You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
614 lines
22 KiB
614 lines
22 KiB
/*
|
|
* Copyright (C) 2019 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <unistd.h>
|
|
|
|
#include <memory>
|
|
#include <optional>
|
|
#include <regex>
|
|
#include <string>
|
|
|
|
#include <android-base/parseint.h>
|
|
|
|
#include "ETMDecoder.h"
|
|
#include "cmd_inject_impl.h"
|
|
#include "command.h"
|
|
#include "record_file.h"
|
|
#include "system/extras/simpleperf/etm_branch_list.pb.h"
|
|
#include "thread_tree.h"
|
|
#include "utils.h"
|
|
|
|
namespace simpleperf {
|
|
|
|
std::string BranchToProtoString(const std::vector<bool>& branch) {
|
|
size_t bytes = (branch.size() + 7) / 8;
|
|
std::string res(bytes, '\0');
|
|
for (size_t i = 0; i < branch.size(); i++) {
|
|
if (branch[i]) {
|
|
res[i >> 3] |= 1 << (i & 7);
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
std::vector<bool> ProtoStringToBranch(const std::string& s, size_t bit_size) {
|
|
std::vector<bool> branch(bit_size, false);
|
|
for (size_t i = 0; i < bit_size; i++) {
|
|
if (s[i >> 3] & (1 << (i & 7))) {
|
|
branch[i] = true;
|
|
}
|
|
}
|
|
return branch;
|
|
}
|
|
|
|
namespace {
|
|
|
|
using AddrPair = std::pair<uint64_t, uint64_t>;
|
|
|
|
struct AddrPairHash {
|
|
size_t operator()(const AddrPair& ap) const noexcept {
|
|
size_t seed = 0;
|
|
HashCombine(seed, ap.first);
|
|
HashCombine(seed, ap.second);
|
|
return seed;
|
|
}
|
|
};
|
|
|
|
enum class OutputFormat {
|
|
AutoFDO,
|
|
BranchList,
|
|
};
|
|
|
|
struct AutoFDOBinaryInfo {
|
|
std::unordered_map<AddrPair, uint64_t, AddrPairHash> range_count_map;
|
|
std::unordered_map<AddrPair, uint64_t, AddrPairHash> branch_count_map;
|
|
};
|
|
|
|
using BranchListBinaryInfo =
|
|
std::unordered_map<uint64_t, std::unordered_map<std::vector<bool>, uint64_t>>;
|
|
|
|
class ThreadTreeWithFilter : public ThreadTree {
|
|
public:
|
|
void ExcludePid(pid_t pid) { exclude_pid_ = pid; }
|
|
|
|
ThreadEntry* FindThread(int tid) const override {
|
|
ThreadEntry* thread = ThreadTree::FindThread(tid);
|
|
if (thread != nullptr && exclude_pid_ && thread->pid == exclude_pid_) {
|
|
return nullptr;
|
|
}
|
|
return thread;
|
|
}
|
|
|
|
private:
|
|
std::optional<pid_t> exclude_pid_;
|
|
};
|
|
|
|
constexpr const char* ETM_BRANCH_LIST_PROTO_MAGIC = "simpleperf:EtmBranchList";
|
|
|
|
class InjectCommand : public Command {
|
|
public:
|
|
InjectCommand()
|
|
: Command("inject", "parse etm instruction tracing data",
|
|
// clang-format off
|
|
"Usage: simpleperf inject [options]\n"
|
|
"--binary binary_name Generate data only for binaries matching binary_name regex.\n"
|
|
"-i <file> Input file. Default is perf.data. Support below formats:\n"
|
|
" 1. perf.data generated by recording cs-etm event type.\n"
|
|
" 2. branch_list file generated by `inject --output branch-list`.\n"
|
|
"-o <file> output file. Default is perf_inject.data.\n"
|
|
"--output <format> Select output file format:\n"
|
|
" autofdo -- text format accepted by TextSampleReader\n"
|
|
" of AutoFDO\n"
|
|
" branch-list -- protobuf file in etm_branch_list.proto\n"
|
|
" Default is autofdo.\n"
|
|
"--dump-etm type1,type2,... Dump etm data. A type is one of raw, packet and element.\n"
|
|
"--exclude-perf Exclude trace data for the recording process.\n"
|
|
"--symdir <dir> Look for binaries in a directory recursively.\n"
|
|
"\n"
|
|
"Examples:\n"
|
|
"1. Generate autofdo text output.\n"
|
|
"$ simpleperf inject -i perf.data -o autofdo.txt --output autofdo\n"
|
|
"\n"
|
|
"2. Generate branch list proto, then convert to autofdo text.\n"
|
|
"$ simpleperf inject -i perf.data -o branch_list.data --output branch-list\n"
|
|
"$ simpleperf inject -i branch_list.data -o autofdo.txt --output autofdo\n"
|
|
// clang-format on
|
|
),
|
|
output_fp_(nullptr, fclose) {}
|
|
|
|
bool Run(const std::vector<std::string>& args) override {
|
|
GOOGLE_PROTOBUF_VERIFY_VERSION;
|
|
// 1. Parse options.
