You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

564 lines
22 KiB

/*
* Copyright (C) 2017, The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <vector>
#include <gmock/gmock.h>
#include <gtest/gtest.h>
#include <wifi_system_test/mock_interface_tool.h>
#include "android/net/wifi/nl80211/IWifiScannerImpl.h"
#include "wificond/scanning/scanner_impl.h"
#include "wificond/tests/mock_client_interface_impl.h"
#include "wificond/tests/mock_netlink_manager.h"
#include "wificond/tests/mock_netlink_utils.h"
#include "wificond/tests/mock_scan_utils.h"
using ::android::binder::Status;
using ::android::net::wifi::nl80211::IWifiScannerImpl;
using ::android::net::wifi::nl80211::SingleScanSettings;
using ::android::net::wifi::nl80211::PnoNetwork;
using ::android::net::wifi::nl80211::PnoSettings;
using ::android::net::wifi::nl80211::NativeScanResult;
using ::android::wifi_system::MockInterfaceTool;
using ::testing::Eq;
using ::testing::Invoke;
using ::testing::NiceMock;
using ::testing::Return;
using ::testing::_;
using std::shared_ptr;
using std::unique_ptr;
using std::vector;
using namespace std::placeholders;
namespace android {
namespace wificond {
namespace {
constexpr uint32_t kFakeInterfaceIndex = 12;
constexpr uint32_t kFakeScanIntervalMs = 10000;
// This is a helper function to mock the behavior of ScanUtils::Scan()
// when we expect a error code.
// |interface_index_ignored|, |request_random_mac_ignored|, |ssids_ignored|,
// |freqs_ignored|, |error_code| are mapped to existing parameters of ScanUtils::Scan().
// |mock_error_code| is a additional parameter used for specifying expected error code.
bool ReturnErrorCodeForScanRequest(
int mock_error_code,
uint32_t interface_index_ignored,
bool request_random_mac_ignored,
int scan_type,
bool enable_6ghz_rnr,
const std::vector<std::vector<uint8_t>>& ssids_ignored,
const std::vector<uint32_t>& freqs_ignored,
int* error_code) {
*error_code = mock_error_code;
// Returing false because this helper function is used for failure case.
return false;
}
bool CaptureSchedScanIntervalSetting(
uint32_t /* interface_index */,
const SchedScanIntervalSetting& interval_setting,
int32_t /* rssi_threshold_2g */,
int32_t /* rssi_threshold_5g */,
int32_t /* rssi_threshold_6g */,
const SchedScanReqFlags& /* req_flags */,
const std::vector<std::vector<uint8_t>>& /* scan_ssids */,
const std::vector<std::vector<uint8_t>>& /* match_ssids */,
const std::vector<uint32_t>& /* freqs */,
int* /* error_code */,
SchedScanIntervalSetting* out_interval_setting) {
*out_interval_setting = interval_setting;
return true;
}
bool CaptureSchedScanReqFlags(
uint32_t /* interface_index */,
const SchedScanIntervalSetting& /* interval_setting */,
int32_t /* rssi_threshold_2g */,
int32_t /* rssi_threshold_5g */,
int32_t /* rssi_threshold_6g */,
const SchedScanReqFlags& req_flags,
const std::vector<std::vector<uint8_t>>& /* scan_ssids */,
const std::vector<std::vector<uint8_t>>& /* match_ssids */,
const std::vector<uint32_t>& /* freqs */,
int* /* error_code */,
SchedScanReqFlags* out_req_flags) {
*out_req_flags = req_flags;
return true;
}
} // namespace
class ScannerTest : public ::testing::Test {
protected:
unique_ptr<ScannerImpl> scanner_impl_;
NiceMock<MockNetlinkManager> netlink_manager_;
NiceMock<MockNetlinkUtils> netlink_utils_{&netlink_manager_};
NiceMock<MockScanUtils> scan_utils_{&netlink_manager_};
NiceMock<MockInterfaceTool> if_tool_;
NiceMock<MockClientInterfaceImpl> client_interface_impl_{
&if_tool_, &netlink_utils_, &scan_utils_};
ScanCapabilities scan_capabilities_;
WiphyFeatures wiphy_features_;
};
TEST_F(ScannerTest, TestSingleScan) {
EXPECT_CALL(scan_utils_,
Scan(_, _, IWifiScannerImpl::SCAN_TYPE_DEFAULT, false, _, _, _)).
