You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

140 lines
4.9 KiB

/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include <unsupported/Eigen/CXX11/Tensor>
#include <vector>
#include "Multinomial.h"
#include "NeuralNetworksWrapper.h"
#include "philox_random.h"
#include "simple_philox.h"
namespace android {
namespace nn {
namespace wrapper {
using ::testing::FloatNear;
constexpr int kFixedRandomSeed1 = 37;
constexpr int kFixedRandomSeed2 = 42;
class MultinomialOpModel {
public:
MultinomialOpModel(uint32_t batch_size, uint32_t class_size, uint32_t sample_size)
: batch_size_(batch_size), class_size_(class_size), sample_size_(sample_size) {
std::vector<uint32_t> inputs;
OperandType logitsType(Type::TENSOR_FLOAT32, {batch_size_, class_size_});
inputs.push_back(model_.addOperand(&logitsType));
OperandType samplesType(Type::INT32, {});
inputs.push_back(model_.addOperand(&samplesType));
OperandType seedsType(Type::TENSOR_INT32, {2});
inputs.push_back(model_.addOperand(&seedsType));
std::vector<uint32_t> outputs;
OperandType outputType(Type::TENSOR_INT32, {batch_size_, sample_size_});
outputs.push_back(model_.addOperand(&outputType));
model_.addOperation(ANEURALNETWORKS_RANDOM_MULTINOMIAL, inputs, outputs);
model_.identifyInputsAndOutputs(inputs, outputs);
model_.finish();
}
void Invoke() {
ASSERT_TRUE(model_.isValid());
Compilation compilation(&model_);
compilation.finish();
Execution execution(&compilation);
tensorflow::random::PhiloxRandom rng(kFixedRandomSeed1);
tensorflow::random::SimplePhilox srng(&rng);
const int sample_count = batch_size_ * class_size_;
for (int i = 0; i < sample_count; ++i) {
input_.push_back(srng.RandDouble());
}
ASSERT_EQ(execution.setInput(Multinomial::kInputTensor, input_.data(),
sizeof(float) * input_.size()),
Result::NO_ERROR);
ASSERT_EQ(execution.setInput(Multinomial::kSampleCountParam, &sample_size_,
sizeof(sample_size_)),
Result::NO_ERROR);
std::vector<uint32_t> seeds{kFixedRandomSeed1, kFixedRandomSeed2};
ASSERT_EQ(execution.setInput(Multinomial::kRandomSeedsTensor, seeds.data(),
sizeof(uint32_t) * seeds.size()),
Result::NO_ERROR);
output_.insert(output_.end(), batch_size_ * sample_size_, 0);
ASSERT_EQ(execution.setOutput(Multinomial::kOutputTensor, output_.data(),
sizeof(uint32_t) * output_.size()),
Result::NO_ERROR);
ASSERT_EQ(execution.compute(), Result::NO_ERROR);
}
const std::vector<float>& GetInput() const { return input_; }
const std::vector<uint32_t>& GetOutput() const { return output_; }
private:
Model model_;
const uint32_t batch_size_;
const uint32_t class_size_;
const uint32_t sample_size_;
std::vector<float> input_;
std::vector<uint32_t> output_;
};
TEST(MultinomialOpTest, ProbabilityDeltaWithinTolerance) {
constexpr int kBatchSize = 8;
constexpr int kNumClasses = 10000;
constexpr int kNumSamples = 128;
constexpr float kMaxProbabilityDelta = 0.025;
MultinomialOpModel multinomial(kBatchSize, kNumClasses, kNumSamples);
multinomial.Invoke();
std::vector<uint32_t> output = multinomial.GetOutput();
std::vector<int> class_counts;
class_counts.resize(kNumClasses);
for (auto index : output) {
class_counts[index]++;
}
std::vector<float> input = multinomial.GetInput();
for (int b = 0; b < kBatchSize; ++b) {
float probability_sum = 0;
const int batch_index = kBatchSize * b;
for (int i = 0; i < kNumClasses; ++i) {
probability_sum += expf(input[batch_index + i]);
}
for (int i = 0; i < kNumClasses; ++i) {
float probability =
static_cast<float>(class_counts[i]) / static_cast<float>(kNumSamples);
float probability_expected = expf(input[batch_index + i]) / probability_sum;
EXPECT_THAT(probability, FloatNear(probability_expected, kMaxProbabilityDelta));
}
}
}
} // namespace wrapper
} // namespace nn
} // namespace android