You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

176 lines
5.6 KiB

/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include <vector>
#include "LSHProjection.h"
#include "NeuralNetworksWrapper.h"
using ::testing::FloatNear;
using ::testing::Matcher;
namespace android {
namespace nn {
namespace wrapper {
using ::testing::ElementsAre;
#define FOR_ALL_INPUT_AND_WEIGHT_TENSORS(ACTION) \
ACTION(Hash, float) \
ACTION(Input, int) \
ACTION(Weight, float)
// For all output and intermediate states
#define FOR_ALL_OUTPUT_TENSORS(ACTION) ACTION(Output, int)
class LSHProjectionOpModel {
public:
LSHProjectionOpModel(LSHProjectionType type, std::initializer_list<uint32_t> hash_shape,
std::initializer_list<uint32_t> input_shape,
std::initializer_list<uint32_t> weight_shape)
: type_(type) {
std::vector<uint32_t> inputs;
OperandType HashTy(Type::TENSOR_FLOAT32, hash_shape);
inputs.push_back(model_.addOperand(&HashTy));
OperandType InputTy(Type::TENSOR_INT32, input_shape);
inputs.push_back(model_.addOperand(&InputTy));
OperandType WeightTy(Type::TENSOR_FLOAT32, weight_shape);
inputs.push_back(model_.addOperand(&WeightTy));
OperandType TypeParamTy(Type::INT32, {});
inputs.push_back(model_.addOperand(&TypeParamTy));
std::vector<uint32_t> outputs;
auto multiAll = [](const std::vector<uint32_t>& dims) -> uint32_t {
uint32_t sz = 1;
for (uint32_t d : dims) {
sz *= d;
}
return sz;
};
uint32_t outShapeDimension = 0;
if (type == LSHProjectionType_SPARSE || type == LSHProjectionType_SPARSE_DEPRECATED) {
auto it = hash_shape.begin();
Output_.insert(Output_.end(), *it, 0.f);
outShapeDimension = *it;
} else {
Output_.insert(Output_.end(), multiAll(hash_shape), 0.f);
outShapeDimension = multiAll(hash_shape);
}
OperandType OutputTy(Type::TENSOR_INT32, {outShapeDimension});
outputs.push_back(model_.addOperand(&OutputTy));
model_.addOperation(ANEURALNETWORKS_LSH_PROJECTION, inputs, outputs);
model_.identifyInputsAndOutputs(inputs, outputs);
model_.finish();
}
#define DefineSetter(X, T) \
void Set##X(const std::vector<T>& f) { X##_.insert(X##_.end(), f.begin(), f.end()); }
FOR_ALL_INPUT_AND_WEIGHT_TENSORS(DefineSetter);
#undef DefineSetter
const std::vector<int>& GetOutput() const { return Output_; }
void Invoke() {
ASSERT_TRUE(model_.isValid());
Compilation compilation(&model_);
compilation.finish();
Execution execution(&compilation);
#define SetInputOrWeight(X, T) \
ASSERT_EQ( \
execution.setInput(LSHProjection::k##X##Tensor, X##_.data(), sizeof(T) * X##_.size()), \
Result::NO_ERROR);
FOR_ALL_INPUT_AND_WEIGHT_TENSORS(SetInputOrWeight);
#undef SetInputOrWeight
#define SetOutput(X, T) \
ASSERT_EQ(execution.setOutput(LSHProjection::k##X##Tensor, X##_.data(), \
sizeof(T) * X##_.size()), \
Result::NO_ERROR);
FOR_ALL_OUTPUT_TENSORS(SetOutput);
#undef SetOutput
ASSERT_EQ(execution.setInput(LSHProjection::kTypeParam, &type_, sizeof(type_)),
Result::NO_ERROR);
ASSERT_EQ(execution.compute(), Result::NO_ERROR);
}
private:
Model model_;
LSHProjectionType type_;
std::vector<float> Hash_;
std::vector<int> Input_;
std::vector<float> Weight_;
std::vector<int> Output_;
}; // namespace wrapper
TEST(LSHProjectionOpTest2, DenseWithThreeInputs) {
LSHProjectionOpModel m(LSHProjectionType_DENSE, {4, 2}, {3, 2}, {3});
m.SetInput({12345, 54321, 67890, 9876, -12345678, -87654321});
m.SetHash({0.123, 0.456, -0.321, -0.654, 1.234, 5.678, -4.321, -8.765});
m.SetWeight({0.12, 0.34, 0.56});
m.Invoke();
EXPECT_THAT(m.GetOutput(), ElementsAre(1, 1, 1, 0, 1, 1, 1, 0));
}
TEST(LSHProjectionOpTest2, SparseDeprecatedWithTwoInputs) {
LSHProjectionOpModel m(LSHProjectionType_SPARSE_DEPRECATED, {4, 2}, {3, 2}, {0});
m.SetInput({12345, 54321, 67890, 9876, -12345678, -87654321});
m.SetHash({0.123, 0.456, -0.321, -0.654, 1.234, 5.678, -4.321, -8.765});
m.Invoke();
EXPECT_THAT(m.GetOutput(), ElementsAre(1, 2, 2, 0));
}
TEST(LSHProjectionOpTest2, SparseWithTwoInputs) {
LSHProjectionOpModel m(LSHProjectionType_SPARSE, {4, 2}, {3, 2}, {0});
m.SetInput({12345, 54321, 67890, 9876, -12345678, -87654321});
m.SetHash({0.123, 0.456, -0.321, -0.654, 1.234, 5.678, -4.321, -8.765});
m.Invoke();
EXPECT_THAT(m.GetOutput(), ElementsAre(1, 6, 10, 12));
}
} // namespace wrapper
} // namespace nn
} // namespace android