You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

194 lines
6.0 KiB

/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include <vector>
#include "HashtableLookup.h"
#include "NeuralNetworksWrapper.h"
using ::testing::FloatNear;
using ::testing::Matcher;
namespace android {
namespace nn {
namespace wrapper {
namespace {
std::vector<Matcher<float>> ArrayFloatNear(const std::vector<float>& values,
float max_abs_error = 1.e-6) {
std::vector<Matcher<float>> matchers;
matchers.reserve(values.size());
for (const float& v : values) {
matchers.emplace_back(FloatNear(v, max_abs_error));
}
return matchers;
}
} // namespace
using ::testing::ElementsAreArray;
#define FOR_ALL_INPUT_AND_WEIGHT_TENSORS(ACTION) \
ACTION(Lookup, int) \
ACTION(Key, int) \
ACTION(Value, float)
// For all output and intermediate states
#define FOR_ALL_OUTPUT_TENSORS(ACTION) \
ACTION(Output, float) \
ACTION(Hits, uint8_t)
class HashtableLookupOpModel {
public:
HashtableLookupOpModel(std::initializer_list<uint32_t> lookup_shape,
std::initializer_list<uint32_t> key_shape,
std::initializer_list<uint32_t> value_shape) {
auto it_vs = value_shape.begin();
rows_ = *it_vs++;
features_ = *it_vs;
std::vector<uint32_t> inputs;
// Input and weights
OperandType LookupTy(Type::TENSOR_INT32, lookup_shape);
inputs.push_back(model_.addOperand(&LookupTy));
OperandType KeyTy(Type::TENSOR_INT32, key_shape);
inputs.push_back(model_.addOperand(&KeyTy));
OperandType ValueTy(Type::TENSOR_FLOAT32, value_shape);
inputs.push_back(model_.addOperand(&ValueTy));
// Output and other intermediate state
std::vector<uint32_t> outputs;
std::vector<uint32_t> out_dim(lookup_shape.begin(), lookup_shape.end());
out_dim.push_back(features_);
OperandType OutputOpndTy(Type::TENSOR_FLOAT32, out_dim);
outputs.push_back(model_.addOperand(&OutputOpndTy));
OperandType HitsOpndTy(Type::TENSOR_QUANT8_ASYMM, lookup_shape, 1.f, 0);
outputs.push_back(model_.addOperand(&HitsOpndTy));
auto multiAll = [](const std::vector<uint32_t>& dims) -> uint32_t {
uint32_t sz = 1;
for (uint32_t d : dims) {
sz *= d;
}
return sz;
};
Value_.insert(Value_.end(), multiAll(value_shape), 0.f);
Output_.insert(Output_.end(), multiAll(out_dim), 0.f);
Hits_.insert(Hits_.end(), multiAll(lookup_shape), 0);
model_.addOperation(ANEURALNETWORKS_HASHTABLE_LOOKUP, inputs, outputs);
model_.identifyInputsAndOutputs(inputs, outputs);
model_.finish();
}
void Invoke() {
ASSERT_TRUE(model_.isValid());
Compilation compilation(&model_);
compilation.finish();
Execution execution(&compilation);
#define SetInputOrWeight(X, T) \
ASSERT_EQ(execution.setInput(HashtableLookup::k##X##Tensor, X##_.data(), \
sizeof(T) * X##_.size()), \
Result::NO_ERROR);
FOR_ALL_INPUT_AND_WEIGHT_TENSORS(SetInputOrWeight);
#undef SetInputOrWeight
#define SetOutput(X, T) \
ASSERT_EQ(execution.setOutput(HashtableLookup::k##X##Tensor, X##_.data(), \
sizeof(T) * X##_.size()), \
Result::NO_ERROR);
FOR_ALL_OUTPUT_TENSORS(SetOutput);
#undef SetOutput
ASSERT_EQ(execution.compute(), Result::NO_ERROR);
}
#define DefineSetter(X, T) \
void Set##X(const std::vector<T>& f) { X##_.insert(X##_.end(), f.begin(), f.end()); }
FOR_ALL_INPUT_AND_WEIGHT_TENSORS(DefineSetter);
#undef DefineSetter
void SetHashtableValue(const std::function<float(uint32_t, uint32_t)>& function) {
for (uint32_t i = 0; i < rows_; i++) {
for (uint32_t j = 0; j < features_; j++) {
Value_[i * features_ + j] = function(i, j);
}
}
}
const std::vector<float>& GetOutput() const { return Output_; }
const std::vector<uint8_t>& GetHits() const { return Hits_; }
private:
Model model_;
uint32_t rows_;
uint32_t features_;
#define DefineTensor(X, T) std::vector<T> X##_;
FOR_ALL_INPUT_AND_WEIGHT_TENSORS(DefineTensor);
FOR_ALL_OUTPUT_TENSORS(DefineTensor);
#undef DefineTensor
};
TEST(HashtableLookupOpTest, BlackBoxTest) {
HashtableLookupOpModel m({4}, {3}, {3, 2});
m.SetLookup({1234, -292, -11, 0});
m.SetKey({-11, 0, 1234});
m.SetHashtableValue([](int i, int j) { return i + j / 10.0f; });
m.Invoke();
EXPECT_THAT(m.GetOutput(), ElementsAreArray(ArrayFloatNear({
2.0, 2.1, // 2-rd item
0, 0, // Not found
0.0, 0.1, // 0-th item
1.0, 1.1, // 1-st item
})));
EXPECT_EQ(m.GetHits(), std::vector<uint8_t>({
1,
0,
1,
1,
}));
}
} // namespace wrapper
} // namespace nn
} // namespace android