WillOnce(Return(true));
bool success = false;
scanner_impl_.reset(new ScannerImpl(kFakeInterfaceIndex,
scan_capabilities_, wiphy_features_,
&client_interface_impl_,
&scan_utils_));
EXPECT_TRUE(scanner_impl_->scan(SingleScanSettings(), &success).isOk());
EXPECT_TRUE(success);
}
TEST_F(ScannerTest, TestSingleScanForLowSpanScan) {
EXPECT_CALL(scan_utils_,
Scan(_, _, IWifiScannerImpl::SCAN_TYPE_LOW_SPAN, true, _, _, _)).
WillOnce(Return(true));
wiphy_features_.supports_low_span_oneshot_scan = true;
ScannerImpl scanner_impl(kFakeInterfaceIndex, scan_capabilities_,
wiphy_features_, &client_interface_impl_,
&scan_utils_);
SingleScanSettings settings;
settings.scan_type_ = IWifiScannerImpl::SCAN_TYPE_LOW_SPAN;
settings.enable_6ghz_rnr_ = true;
bool success = false;
EXPECT_TRUE(scanner_impl.scan(settings, &success).isOk());
EXPECT_TRUE(success);
}
TEST_F(ScannerTest, TestSingleScanForLowPowerScan) {
EXPECT_CALL(scan_utils_,
Scan(_, _, IWifiScannerImpl::SCAN_TYPE_LOW_POWER, _, _, _, _)).
WillOnce(Return(true));
wiphy_features_.supports_low_power_oneshot_scan = true;
ScannerImpl scanner_impl(kFakeInterfaceIndex, scan_capabilities_,
wiphy_features_, &client_interface_impl_,
&scan_utils_);
SingleScanSettings settings;
settings.scan_type_ = IWifiScannerImpl::SCAN_TYPE_LOW_POWER;
bool success = false;
EXPECT_TRUE(scanner_impl.scan(settings, &success).isOk());
EXPECT_TRUE(success);
}
TEST_F(ScannerTest, TestSingleScanForHighAccuracyScan) {
EXPECT_CALL(scan_utils_,
Scan(_, _, IWifiScannerImpl::SCAN_TYPE_HIGH_ACCURACY, _, _, _, _)).
WillOnce(Return(true));
wiphy_features_.supports_high_accuracy_oneshot_scan = true;
ScannerImpl scanner_impl(kFakeInterfaceIndex, scan_capabilities_,
wiphy_features_, &client_interface_impl_,
&scan_utils_);
SingleScanSettings settings;
settings.scan_type_ = IWifiScannerImpl::SCAN_TYPE_HIGH_ACCURACY;
bool success = false;
EXPECT_TRUE(scanner_impl.scan(settings, &success).isOk());
EXPECT_TRUE(success);
}
TEST_F(ScannerTest, TestSingleScanForLowSpanScanWithNoWiphySupport) {
EXPECT_CALL(scan_utils_,
Scan(_, _, IWifiScannerImpl::SCAN_TYPE_DEFAULT, _, _, _, _)).
WillOnce(Return(true));
ScannerImpl scanner_impl(kFakeInterfaceIndex, scan_capabilities_,
wiphy_features_, &client_interface_impl_,
&scan_utils_);
SingleScanSettings settings;
settings.scan_type_ = IWifiScannerImpl::SCAN_TYPE_LOW_SPAN;
bool success = false;
EXPECT_TRUE(scanner_impl.scan(settings, &success).isOk());
EXPECT_TRUE(success);
}
TEST_F(ScannerTest, TestSingleScanForLowPowerScanWithNoWiphySupport) {
EXPECT_CALL(scan_utils_,
Scan(_, _, IWifiScannerImpl::SCAN_TYPE_DEFAULT, _, _, _, _)).
