You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

571 lines
25 KiB

/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <fstream>
#include <iostream>
#include <string>
#include <vector>
#include <fcntl.h>
#include <inttypes.h>
#include <linux/inet_diag.h>
#include <linux/sock_diag.h>
#include <net/if.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <unistd.h>
#include <gtest/gtest.h>
#include <android-base/stringprintf.h>
#include <android-base/strings.h>
#include <netdutils/MockSyscalls.h>
#include "bpf/BpfMap.h"
#include "bpf/BpfUtils.h"
#include "netdbpf/BpfNetworkStats.h"
using ::testing::Test;
namespace android {
namespace bpf {
using base::Result;
using base::unique_fd;
constexpr int TEST_MAP_SIZE = 10;
constexpr uid_t TEST_UID1 = 10086;
constexpr uid_t TEST_UID2 = 12345;
constexpr uint32_t TEST_TAG = 42;
constexpr int TEST_COUNTERSET0 = 0;
constexpr int TEST_COUNTERSET1 = 1;
constexpr uint64_t TEST_BYTES0 = 1000;
constexpr uint64_t TEST_BYTES1 = 2000;
constexpr uint64_t TEST_PACKET0 = 100;
constexpr uint64_t TEST_PACKET1 = 200;
constexpr const char IFACE_NAME1[] = "lo";
constexpr const char IFACE_NAME2[] = "wlan0";
constexpr const char IFACE_NAME3[] = "rmnet_data0";
// A iface name that the size is bigger then IFNAMSIZ
constexpr const char LONG_IFACE_NAME[] = "wlanWithALongName";
constexpr const char TRUNCATED_IFACE_NAME[] = "wlanWithALongNa";
constexpr uint32_t IFACE_INDEX1 = 1;
constexpr uint32_t IFACE_INDEX2 = 2;
constexpr uint32_t IFACE_INDEX3 = 3;
constexpr uint32_t IFACE_INDEX4 = 4;
constexpr uint32_t UNKNOWN_IFACE = 0;
class BpfNetworkStatsHelperTest : public testing::Test {
protected:
BpfNetworkStatsHelperTest() {}
BpfMap<uint64_t, UidTagValue> mFakeCookieTagMap;
BpfMap<uint32_t, StatsValue> mFakeAppUidStatsMap;
BpfMap<StatsKey, StatsValue> mFakeStatsMap;
BpfMap<uint32_t, IfaceValue> mFakeIfaceIndexNameMap;
BpfMap<uint32_t, StatsValue> mFakeIfaceStatsMap;
void SetUp() {
ASSERT_EQ(0, setrlimitForTest());
mFakeCookieTagMap = BpfMap<uint64_t, UidTagValue>(BPF_MAP_TYPE_HASH, TEST_MAP_SIZE, 0);
ASSERT_LE(0, mFakeCookieTagMap.getMap());
mFakeAppUidStatsMap = BpfMap<uint32_t, StatsValue>(BPF_MAP_TYPE_HASH, TEST_MAP_SIZE, 0);
ASSERT_LE(0, mFakeAppUidStatsMap.getMap());
mFakeStatsMap = BpfMap<StatsKey, StatsValue>(BPF_MAP_TYPE_HASH, TEST_MAP_SIZE, 0);
ASSERT_LE(0, mFakeStatsMap.getMap());
mFakeIfaceIndexNameMap = BpfMap<uint32_t, IfaceValue>(BPF_MAP_TYPE_HASH, TEST_MAP_SIZE, 0);
ASSERT_LE(0, mFakeIfaceIndexNameMap.getMap());
mFakeIfaceStatsMap = BpfMap<uint32_t, StatsValue>(BPF_MAP_TYPE_HASH, TEST_MAP_SIZE, 0);
ASSERT_LE(0, mFakeIfaceStatsMap.getMap());
}
void expectUidTag(uint64_t cookie, uid_t uid, uint32_t tag) {
auto tagResult = mFakeCookieTagMap.readValue(cookie);
EXPECT_RESULT_OK(tagResult);
EXPECT_EQ(uid, tagResult.value().uid);
EXPECT_EQ(tag, tagResult.value().tag);
}
void populateFakeStats(uid_t uid, uint32_t tag, uint32_t ifaceIndex, uint32_t counterSet,
StatsValue value, BpfMap<StatsKey, StatsValue>& map) {
StatsKey key = {
.uid = (uint32_t)uid, .tag = tag, .counterSet = counterSet, .ifaceIndex = ifaceIndex};
EXPECT_RESULT_OK(map.writeValue(key, value, BPF_ANY));
}
void updateIfaceMap(const char* ifaceName, uint32_t ifaceIndex) {
IfaceValue iface;
strlcpy(iface.name, ifaceName, IFNAMSIZ);
EXPECT_RESULT_OK(mFakeIfaceIndexNameMap.writeValue(ifaceIndex, iface, BPF_ANY));
}
void expectStatsEqual(const StatsValue& target, const Stats& result) {
EXPECT_EQ(target.rxPackets, result.rxPackets);
EXPECT_EQ(target.rxBytes, result.rxBytes);
EXPECT_EQ(target.txPackets, result.txPackets);
EXPECT_EQ(target.txBytes, result.txBytes);
}
void expectStatsLineEqual(const StatsValue target, const char* iface, uint32_t uid,
int counterSet, uint32_t tag, const stats_line& result) {
EXPECT_EQ(0, strcmp(iface, result.iface));
EXPECT_EQ(uid, (uint32_t)result.uid);
EXPECT_EQ((uint32_t) counterSet, result.set);
EXPECT_EQ(tag, (uint32_t)result.tag);
EXPECT_EQ(target.rxPackets, (uint64_t)result.rxPackets);
EXPECT_EQ(target.rxBytes, (uint64_t)result.rxBytes);
EXPECT_EQ(target.txPackets, (uint64_t)result.txPackets);
EXPECT_EQ(target.txBytes, (uint64_t)result.txBytes);
}
};
// TEST to verify the behavior of bpf map when cocurrent deletion happens when
// iterating the same map.