|
|
if (!ParseOptions(args)) {
|
|
return false;
|
|
}
|
|
|
|
// 2. Open output file.
|
|
const char* open_mode = (output_format_ == OutputFormat::AutoFDO) ? "w" : "wb";
|
|
output_fp_.reset(fopen(output_filename_.c_str(), open_mode));
|
|
if (!output_fp_) {
|
|
PLOG(ERROR) << "failed to write to " << output_filename_;
|
|
return false;
|
|
}
|
|
|
|
// 3. Process input file.
|
|
if (!ProcessInputFile()) {
|
|
return false;
|
|
}
|
|
|
|
// 4. Write output file.
|
|
if (!WriteOutput()) {
|
|
return false;
|
|
}
|
|
output_fp_.reset(nullptr);
|
|
return true;
|
|
}
|
|
|
|
private:
|
|
bool ParseOptions(const std::vector<std::string>& args) {
|
|
const OptionFormatMap option_formats = {
|
|
{"--binary", {OptionValueType::STRING, OptionType::SINGLE}},
|
|
{"--dump-etm", {OptionValueType::STRING, OptionType::SINGLE}},
|
|
{"--exclude-perf", {OptionValueType::NONE, OptionType::SINGLE}},
|
|
{"-i", {OptionValueType::STRING, OptionType::SINGLE}},
|
|
{"-o", {OptionValueType::STRING, OptionType::SINGLE}},
|
|
{"--output", {OptionValueType::STRING, OptionType::SINGLE}},
|
|
{"--symdir", {OptionValueType::STRING, OptionType::MULTIPLE}},
|
|
};
|
|
OptionValueMap options;
|
|
std::vector<std::pair<OptionName, OptionValue>> ordered_options;
|
|
if (!PreprocessOptions(args, option_formats, &options, &ordered_options, nullptr)) {
|
|
return false;
|
|
}
|
|
|
|
if (auto value = options.PullValue("--binary"); value) {
|
|
binary_name_regex_ = *value->str_value;
|
|
}
|
|
if (auto value = options.PullValue("--dump-etm"); value) {
|
|
if (!ParseEtmDumpOption(*value->str_value, &etm_dump_option_)) {
|
|
return false;
|
|
}
|
|
}
|
|
exclude_perf_ = options.PullBoolValue("--exclude-perf");
|
|
options.PullStringValue("-i", &input_filename_);
|
|
options.PullStringValue("-o", &output_filename_);
|
|
if (auto value = options.PullValue("--output"); value) {
|
|
const std::string& output = *value->str_value;
|
|
if (output == "autofdo") {
|
|
output_format_ = OutputFormat::AutoFDO;
|
|
} else if (output == "branch-list") {
|
|
output_format_ = OutputFormat::BranchList;
|
|
} else {
|
|
LOG(ERROR) << "unknown format in --output option: " << output;
|
|
return false;
|
|
}
|
|
}
|
|
if (auto value = options.PullValue("--symdir"); value) {
|
|
if (!Dso::AddSymbolDir(*value->str_value)) {
|
|
return false;
|
|
}
|
|
}
|
|
CHECK(options.values.empty());
|
|
return true;
|
|
}
|
|
|
|
bool ProcessInputFile() {
|
|
if (IsPerfDataFile(input_filename_)) {
|
|
record_file_reader_ = RecordFileReader::CreateInstance(input_filename_);
|
|
if (!record_file_reader_) {
|
|
return false;