WillOnce(Return(true));
ScannerImpl scanner_impl(kFakeInterfaceIndex, scan_capabilities_,
wiphy_features_, &client_interface_impl_,
&scan_utils_);
SingleScanSettings settings;
settings.scan_type_ = IWifiScannerImpl::SCAN_TYPE_LOW_POWER;
bool success = false;
EXPECT_TRUE(scanner_impl.scan(settings, &success).isOk());
EXPECT_TRUE(success);
}
TEST_F(ScannerTest, TestSingleScanForHighAccuracyScanWithNoWiphySupport) {
EXPECT_CALL(scan_utils_,
Scan(_, _, IWifiScannerImpl::SCAN_TYPE_DEFAULT, _, _, _, _)).
WillOnce(Return(true));
ScannerImpl scanner_impl(kFakeInterfaceIndex, scan_capabilities_,
wiphy_features_, &client_interface_impl_,
&scan_utils_);
SingleScanSettings settings;
settings.scan_type_ = IWifiScannerImpl::SCAN_TYPE_HIGH_ACCURACY;
bool success = false;
EXPECT_TRUE(scanner_impl.scan(settings, &success).isOk());
EXPECT_TRUE(success);
}
TEST_F(ScannerTest, TestSingleScanFailure) {
scanner_impl_.reset(new ScannerImpl(kFakeInterfaceIndex,
scan_capabilities_, wiphy_features_,
&client_interface_impl_,
&scan_utils_));
EXPECT_CALL(
scan_utils_,
Scan(_, _, _, _, _, _, _)).
WillOnce(Invoke(bind(
ReturnErrorCodeForScanRequest, EBUSY,
_1, _2, _3, _4, _5, _6, _7)));
bool success = false;
EXPECT_TRUE(scanner_impl_->scan(SingleScanSettings(), &success).isOk());
EXPECT_FALSE(success);
}
TEST_F(ScannerTest, TestProcessAbortsOnScanReturningNoDeviceErrorSeveralTimes) {
scanner_impl_.reset(new ScannerImpl(kFakeInterfaceIndex,
scan_capabilities_, wiphy_features_,
&client_interface_impl_,
&scan_utils_));
ON_CALL(
scan_utils_,
Scan(_, _, _, _, _, _, _)).
WillByDefault(Invoke(bind(
ReturnErrorCodeForScanRequest, ENODEV,
_1, _2, _3, _4, _5, _6, _7)));
bool single_scan_failure;
EXPECT_TRUE(scanner_impl_->scan(SingleScanSettings(), &single_scan_failure).isOk());
EXPECT_FALSE(single_scan_failure);
EXPECT_TRUE(scanner_impl_->scan(SingleScanSettings(), &single_scan_failure).isOk());
EXPECT_FALSE(single_scan_failure);
EXPECT_TRUE(scanner_impl_->scan(SingleScanSettings(), &single_scan_failure).isOk());
EXPECT_FALSE(single_scan_failure);
EXPECT_DEATH(scanner_impl_->scan(SingleScanSettings(), &single_scan_failure),
"Driver is in a bad state*");
}
TEST_F(ScannerTest, TestAbortScan) {
bool single_scan_success = false;
scanner_impl_.reset(new ScannerImpl(kFakeInterfaceIndex,
scan_capabilities_, wiphy_features_,
&client_interface_impl_,
&scan_utils_));
EXPECT_CALL(scan_utils_, Scan(_, _, _, _, _, _, _)).WillOnce(Return(true));
EXPECT_TRUE(
scanner_impl_->scan(SingleScanSettings(), &single_scan_success).isOk());
EXPECT_TRUE(single_scan_success);
EXPECT_CALL(scan_utils_, AbortScan(_));
EXPECT_TRUE(scanner_impl_->abortScan().isOk());
}
TEST_F(ScannerTest, TestAbortScanNotIssuedIfNoOngoingScan) {
scanner_impl_.reset(new ScannerImpl(kFakeInterfaceIndex,
scan_capabilities_, wiphy_features_,
&client_interface_impl_,
&scan_utils_));
EXPECT_CALL(scan_utils_, AbortScan(_)).Times(0);
EXPECT_TRUE(scanner_impl_->abortScan().isOk());
}
TEST_F(ScannerTest, TestGetScanResults) {
vector<NativeScanResult> scan_results;
scanner_impl_.reset(new ScannerImpl(kFakeInterfaceIndex,
scan_capabilities_, wiphy_features_,
&client_interface_impl_,
&scan_utils_));
EXPECT_CALL(scan_utils_, GetScanResult(_, _)).WillOnce(Return(true));
EXPECT_TRUE(scanner_impl_->getScanResults(&scan_results).isOk());
}
TEST_F(ScannerTest, TestStartPnoScanViaNetlink) {
bool success = false;
ScannerImpl scanner_impl(kFakeInterfaceIndex, scan_capabilities_,
wiphy_features_, &client_interface_impl_,
&scan_utils_);
EXPECT_CALL(
scan_utils_,
StartScheduledScan(_, _, _, _, _, _, _, _, _, _)).
