You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

209 lines
6.4 KiB

/*
* Copyright 2021 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "compactor_stack.h"
#include <vector>
#include "random_generator.h"
#include "sampler.h"
namespace dist_proc {
namespace aggregation {
namespace internal {
CompactorStack::CompactorStack(int64_t inv_eps, int64_t inv_delta, RandomGenerator* random)
: CompactorStack(inv_eps, inv_delta, 0, random) {
}
CompactorStack::CompactorStack(int64_t inv_eps, int64_t inv_delta, int k, RandomGenerator* random)
: random_(random) {
if (k != 0) {
k_ = k;
} else {
// k = 1/eps * sqrt(log_2(1/delta)) - taken from proof of Thm 1.
double raw_k = inv_eps * std::sqrt(std::log2(inv_delta));
k_ = std::pow(2, std::lround(std::log2(raw_k)));
}
Reset();
}
CompactorStack::~CompactorStack() {
ClearCompactors();
}
// Initialize or reset the compactor stack and all counters and thresholds.
void CompactorStack::Reset() {
overall_capacity_ = 0;
ClearCompactors();
sampler_ = nullptr;
AddLevel();
}
void CompactorStack::Add(const int64_t value) {
if (sampler_ == nullptr) {
compactors_[0].push_back(value);
num_items_in_compactors_++;
CompactStack();
} else {
sampler_->Add(value);
}
}
// Adds an item to the compactor stack with weight >= 1.
// Does nothing if weight <= 0.
void CompactorStack::AddWithWeight(int64_t value, int weight) {
if (weight > 0) {
int remaining_weight = weight;
size_t level_to_add = 0;
if (sampler_ != nullptr) {
sampler_->AddWithWeight(value, remaining_weight % sampler_->capacity());
remaining_weight /= sampler_->capacity();
level_to_add = sampler_->num_replaced_levels();
}
while (remaining_weight != 0) {
if (level_to_add >= compactors_.size()) {
AddLevel();
}
if ((remaining_weight & 1) != 0) {
compactors_[level_to_add].push_back(value);
num_items_in_compactors_++;
}
remaining_weight >>= 1;
level_to_add++;
}
CompactStack();
}
}
void CompactorStack::SortCompactorContents() {
for (std::vector<int64_t>& compactor : compactors_) {
std::sort(compactor.begin(), compactor.end());
}
}
void CompactorStack::ClearCompactors() {
compactors_.clear();
num_items_in_compactors_ = 0;
}
void CompactorStack::AddLevel() {
compactors_.resize(compactors_.size() + 1);
int cap_at_lowest_active_level = TargetCapacityAtLevel(lowest_active_level());
// All levels i get capacity that previously level i-1 had, except the
// (previous) lowest active level, which gets a new smaller capacity.
// Overall capacity changes by that amount.
overall_capacity_ += cap_at_lowest_active_level;
if (cap_at_lowest_active_level == 0) {
DoubleSamplerCapacity();
}
}
void CompactorStack::CompactStack() {
while (num_items_in_compactors_ >= overall_capacity_) {
for (size_t i = 0; i < compactors_.size(); i++) {
if (!compactors_[i].empty() &&
static_cast<int>(compactors_[i].size()) >= TargetCapacityAtLevel(i)) {
CompactLevel(i);
if (num_items_in_compactors_ < overall_capacity_) {
break;
}
}
}
}
}
void CompactorStack::CompactLevel(int level) {
if (level == static_cast<int>(compactors_.size()) - 1) {
AddLevel();
}
Halve(&compactors_[level], &compactors_[level + 1]);
std::vector<int64_t>().swap(compactors_[level]);
}
// To compact the items in a compactor to roughly half the size,
// sorts the items and adds every even or odd item (determined randomly)
// to the up_compactor.
void CompactorStack::Halve(std::vector<int64_t>* down_compactor,
std::vector<int64_t>* up_compactor) {
std::sort(down_compactor->begin(), down_compactor->end());
double half_of_items = down_compactor->size() / static_cast<double>(2);
bool keep_even_items = (random_->UnbiasedUniform(2) == 0);
num_items_in_compactors_ -= static_cast<int>(keep_even_items ? std::floor(half_of_items)
: std::ceil(half_of_items));
bool even = true;
for (size_t i = 0; i < down_compactor->size(); i++) {
if (even == keep_even_items) {
up_compactor->push_back((*down_compactor)[i]);
}
even = !even;
}
down_compactor->clear();
}
int CompactorStack::TargetCapacityAtLevel(int h) const {
int num_stack_levels = compactors_.size();
int raw_capacity = static_cast<int>(std::ceil(std::pow(c_, num_stack_levels - h - 1) * k_));
// If the capacity is two or less, the level will be replaced by the
// sampler.
return raw_capacity > 2 ? raw_capacity : 0;
}
void CompactorStack::DoubleSamplerCapacity() {
int prev_lowest_active_level = lowest_active_level();
if (sampler_ != nullptr) {
sampler_->DoubleCapacity();
} else {
sampler_ = std::make_unique<KllSampler>(this);
}
CompactLevel(prev_lowest_active_level);
}
int CompactorStack::num_stored_items() const {
if (sampler_ == nullptr) {
return num_items_in_compactors_;
} else {
return num_items_in_compactors_ +
((sampler_->sampled_item_and_weight().has_value()) ? 1 : 0);
}
}
std::optional<std::pair<const int64_t, int64_t>> CompactorStack::sampled_item_and_weight() const {
if (sampler_ != nullptr) {
return sampler_->sampled_item_and_weight();
} else {
return std::nullopt;
}
}
int64_t CompactorStack::sampler_capacity() const {
return sampler_ ? sampler_->capacity() : 1; // capacity = 1 to denote the empty sampler.
}
int CompactorStack::lowest_active_level() const {
return sampler_ ? sampler_->num_replaced_levels() : 0;
}
} // namespace internal
} // namespace aggregation
} // namespace dist_proc