|
|
}
|
|
if (exclude_perf_) {
|
|
const auto& info_map = record_file_reader_->GetMetaInfoFeature();
|
|
if (auto it = info_map.find("recording_process"); it == info_map.end()) {
|
|
LOG(ERROR) << input_filename_ << " doesn't support --exclude-perf";
|
|
return false;
|
|
} else {
|
|
int pid;
|
|
if (!android::base::ParseInt(it->second, &pid, 0)) {
|
|
LOG(ERROR) << "invalid recording_process " << it->second;
|
|
return false;
|
|
}
|
|
thread_tree_.ExcludePid(pid);
|
|
}
|
|
}
|
|
record_file_reader_->LoadBuildIdAndFileFeatures(thread_tree_);
|
|
if (!record_file_reader_->ReadDataSection(
|
|
[this](auto r) { return ProcessRecord(r.get()); })) {
|
|
return false;
|
|
}
|
|
if (etm_decoder_ && !etm_decoder_->FinishData()) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
return ProcessBranchListFile();
|
|
}
|
|
|
|
bool ProcessRecord(Record* r) {
|
|
thread_tree_.Update(*r);
|
|
if (r->type() == PERF_RECORD_AUXTRACE_INFO) {
|
|
etm_decoder_ = ETMDecoder::Create(*static_cast<AuxTraceInfoRecord*>(r), thread_tree_);
|
|
if (!etm_decoder_) {
|
|
return false;
|
|
}
|
|
etm_decoder_->EnableDump(etm_dump_option_);
|
|
if (output_format_ == OutputFormat::AutoFDO) {
|
|
etm_decoder_->RegisterCallback(
|
|
[this](const ETMInstrRange& range) { ProcessInstrRange(range); });
|
|
} else if (output_format_ == OutputFormat::BranchList) {
|
|
etm_decoder_->RegisterCallback(
|
|
[this](const ETMBranchList& branch) { ProcessBranchList(branch); });
|
|
}
|
|
} else if (r->type() == PERF_RECORD_AUX) {
|
|
AuxRecord* aux = static_cast<AuxRecord*>(r);
|
|
uint64_t aux_size = aux->data->aux_size;
|
|
if (aux_size > 0) {
|
|
if (aux_data_buffer_.size() < aux_size) {
|
|
aux_data_buffer_.resize(aux_size);
|
|
}
|
|
if (!record_file_reader_->ReadAuxData(aux->Cpu(), aux->data->aux_offset,
|
|
aux_data_buffer_.data(), aux_size)) {
|
|
LOG(ERROR) << "failed to read aux data";
|
|
return false;
|
|
}
|
|
return etm_decoder_->ProcessData(aux_data_buffer_.data(), aux_size);
|
|
}
|
|
} else if (r->type() == PERF_RECORD_MMAP && r->InKernel()) {
|
|
auto& mmap_r = *static_cast<MmapRecord*>(r);
|
|
if (android::base::StartsWith(mmap_r.filename, DEFAULT_KERNEL_MMAP_NAME)) {
|
|
kernel_map_start_addr_ = mmap_r.data->addr;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
std::unordered_map<Dso*, bool> dso_filter_cache;
|
|
bool FilterDso(Dso* dso) {
|
|
auto lookup = dso_filter_cache.find(dso);
|
|
if (lookup != dso_filter_cache.end()) {
|
|
return lookup->second;
|
|
}
|
|
bool match = std::regex_search(dso->Path(), binary_name_regex_);
|
|
dso_filter_cache.insert({dso, match});