WillOnce(Return(true));
EXPECT_TRUE(scanner_impl.startPnoScan(PnoSettings(), &success).isOk());
EXPECT_TRUE(success);
}
TEST_F(ScannerTest, TestStartPnoScanViaNetlinkWithLowPowerScanWiphySupport) {
bool success = false;
wiphy_features_.supports_low_power_oneshot_scan = true;
ScannerImpl scanner_impl(kFakeInterfaceIndex, scan_capabilities_,
wiphy_features_, &client_interface_impl_,
&scan_utils_);
SchedScanReqFlags req_flags = {};
EXPECT_CALL(
scan_utils_,
StartScheduledScan(_, _, _, _, _, _, _, _, _, _)).
WillOnce(Invoke(bind(
CaptureSchedScanReqFlags,
_1, _2, _3, _4, _5, _6, _7, _8, _9, _10, &req_flags)));
EXPECT_TRUE(scanner_impl.startPnoScan(PnoSettings(), &success).isOk());
EXPECT_TRUE(success);
EXPECT_TRUE(req_flags.request_low_power);
}
TEST_F(ScannerTest, TestStopPnoScanViaNetlink) {
bool success = false;
scanner_impl_.reset(new ScannerImpl(kFakeInterfaceIndex,
scan_capabilities_, wiphy_features_,
&client_interface_impl_,
&scan_utils_));
// StopScheduledScan() will be called no matter if there is an ongoing
// scheduled scan or not. This is for making the system more robust.
EXPECT_CALL(scan_utils_, StopScheduledScan(_)).WillOnce(Return(true));
EXPECT_TRUE(scanner_impl_->stopPnoScan(&success).isOk());
EXPECT_TRUE(success);
}
TEST_F(ScannerTest, TestGenerateScanPlansIfDeviceSupports) {
ScanCapabilities scan_capabilities_scan_plan_supported(
0 /* max_num_scan_ssids */,
0 /* max_num_sched_scan_ssids */,
0 /* max_match_sets */,
// Parameters above are not related to this test.
2 /* 1 plan for finite repeated scan and 1 plan for ininfite scan loop */,
kFakeScanIntervalMs * PnoSettings::kSlowScanIntervalMultiplier / 1000,
PnoSettings::kFastScanIterations);
ScannerImpl scanner(
kFakeInterfaceIndex,
scan_capabilities_scan_plan_supported, wiphy_features_,
&client_interface_impl_,
&scan_utils_);
PnoSettings pno_settings;
pno_settings.interval_ms_ = kFakeScanIntervalMs;
SchedScanIntervalSetting interval_setting;
EXPECT_CALL(
scan_utils_,
StartScheduledScan(_, _, _, _, _, _, _, _, _, _)).
WillOnce(Invoke(bind(
CaptureSchedScanIntervalSetting,
_1, _2, _3, _4, _5, _6, _7, _8, _9, _10, &interval_setting)));
bool success_ignored = 0;
EXPECT_TRUE(scanner.startPnoScan(pno_settings, &success_ignored).isOk());
/* 1 plan for finite repeated scan */
EXPECT_EQ(1U, interval_setting.plans.size());
EXPECT_EQ(kFakeScanIntervalMs * PnoSettings::kSlowScanIntervalMultiplier,
interval_setting.final_interval_ms);
}
TEST_F(ScannerTest, TestGenerateSingleIntervalIfDeviceDoesNotSupportScanPlan) {
ScanCapabilities scan_capabilities_no_scan_plan_support(
0 /* max_num_scan_ssids */,
0 /* max_num_sched_scan_ssids */,
0 /* max_match_sets */,
// Parameters above are not related to this test.
