You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

257 lines
12 KiB

/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "Operations"
#include "RNN.h"
#include <vector>
#include "CpuExecutor.h"
#include "CpuOperationUtils.h"
#include "Tracing.h"
namespace android {
namespace nn {
RNN::RNN(const Operation& operation, RunTimeOperandInfo* operands) {
NNTRACE_TRANS("RNN::RNN");
input_ = GetInput(operation, operands, kInputTensor);
weights_ = GetInput(operation, operands, kWeightsTensor);
recurrent_weights_ = GetInput(operation, operands, kRecurrentWeightsTensor);
hidden_state_in_ = GetInput(operation, operands, kHiddenStateInTensor);
bias_ = GetInput(operation, operands, kBiasTensor);
activation_ = static_cast<ActivationFn>(
getScalarData<int32_t>(operands[operation.inputs[kActivationParam]]));
hidden_state_out_ = GetOutput(operation, operands, kHiddenStateOutTensor);
output_ = GetOutput(operation, operands, kOutputTensor);
}
bool RNN::Prepare(const Operation& operation, RunTimeOperandInfo* operands, Shape* hiddenStateShape,
Shape* outputShape) {
NNTRACE_TRANS("RNN::Prepare");
// Check we have all the inputs and outputs we need.
const int num_inputs = NumInputsWithValues(operation, operands);
NN_CHECK(num_inputs == 6);
NN_CHECK_EQ(NumOutputs(operation), 2);
const RunTimeOperandInfo* input = GetInput(operation, operands, kInputTensor);
const RunTimeOperandInfo* input_weights = GetInput(operation, operands, kWeightsTensor);
const RunTimeOperandInfo* recurrent_weights =
GetInput(operation, operands, kRecurrentWeightsTensor);
const RunTimeOperandInfo* bias = GetInput(operation, operands, kBiasTensor);
// Check all the parameters of tensor match within themselves and match the
// input configuration.
const uint32_t batch_size = SizeOfDimension(input, 0);
const uint32_t num_units = SizeOfDimension(input_weights, 0);
NN_CHECK_EQ(SizeOfDimension(input, 1), SizeOfDimension(input_weights, 1));
NN_CHECK_EQ(SizeOfDimension(input_weights, 0), SizeOfDimension(bias, 0));
NN_CHECK_EQ(SizeOfDimension(recurrent_weights, 0), SizeOfDimension(bias, 0));
NN_CHECK_EQ(SizeOfDimension(recurrent_weights, 1), SizeOfDimension(bias, 0));
const Shape& inputShape = input->shape();
// Resize state.
hiddenStateShape->type = inputShape.type;
hiddenStateShape->dimensions = {batch_size, num_units};
// Resize output.
outputShape->type = inputShape.type;
outputShape->dimensions = {batch_size, num_units};
return true;
}
bool RNN::Eval() {
switch (input_->type) {
case OperandType::TENSOR_FLOAT16: {
RNNStep<_Float16>(reinterpret_cast<_Float16*>(input_->buffer), input_->shape(),
reinterpret_cast<_Float16*>(hidden_state_in_->buffer),
reinterpret_cast<_Float16*>(bias_->buffer),
reinterpret_cast<_Float16*>(weights_->buffer), weights_->shape(),
reinterpret_cast<_Float16*>(recurrent_weights_->buffer),
recurrent_weights_->shape(), activation_,
reinterpret_cast<_Float16*>(output_->buffer));
memcpy(hidden_state_out_->buffer, output_->buffer,
sizeof(_Float16) * getNumberOfElements(output_->shape()));
break;
}
case OperandType::TENSOR_FLOAT32: {
RNNStep<float>(reinterpret_cast<float*>(input_->buffer), input_->shape(),
reinterpret_cast<float*>(hidden_state_in_->buffer),
reinterpret_cast<float*>(bias_->buffer),
reinterpret_cast<float*>(weights_->buffer), weights_->shape(),
reinterpret_cast<float*>(recurrent_weights_->buffer),
recurrent_weights_->shape(), activation_,
reinterpret_cast<float*>(output_->buffer));
memcpy(hidden_state_out_->buffer, output_->buffer,
sizeof(float) * getNumberOfElements(output_->shape()));
break;
}
default: {
LOG(ERROR) << "Unsupported data type: " << static_cast<int>(input_->type);
return false;
}
}
return true;
}
template <typename T>
bool RNN::RNNStep(const T* inputData, const Shape& inputShape, const T* hiddenStateInputData,
const T* biasData, const T* weightsData, const Shape& weightsShape,
const T* recurrentWeightsData, const Shape& recurrentWeightsShape,
const int32_t activation, T* outputData) {
NNTRACE_COMP("RNN::Eval");
Shape dummyShape;
uint32_t numUnits = weightsShape.dimensions[0];
return RNNStep<T>(inputData, inputShape, /*auxInputData=*/nullptr, /*auxInputShape=*/dummyShape,
hiddenStateInputData, biasData, weightsData, weightsShape,
/*auxWeightsData=*/nullptr, /*auxWeightsShape=*/dummyShape,
recurrentWeightsData, recurrentWeightsShape, activation,
/*outputBatchStride=*/numUnits, /*outputBatchOffset=*/0, outputData);
}
// A more general version of the RNNStep function.