|
|
return match;
|
|
}
|
|
|
|
void ProcessInstrRange(const ETMInstrRange& instr_range) {
|
|
if (!FilterDso(instr_range.dso)) {
|
|
return;
|
|
}
|
|
|
|
auto& binary = autofdo_binary_map_[instr_range.dso];
|
|
binary.range_count_map[AddrPair(instr_range.start_addr, instr_range.end_addr)] +=
|
|
instr_range.branch_taken_count + instr_range.branch_not_taken_count;
|
|
if (instr_range.branch_taken_count > 0) {
|
|
binary.branch_count_map[AddrPair(instr_range.end_addr, instr_range.branch_to_addr)] +=
|
|
instr_range.branch_taken_count;
|
|
}
|
|
}
|
|
|
|
void ProcessBranchList(const ETMBranchList& branch_list) {
|
|
if (!FilterDso(branch_list.dso)) {
|
|
return;
|
|
}
|
|
|
|
++branch_list_binary_map_[branch_list.dso][branch_list.addr][branch_list.branch];
|
|
}
|
|
|
|
bool ProcessBranchListFile() {
|
|
if (output_format_ != OutputFormat::AutoFDO) {
|
|
LOG(ERROR) << "Only support autofdo output when given a branch list file.";
|
|
return false;
|
|
}
|
|
// 1. Load EtmBranchList msg from proto file.
|
|
auto fd = FileHelper::OpenReadOnly(input_filename_);
|
|
if (!fd.ok()) {
|
|
PLOG(ERROR) << "failed to open " << input_filename_;
|
|
return false;
|
|
}
|
|
proto::ETMBranchList branch_list_proto;
|
|
if (!branch_list_proto.ParseFromFileDescriptor(fd)) {
|
|
PLOG(ERROR) << "failed to read msg from " << input_filename_;
|
|
return false;
|
|
}
|
|
if (branch_list_proto.magic() != ETM_BRANCH_LIST_PROTO_MAGIC) {
|
|
PLOG(ERROR) << "file not in format etm_branch_list.proto: " << input_filename_;
|
|
return false;
|
|
}
|
|
|
|
// 2. Build branch map for each binary, convert them to instr ranges.
|
|
auto callback = [this](const ETMInstrRange& range) { ProcessInstrRange(range); };
|
|
auto check_build_id = [](Dso* dso, const BuildId& expected_build_id) {
|
|
if (expected_build_id.IsEmpty()) {
|
|
return true;
|
|
}
|
|
BuildId build_id;
|
|
return GetBuildIdFromDsoPath(dso->GetDebugFilePath(), &build_id) &&
|
|
build_id == expected_build_id;
|
|
};
|
|
|
|
for (size_t i = 0; i < branch_list_proto.binaries_size(); i++) {
|
|
const auto& binary_proto = branch_list_proto.binaries(i);
|
|
BuildId build_id(binary_proto.build_id());
|
|
std::optional<DsoType> dso_type = ToDsoType(binary_proto.type());
|
|
if (!dso_type.has_value()) {
|
|
return false;
|
|
}
|
|
std::unique_ptr<Dso> dso =
|
|
Dso::CreateDsoWithBuildId(dso_type.value(), binary_proto.path(), build_id);
|
|
if (!dso || !FilterDso(dso.get()) || !check_build_id(dso.get(), build_id)) {
|
|
continue;
|
|
}
|
|
// Dso is used in ETMInstrRange in post process, so need to extend its lifetime.