0 /* max_num_scan_plans */,
0 /* max_scan_plan_interval */,
0 /* max_scan_plan_iterations */);
ScannerImpl scanner(
kFakeInterfaceIndex,
scan_capabilities_no_scan_plan_support, wiphy_features_,
&client_interface_impl_,
&scan_utils_);
PnoSettings pno_settings;
pno_settings.interval_ms_ = kFakeScanIntervalMs;
SchedScanIntervalSetting interval_setting;
EXPECT_CALL(
scan_utils_,
StartScheduledScan(_, _, _, _, _, _, _, _, _, _)).
WillOnce(Invoke(bind(
CaptureSchedScanIntervalSetting,
_1, _2, _3, _4, _5, _6, _7, _8, _9, _10,
&interval_setting)));
bool success_ignored = 0;
EXPECT_TRUE(scanner.startPnoScan(pno_settings, &success_ignored).isOk());
EXPECT_EQ(0U, interval_setting.plans.size());
EXPECT_EQ(kFakeScanIntervalMs, interval_setting.final_interval_ms);
}
TEST_F(ScannerTest, TestGetScanResultsOnInvalidatedScannerImpl) {
vector<NativeScanResult> scan_results;
scanner_impl_.reset(new ScannerImpl(kFakeInterfaceIndex,
scan_capabilities_, wiphy_features_,
&client_interface_impl_,
&scan_utils_));
scanner_impl_->Invalidate();
EXPECT_CALL(scan_utils_, GetScanResult(_, _))
.Times(0)
.WillOnce(Return(true));
EXPECT_TRUE(scanner_impl_->getScanResults(&scan_results).isOk());
}
// Verify that pno scanning starts with no errors given a non-empty frequency list.
TEST_F(ScannerTest, TestStartPnoScanWithNonEmptyFrequencyList) {
bool success = false;
ScanCapabilities scan_capabilities_test_frequencies(
1 /* max_num_scan_ssids */,
1 /* max_num_sched_scan_ssids */,
1 /* max_match_sets */,
0,
kFakeScanIntervalMs * PnoSettings::kSlowScanIntervalMultiplier / 1000,
PnoSettings::kFastScanIterations);
ScannerImpl scanner_impl(kFakeInterfaceIndex, scan_capabilities_test_frequencies,
wiphy_features_, &client_interface_impl_,
&scan_utils_);
PnoSettings pno_settings;
PnoNetwork network;
network.is_hidden_ = false;
network.frequencies_.push_back(2412);
pno_settings.pno_networks_.push_back(network);
std::vector<uint32_t> expected_freqs;
expected_freqs.push_back(2412);
EXPECT_CALL(
scan_utils_,
StartScheduledScan(_, _, _, _, _, _, _, _, Eq(expected_freqs), _)).
WillOnce(Return(true));
EXPECT_TRUE(scanner_impl.startPnoScan(pno_settings, &success).isOk());
EXPECT_TRUE(success);
}
// Verify that a unique set of frequencies is passed in for scanning when the input
// contains duplicate frequencies.
TEST_F(ScannerTest, TestStartPnoScanWithFrequencyListNoDuplicates) {
bool success = false;
ScanCapabilities scan_capabilities_test_frequencies(
1 /* max_num_scan_ssids */,
1 /* max_num_sched_scan_ssids */,
2 /* max_match_sets */,
0,
kFakeScanIntervalMs * PnoSettings::kSlowScanIntervalMultiplier / 1000,
PnoSettings::kFastScanIterations);
ScannerImpl scanner_impl(kFakeInterfaceIndex, scan_capabilities_test_frequencies,
wiphy_features_, &client_interface_impl_,
&scan_utils_);
PnoSettings pno_settings;
PnoNetwork network;
PnoNetwork network2;
network.is_hidden_ = false;
network.frequencies_.push_back(2412);
network.frequencies_.push_back(2437);
network2.is_hidden_ = false;
network2.frequencies_.push_back(2437);
network2.frequencies_.push_back(2462);
pno_settings.pno_networks_.push_back(network);
pno_settings.pno_networks_.push_back(network2);
std::vector<uint32_t> expected_freqs;
expected_freqs.push_back(2412);
expected_freqs.push_back(2437);
expected_freqs.push_back(2462);
EXPECT_CALL(
scan_utils_,
StartScheduledScan(_, _, _, _, _, _, _, _, Eq(expected_freqs), _)).