// Auxiliary input is treated as if it was concatenated to a regular input and
// the result was multiplied by the weights matrix which was also concatenated
// with auxiliary weights.
template <typename T>
bool RNN::RNNStep(const T* inputData, const Shape& inputShape, const T* auxInputData,
const Shape& auxInputShape, const T* hiddenStateInputData, const T* biasData,
const T* weightsData, const Shape& weightsShape, const T* auxWeightsData,
const Shape& auxWeightsShape, const T* recurrentWeightsData,
const Shape& recurrentWeightsShape, const int32_t activation,
const uint32_t outputBatchStride, const uint32_t outputBatchOffset, T* outputData,
T* hiddenStateOutput) {
NNTRACE_COMP("RNN::Eval");
const uint32_t batch_size = inputShape.dimensions[0];
const uint32_t num_units = weightsShape.dimensions[0];
const uint32_t input_size = inputShape.dimensions[1];
const uint32_t input_weights_stride = weightsShape.dimensions[1];
const uint32_t recurrent_weights_stride = recurrentWeightsShape.dimensions[1];
uint32_t aux_input_size = 0;
uint32_t aux_input_weights_stride = 0;
bool hasAuxInput = (auxInputData != nullptr);
if (hasAuxInput) {
aux_input_size = auxInputShape.dimensions[1];
aux_input_weights_stride = auxWeightsShape.dimensions[1];
}
// For each batch
for (uint32_t b = 0; b < batch_size; b++) {
// Initialize the pointer to input, output and bias.
const T* input_ptr_batch = inputData + b * input_size;
const T* hidden_state_in_ptr_batch = hiddenStateInputData + b * num_units;
const T* aux_input_ptr_batch = nullptr;
if (hasAuxInput) {
aux_input_ptr_batch = auxInputData + b * aux_input_size;
}
T* output_ptr_batch = outputData + b * outputBatchStride + outputBatchOffset;
// Initialize input_weights and recurrent_weights.
const T* input_weights_ptr = weightsData;
const T* recurrent_weights_ptr = recurrentWeightsData;
const T* aux_input_weights_ptr = nullptr;
if (hasAuxInput) {
aux_input_weights_ptr = auxWeightsData;
}
// Output = bias
for (uint32_t o = 0; o < num_units; o++) {
output_ptr_batch[o] = biasData[o];
}
// Output += input * input_weights
for (uint32_t o = 0; o < num_units; o++) {
for (uint32_t i = 0; i < input_size; i++) {
output_ptr_batch[o] += input_ptr_batch[i] * input_weights_ptr[i];
}
input_weights_ptr += input_weights_stride;
}
if (hasAuxInput) {
// Output += aux_input * aux_input_weights
for (uint32_t o = 0; o < num_units; o++) {
for (uint32_t i = 0; i < input_size; i++) {
output_ptr_batch[o] += aux_input_ptr_batch[i] * aux_input_weights_ptr[i];
}
aux_input_weights_ptr += aux_input_weights_stride;
}
}
// Output += recurrent_weights * hidden_state
for (uint32_t o = 0; o < num_units; o++) {
for (uint32_t h = 0; h < num_units; h++) {
output_ptr_batch[o] += hidden_state_in_ptr_batch[h] * recurrent_weights_ptr[h];
}
recurrent_weights_ptr += recurrent_weights_stride;
}
// Output = activation(Output)
for (uint32_t o = 0; o < num_units; o++) {
output_ptr_batch[o] =
(ActivationFunctor(static_cast<ActivationFn>(activation)))(output_ptr_batch[o]);
if (hiddenStateOutput != nullptr) {
*hiddenStateOutput = output_ptr_batch[o];
++hiddenStateOutput;
}
}
}
return true;
}
template bool RNN::RNNStep<_Float16>(const _Float16* inputData, const Shape& inputShape,
const _Float16* hiddenStateInputData, const _Float16* biasData,
const _Float16* weightsData, const Shape& weightsShape,
const _Float16* recurrentWeightsData,
const Shape& recurrentWeightsShape, int32_t activation,
_Float16* outputData);
template bool RNN::RNNStep<_Float16>(const _Float16* inputData, const Shape& inputShape,
const _Float16* auxInputData, const Shape& auxInputShape,
const _Float16* hiddenStateInputData, const _Float16* biasData,
const _Float16* weightsData, const Shape& weightsShape,
const _Float16* auxWeightsData, const Shape& auxWeightsShape,
const _Float16* recurrentWeightsData,
const Shape& recurrentWeightsShape, const int32_t activation,
const uint32_t outputBatchStride,
const uint32_t outputBatchOffset, _Float16* outputData,
_Float16* hiddenStateOutput);
template bool RNN::RNNStep<float>(const float* inputData, const Shape& inputShape,
const float* hiddenStateInputData, const float* biasData,
const float* weightsData, const Shape& weightsShape,
const float* recurrentWeightsData,
const Shape& recurrentWeightsShape, int32_t activation,
float* outputData);
template bool RNN::RNNStep<float>(const float* inputData, const Shape& inputShape,
const float* auxInputData, const Shape& auxInputShape,
const float* hiddenStateInputData, const float* biasData,
const float* weightsData, const Shape& weightsShape,
const float* auxWeightsData, const Shape& auxWeightsShape,
const float* recurrentWeightsData,
const Shape& recurrentWeightsShape, int32_t activation,
uint32_t outputBatchStride, uint32_t outputBatchStep,
float* outputData, float* hiddenStateOutput);
} // namespace nn
} // namespace android