|
|
Dso* dso_p = dso.get();
|
|
branch_list_dso_v_.emplace_back(dso.release());
|
|
auto branch_map = BuildBranchMap(binary_proto);
|
|
|
|
if (dso_p->type() == DSO_KERNEL) {
|
|
if (!ModifyBranchMapForKernel(binary_proto, dso_p, branch_map)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (auto result = ConvertBranchMapToInstrRanges(dso_p, branch_map, callback); !result.ok()) {
|
|
LOG(WARNING) << "failed to build instr ranges for binary " << dso_p->Path() << ": "
|
|
<< result.error();
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
BranchMap BuildBranchMap(const proto::ETMBranchList_Binary& binary_proto) {
|
|
BranchMap branch_map;
|
|
for (size_t i = 0; i < binary_proto.addrs_size(); i++) {
|
|
const auto& addr_proto = binary_proto.addrs(i);
|
|
auto& b_map = branch_map[addr_proto.addr()];
|
|
for (size_t j = 0; j < addr_proto.branches_size(); j++) {
|
|
const auto& branch_proto = addr_proto.branches(j);
|
|
std::vector<bool> branch =
|
|
ProtoStringToBranch(branch_proto.branch(), branch_proto.branch_size());
|
|
b_map[branch] = branch_proto.count();
|
|
}
|
|
}
|
|
return branch_map;
|
|
}
|
|
|
|
bool ModifyBranchMapForKernel(const proto::ETMBranchList_Binary& binary_proto, Dso* dso,
|
|
BranchMap& branch_map) {
|
|
if (!binary_proto.has_kernel_info()) {
|
|
LOG(ERROR) << "no kernel info";
|
|
return false;
|
|
}
|
|
uint64_t kernel_map_start_addr = binary_proto.kernel_info().kernel_start_addr();
|
|
if (kernel_map_start_addr == 0) {
|
|
return true;
|
|
}
|
|
// Addresses are still kernel ip addrs in memory. Need to convert them to vaddrs in vmlinux.
|
|
BranchMap new_branch_map;
|
|
for (auto& p : branch_map) {
|
|
uint64_t vaddr_in_file = dso->IpToVaddrInFile(p.first, kernel_map_start_addr, 0);
|
|
new_branch_map[vaddr_in_file] = std::move(p.second);
|
|
}
|
|
branch_map = std::move(new_branch_map);
|
|
return true;
|
|
}
|
|
|
|
bool WriteOutput() {
|
|
if (output_format_ == OutputFormat::AutoFDO) {
|
|
GenerateInstrRange();
|
|
return true;
|
|
}
|
|
CHECK(output_format_ == OutputFormat::BranchList);
|
|
return GenerateBranchList();
|
|
}
|
|
|
|
void GenerateInstrRange() {
|
|
// autofdo_binary_map is used to store instruction ranges, which can have a large amount. And it
|
|
// has a larger access time (instruction ranges * executed time). So it's better to use
|
|
// unorder_maps to speed up access time. But we also want a stable output here, to compare
|
|
// output changes result from code changes. So generate a sorted output here.
|
|
std::vector<Dso*> dso_v;
|
|
for (auto& p : autofdo_binary_map_) {
|
|
dso_v.emplace_back(p.first);
|
|
}
|
|
std::sort(dso_v.begin(), dso_v.end(), [](Dso* d1, Dso* d2) { return d1->Path() < d2->Path(); });
|
|
if (dso_v.size() > 1) {
|
|
fprintf(output_fp_.get(),
|
|
"// Please split this file. AutoFDO only accepts profile for one binary.\n");
|
|
}
|
|
for (auto dso : dso_v) {
|
|
const AutoFDOBinaryInfo& binary = autofdo_binary_map_[dso];
|
|
// AutoFDO text format needs file_offsets instead of virtual addrs in a binary. And it uses
|
|
// below formula: vaddr = file_offset + GetFirstLoadSegmentVaddr().
|
|
uint64_t first_load_segment_addr = GetFirstLoadSegmentVaddr(dso);
|
|
|
|
auto to_offset = [&](uint64_t vaddr) -> uint64_t {
|
|
if (vaddr == 0) {
|
|
return 0;
|
|
}
|
|
CHECK_GE(vaddr, first_load_segment_addr);
|
|
return vaddr - first_load_segment_addr;
|
|
};
|
|
|
|
// Write range_count_map.