WillOnce(Return(true));
EXPECT_TRUE(scanner_impl.startPnoScan(pno_settings, &success).isOk());
EXPECT_TRUE(success);
}
// Verify that if more than 30% of networks don't have frequency data then a list of default
// frequencies will be added to the scan.
TEST_F(ScannerTest, TestStartPnoScanWithFrequencyListFallbackMechanism) {
bool success = false;
ScanCapabilities scan_capabilities_test_frequencies(
1 /* max_num_scan_ssids */,
1 /* max_num_sched_scan_ssids */,
2 /* max_match_sets */,
0,
kFakeScanIntervalMs * PnoSettings::kSlowScanIntervalMultiplier / 1000,
PnoSettings::kFastScanIterations);
ScannerImpl scanner_impl(kFakeInterfaceIndex, scan_capabilities_test_frequencies,
wiphy_features_, &client_interface_impl_,
&scan_utils_);
PnoSettings pno_settings;
PnoNetwork network;
PnoNetwork network2;
network.is_hidden_ = false;
network.frequencies_.push_back(5640);
network2.is_hidden_ = false;
pno_settings.pno_networks_.push_back(network);
pno_settings.pno_networks_.push_back(network2);
std::set<int32_t> default_frequencies = {2412, 2417, 2422, 2427, 2432, 2437, 2447, 2452, 2457,
2462, 5180, 5200, 5220, 5240, 5745, 5765, 5785, 5805};
default_frequencies.insert(5640); // add frequency from saved network
vector<uint32_t> expected_frequencies(default_frequencies.begin(), default_frequencies.end());
// Mock BandInfo to make sure the default_frequencies don't get filtered out as invalid.
BandInfo band_info;
int default_2g[] = {2412, 2417, 2422, 2427, 2432, 2437, 2447, 2452, 2457, 2462};
int default_5g[] = {5180, 5200, 5220, 5240, 5745, 5765, 5785, 5805};
copy(std::begin(default_2g), std::end(default_2g), std::begin(band_info.band_2g));
copy(std::begin(default_5g), std::end(default_5g), std::begin(band_info.band_5g));
EXPECT_CALL(client_interface_impl_, GetBandInfo()).WillOnce(Return(band_info));
EXPECT_CALL(
scan_utils_,
StartScheduledScan(_, _, _, _, _, _, _, _, Eq(expected_frequencies), _)).
WillOnce(Return(true));
EXPECT_TRUE(scanner_impl.startPnoScan(pno_settings, &success).isOk());
EXPECT_TRUE(success);
}
// Verify that when there is no frequency data all pno networks, an empty list is passed into
// StartScheduledScan in order to scan all frequencies.
TEST_F(ScannerTest, TestStartPnoScanEmptyList) {
bool success = false;
ScanCapabilities scan_capabilities_test_frequencies(
1 /* max_num_scan_ssids */,
1 /* max_num_sched_scan_ssids */,
2 /* max_match_sets */,
0,
kFakeScanIntervalMs * PnoSettings::kSlowScanIntervalMultiplier / 1000,
PnoSettings::kFastScanIterations);
ScannerImpl scanner_impl(kFakeInterfaceIndex, scan_capabilities_test_frequencies,
wiphy_features_, &client_interface_impl_,
&scan_utils_);
PnoSettings pno_settings;
PnoNetwork network;
PnoNetwork network2;
network.is_hidden_ = false;
network2.is_hidden_ = false;
pno_settings.pno_networks_.push_back(network);
pno_settings.pno_networks_.push_back(network2);
EXPECT_CALL(
scan_utils_,
StartScheduledScan(_, _, _, _, _, _, _, _, Eq(vector<uint32_t>{}), _)).
WillOnce(Return(true));
EXPECT_TRUE(scanner_impl.startPnoScan(pno_settings, &success).isOk());
EXPECT_TRUE(success);
}
} // namespace wificond
} // namespace android