \
NNTRACE_COMP("cast::copyCast::" #dataType); \
copyCast(inputData, reinterpret_cast<dataType*>(outputData), numElements); \
return true; \
}
switch (outputShape.type) {
ANDROID_NN_COPY_CAST(OperandType::TENSOR_FLOAT16, _Float16);
ANDROID_NN_COPY_CAST(OperandType::TENSOR_FLOAT32, float);
ANDROID_NN_COPY_CAST(OperandType::TENSOR_INT32, int32_t);
ANDROID_NN_COPY_CAST(OperandType::TENSOR_QUANT8_ASYMM, uint8_t);
default:
LOG(ERROR) << "Unsupported CAST output type";
return false;
}
#undef ANDROID_NN_COPY_CAST
}
} // namespace
bool prepare(const Shape& input, Shape* output) {
output->dimensions = input.dimensions;
return true;
}
bool eval(const uint8_t* inputData, const Shape& inputShape, uint8_t* outputData,
const Shape& outputShape) {
NNTRACE_TRANS("cast::eval");
int numElements = getNumberOfElements(inputShape);
#define ANDROID_NN_COPY_TO_TENSOR(operandType, dataType) \
case operandType: { \
NNTRACE_TRANS("cast::copyToTensor::" #dataType); \
copyToTensor(reinterpret_cast<const dataType*>(inputData), numElements, outputData, \
outputShape); \
return true; \
}
switch (inputShape.type) {
ANDROID_NN_COPY_TO_TENSOR(OperandType::TENSOR_FLOAT16, _Float16);
ANDROID_NN_COPY_TO_TENSOR(OperandType::TENSOR_FLOAT32, float);
ANDROID_NN_COPY_TO_TENSOR(OperandType::TENSOR_INT32, int32_t);
ANDROID_NN_COPY_TO_TENSOR(OperandType::TENSOR_QUANT8_ASYMM, uint8_t);
default:
if (inputShape.type == outputShape.type) {
return copyData(inputData, inputShape, outputData, outputShape);
} else {
LOG(ERROR) << "Unsupported CAST input type";
return false;
}
}
#undef ANDROID_NN_COPY_TO_TENSOR
}
} // namespace cast
} // namespace nn
} // namespace android