You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

150 lines
5.7 KiB

/*
* Copyright (C) 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// Contains the implementation of the operations.
#define LOG_TAG "Operations"
#include <vector>
#include "OperationResolver.h"
#include "Operations.h"
#include "Tracing.h"
namespace android {
namespace nn {
namespace squeeze {
constexpr uint32_t kNumInputs = 2;
constexpr uint32_t kInputTensor = 0;
constexpr uint32_t kSqueezeDims = 1;
constexpr uint32_t kNumOutputs = 1;
constexpr uint32_t kOutputTensor = 0;
Result<Version> validate(const IOperationValidationContext* context) {
NN_RET_CHECK_EQ(context->getNumInputs(), kNumInputs);
NN_RET_CHECK_EQ(context->getNumOutputs(), kNumOutputs);
OperandType inputType = context->getInputType(kInputTensor);
NN_RET_CHECK(inputType == OperandType::TENSOR_FLOAT16 ||
inputType == OperandType::TENSOR_FLOAT32 ||
inputType == OperandType::TENSOR_QUANT8_ASYMM ||
inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED)
<< "Unsupported input operand type for SQUEEZE op: " << inputType;
Version minSupportedVersion;
if (inputType == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
minSupportedVersion = Version::ANDROID_R;
} else if (inputType == OperandType::TENSOR_FLOAT16) {
minSupportedVersion = Version::ANDROID_Q;
} else {
minSupportedVersion = Version::ANDROID_P;
}
NN_RET_CHECK(validateInputTypes(context, {
inputType,
OperandType::TENSOR_INT32,
}));
NN_RET_CHECK(validateOutputTypes(context, {inputType}));
const Shape& input = context->getInputShape(kInputTensor);
if (hasKnownRank(input)) {
NN_RET_CHECK_LE(getNumberOfDimensions(input), 4);
}
return minSupportedVersion;
}
#ifdef NN_INCLUDE_CPU_IMPLEMENTATION
bool prepare(IOperationExecutionContext* context) {
// Only the squeeze dims tensor can be omitted.
NN_RET_CHECK(!context->isOmittedInput(kInputTensor));
NN_RET_CHECK(!context->isOmittedOutput(kOutputTensor));
const int32_t* squeezeDims = context->getInputBuffer<int32_t>(kSqueezeDims);
const Shape inputShape = context->getInputShape(kInputTensor);
const Shape squeezeDimsShape = context->getInputShape(kSqueezeDims);
int32_t numInputDims = static_cast<int32_t>(getNumberOfDimensions(inputShape));
NN_RET_CHECK_LE(getNumberOfDimensions(inputShape), 4);
// squeezeDims need to be provided as a 1-D int32 tensor.
NN_OPS_CHECK(squeezeDimsShape.type == OperandType::TENSOR_INT32);
NN_OPS_CHECK(getNumberOfDimensions(squeezeDimsShape) == 1);
std::vector<bool> shouldSqueeze(numInputDims, false);
int32_t numDimsSqueezed = 0;
if (context->isOmittedInput(kSqueezeDims)) {
// If squeezeDims is omitted, all dims with value 1 will be squeezed.
for (int32_t idx = 0; idx < numInputDims; ++idx) {
if (getSizeOfDimension(inputShape, idx) == 1) {
shouldSqueeze[idx] = true;
++numDimsSqueezed;
}
}
} else {
int32_t squeezeDimsSize = static_cast<int32_t>(getSizeOfDimension(squeezeDimsShape, 0));
for (int32_t idx = 0; idx < squeezeDimsSize; ++idx) {
int32_t current =
squeezeDims[idx] < 0 ? squeezeDims[idx] + numInputDims : squeezeDims[idx];
NN_OPS_CHECK(current >= 0 && current < numInputDims &&
getSizeOfDimension(inputShape, current) == 1);
if (!shouldSqueeze[current]) ++numDimsSqueezed;
shouldSqueeze[current] = true;
}
}
// Sets output dimensions.
std::vector<uint32_t> outDims(numInputDims - numDimsSqueezed);
if (numInputDims == numDimsSqueezed) {
// Handle edge case where squeeze removes all dimensions.
outDims.push_back(1);
} else {
for (int32_t inIdx = 0, outIdx = 0; inIdx < numInputDims; ++inIdx) {
if (!shouldSqueeze[inIdx]) {
outDims[outIdx++] = getSizeOfDimension(inputShape, inIdx);
}
}
}
Shape outputShape(inputShape);
outputShape.dimensions = outDims;
return context->setOutputShape(kOutputTensor, outputShape);
}
bool execute(IOperationExecutionContext* context) {
switch (context->getInputType(kInputTensor)) {
case OperandType::TENSOR_FLOAT16:
case OperandType::TENSOR_FLOAT32:
case OperandType::TENSOR_QUANT8_ASYMM:
case OperandType::TENSOR_QUANT8_ASYMM_SIGNED:
return copyData(context->getInputBuffer(kInputTensor),
context->getInputShape(kInputTensor),
context->getOutputBuffer(kOutputTensor),
context->getOutputShape(kOutputTensor));
default:
NN_RET_CHECK_FAIL() << "Unsupported tensor type for SQUEEZE op.";
}
}
#endif // NN_INCLUDE_CPU_IMPLEMENTATION
} // namespace squeeze
NN_REGISTER_OPERATION(SQUEEZE, "SQUEEZE", squeeze::validate, squeeze::prepare, squeeze::execute,
.allowOmittedOperand = true);
} // namespace nn
} // namespace android