|
|
std::map<AddrPair, uint64_t> range_count_map(binary.range_count_map.begin(),
|
|
binary.range_count_map.end());
|
|
fprintf(output_fp_.get(), "%zu\n", range_count_map.size());
|
|
for (const auto& pair2 : range_count_map) {
|
|
const AddrPair& addr_range = pair2.first;
|
|
uint64_t count = pair2.second;
|
|
|
|
fprintf(output_fp_.get(), "%" PRIx64 "-%" PRIx64 ":%" PRIu64 "\n",
|
|
to_offset(addr_range.first), to_offset(addr_range.second), count);
|
|
}
|
|
|
|
// Write addr_count_map.
|
|
fprintf(output_fp_.get(), "0\n");
|
|
|
|
// Write branch_count_map.
|
|
std::map<AddrPair, uint64_t> branch_count_map(binary.branch_count_map.begin(),
|
|
binary.branch_count_map.end());
|
|
fprintf(output_fp_.get(), "%zu\n", branch_count_map.size());
|
|
for (const auto& pair2 : branch_count_map) {
|
|
const AddrPair& branch = pair2.first;
|
|
uint64_t count = pair2.second;
|
|
|
|
fprintf(output_fp_.get(), "%" PRIx64 "->%" PRIx64 ":%" PRIu64 "\n", to_offset(branch.first),
|
|
to_offset(branch.second), count);
|
|
}
|
|
|
|
// Write the binary path in comment.
|
|
fprintf(output_fp_.get(), "// %s\n\n", dso->Path().c_str());
|
|
}
|
|
}
|
|
|
|
uint64_t GetFirstLoadSegmentVaddr(Dso* dso) {
|
|
ElfStatus status;
|
|
if (auto elf = ElfFile::Open(dso->GetDebugFilePath(), &status); elf) {
|
|
for (const auto& segment : elf->GetProgramHeader()) {
|
|
if (segment.is_load) {
|
|
return segment.vaddr;
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
bool GenerateBranchList() {
|
|
// Don't produce empty output file.
|
|
if (branch_list_binary_map_.empty()) {
|
|
LOG(INFO) << "Skip empty output file.";
|
|
output_fp_.reset(nullptr);
|
|
unlink(output_filename_.c_str());
|
|
return true;
|
|
}
|
|
|
|
proto::ETMBranchList branch_list_proto;
|
|
branch_list_proto.set_magic(ETM_BRANCH_LIST_PROTO_MAGIC);
|
|
std::vector<char> branch_buf;
|
|
for (const auto& dso_p : branch_list_binary_map_) {
|
|
Dso* dso = dso_p.first;
|
|
auto& addr_map = dso_p.second;
|
|
auto binary_proto = branch_list_proto.add_binaries();
|
|
|
|
binary_proto->set_path(dso->Path());
|
|
BuildId build_id = Dso::FindExpectedBuildIdForPath(dso->Path());
|
|
if (!build_id.IsEmpty()) {
|
|
binary_proto->set_build_id(build_id.ToString().substr(2));
|
|
}
|
|
auto opt_binary_type = ToProtoBinaryType(dso->type());
|
|
if (!opt_binary_type.has_value()) {
|
|
return false;
|
|
}
|
|
binary_proto->set_type(opt_binary_type.value());
|
|
|
|
for (const auto& addr_p : addr_map) {
|
|
auto addr_proto = binary_proto->add_addrs();
|
|
addr_proto->set_addr(addr_p.first);
|
|
|
|
for (const auto& branch_p : addr_p.second) {
|
|
const std::vector<bool>& branch = branch_p.first;
|
|
auto branch_proto = addr_proto->add_branches();
|
|
|
|
branch_proto->set_branch(BranchToProtoString(branch));
|
|
branch_proto->set_branch_size(branch.size());
|
|
branch_proto->set_count(branch_p.second);
|
|
}
|
|
}
|
|
|
|
if (dso->type() == DSO_KERNEL) {
|
|
if (kernel_map_start_addr_ == 0) {
|
|
LOG(WARNING) << "Can't convert kernel ip addresses without kernel start addr. So remove "
|
|
"branches for the kernel.";
|
|
branch_list_proto.mutable_binaries()->RemoveLast();
|
|
continue;
|
|
}
|
|
if (dso->GetDebugFilePath() == dso->Path()) {
|
|
// vmlinux isn't available. We still use kernel ip addr. Put kernel start addr in proto
|
|
// for address conversion later.
|
|
binary_proto->mutable_kernel_info()->set_kernel_start_addr(kernel_map_start_addr_);
|
|
} else {
|
|
// vmlinux is available. We have converted kernel ip addr to vaddr in vmlinux. So no need
|
|
// to put kernel start addr in proto.
|
|
binary_proto->mutable_kernel_info()->set_kernel_start_addr(0);
|
|
}
|
|
}
|
|
}
|
|
if (!branch_list_proto.SerializeToFileDescriptor(fileno(output_fp_.get()))) {
|
|
PLOG(ERROR) << "failed to write to output file";
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
std::optional<proto::ETMBranchList_Binary::BinaryType> ToProtoBinaryType(DsoType dso_type) {
|
|
switch (dso_type) {
|
|
case DSO_ELF_FILE:
|
|
return proto::ETMBranchList_Binary::ELF_FILE;
|
|
case DSO_KERNEL:
|
|
return proto::ETMBranchList_Binary::KERNEL;
|
|
case DSO_KERNEL_MODULE:
|
|
return proto::ETMBranchList_Binary::KERNEL_MODULE;
|
|
default:
|
|
LOG(ERROR) << "unexpected dso type " << dso_type;
|
|
return std::nullopt;
|
|
}
|
|
}
|
|
|
|
std::optional<DsoType> ToDsoType(proto::ETMBranchList_Binary::BinaryType binary_type) {
|
|
switch (binary_type) {
|
|
case proto::ETMBranchList_Binary::ELF_FILE:
|
|
return DSO_ELF_FILE;
|
|
case proto::ETMBranchList_Binary::KERNEL:
|
|
return DSO_KERNEL;
|
|
case proto::ETMBranchList_Binary::KERNEL_MODULE:
|
|
return DSO_KERNEL_MODULE;
|
|
default:
|
|
LOG(ERROR) << "unexpected binary type " << binary_type;
|
|
return std::nullopt;
|
|
}
|
|
}
|
|
|
|
std::regex binary_name_regex_{""}; // Default to match everything.
|
|
bool exclude_perf_ = false;
|
|
std::string input_filename_ = "perf.data";
|
|
std::string output_filename_ = "perf_inject.data";
|
|
OutputFormat output_format_ = OutputFormat::AutoFDO;
|
|
ThreadTreeWithFilter thread_tree_;
|
|
std::unique_ptr<RecordFileReader> record_file_reader_;
|
|
ETMDumpOption etm_dump_option_;
|
|
std::unique_ptr<ETMDecoder> etm_decoder_;
|
|
std::vector<uint8_t> aux_data_buffer_;
|
|
std::unique_ptr<FILE, decltype(&fclose)> output_fp_;
|
|
|
|
// Store results for AutoFDO.
|
|
std::unordered_map<Dso*, AutoFDOBinaryInfo> autofdo_binary_map_;
|
|
// Store results for BranchList.
|
|
std::unordered_map<Dso*, BranchListBinaryInfo> branch_list_binary_map_;
|
|
std::vector<std::unique_ptr<Dso>> branch_list_dso_v_;
|
|
uint64_t kernel_map_start_addr_ = 0;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
void RegisterInjectCommand() {
|
|
return RegisterCommand("inject", [] { return std::unique_ptr<Command>(new InjectCommand); });
|
|
}
|
|
|
|
} // namespace simpleperf
|