TEST_F(BpfNetworkStatsHelperTest, TestIterateMapWithDeletion) {
for (int i = 0; i < 5; i++) {
uint64_t cookie = i + 1;
UidTagValue tag = {.uid = TEST_UID1, .tag = TEST_TAG};
EXPECT_RESULT_OK(mFakeCookieTagMap.writeValue(cookie, tag, BPF_ANY));
}
uint64_t curCookie = 0;
auto nextCookie = mFakeCookieTagMap.getNextKey(curCookie);
EXPECT_RESULT_OK(nextCookie);
uint64_t headOfMap = nextCookie.value();
curCookie = nextCookie.value();
// Find the second entry in the map, then immediately delete it.
nextCookie = mFakeCookieTagMap.getNextKey(curCookie);
EXPECT_RESULT_OK(nextCookie);
EXPECT_RESULT_OK(mFakeCookieTagMap.deleteValue((nextCookie.value())));
// Find the entry that is now immediately after headOfMap, then delete that.
nextCookie = mFakeCookieTagMap.getNextKey(curCookie);
EXPECT_RESULT_OK(nextCookie);
EXPECT_RESULT_OK(mFakeCookieTagMap.deleteValue((nextCookie.value())));
// Attempting to read an entry that has been deleted fails with ENOENT.
curCookie = nextCookie.value();
auto tagResult = mFakeCookieTagMap.readValue(curCookie);
EXPECT_EQ(ENOENT, tagResult.error().code());
// Finding the entry after our deleted entry restarts iteration from the beginning of the map.
nextCookie = mFakeCookieTagMap.getNextKey(curCookie);
EXPECT_RESULT_OK(nextCookie);
EXPECT_EQ(headOfMap, nextCookie.value());
}
TEST_F(BpfNetworkStatsHelperTest, TestBpfIterateMap) {
for (int i = 0; i < 5; i++) {
uint64_t cookie = i + 1;
UidTagValue tag = {.uid = TEST_UID1, .tag = TEST_TAG};
EXPECT_RESULT_OK(mFakeCookieTagMap.writeValue(cookie, tag, BPF_ANY));
}
int totalCount = 0;
int totalSum = 0;
const auto iterateWithoutDeletion =
[&totalCount, &totalSum](const uint64_t& key, const BpfMap<uint64_t, UidTagValue>&) {
EXPECT_GE((uint64_t)5, key);
totalCount++;
totalSum += key;
return Result<void>();
};
EXPECT_RESULT_OK(mFakeCookieTagMap.iterate(iterateWithoutDeletion));
EXPECT_EQ(5, totalCount);
EXPECT_EQ(1 + 2 + 3 + 4 + 5, totalSum);
}
TEST_F(BpfNetworkStatsHelperTest, TestUidStatsNoTraffic) {
StatsValue value1 = {
.rxPackets = 0,
.rxBytes = 0,
.txPackets = 0,
.txBytes = 0,
};
Stats result1 = {};
ASSERT_EQ(0, bpfGetUidStatsInternal(TEST_UID1, &result1, mFakeAppUidStatsMap));
expectStatsEqual(value1, result1);
}
TEST_F(BpfNetworkStatsHelperTest, TestGetUidStatsTotal) {
updateIfaceMap(IFACE_NAME1, IFACE_INDEX1);
updateIfaceMap(IFACE_NAME2, IFACE_INDEX2);
updateIfaceMap(IFACE_NAME3, IFACE_INDEX3);
StatsValue value1 = {
.rxPackets = TEST_PACKET0,
.rxBytes = TEST_BYTES0,
.txPackets = TEST_PACKET1,
.txBytes = TEST_BYTES1,
};
StatsValue value2 = {
.rxPackets = TEST_PACKET0 * 2,
.rxBytes = TEST_BYTES0 * 2,
.txPackets = TEST_PACKET1 * 2,
.txBytes = TEST_BYTES1 * 2,
};
ASSERT_RESULT_OK(mFakeAppUidStatsMap.writeValue(TEST_UID1, value1, BPF_ANY));
ASSERT_RESULT_OK(mFakeAppUidStatsMap.writeValue(TEST_UID2, value2, BPF_ANY));
Stats result1 = {};
ASSERT_EQ(0, bpfGetUidStatsInternal(TEST_UID1, &result1, mFakeAppUidStatsMap));
expectStatsEqual(value1, result1);
Stats result2 = {};
ASSERT_EQ(0, bpfGetUidStatsInternal(TEST_UID2, &result2, mFakeAppUidStatsMap));
expectStatsEqual(value2, result2);
std::vector<stats_line> lines;
std::vector<std::string> ifaces;
populateFakeStats(TEST_UID1, 0, IFACE_INDEX1, TEST_COUNTERSET0, value1, mFakeStatsMap);
populateFakeStats(TEST_UID1, 0, IFACE_INDEX2, TEST_COUNTERSET1, value1, mFakeStatsMap);
populateFakeStats(TEST_UID2, 0, IFACE_INDEX3, TEST_COUNTERSET1, value1, mFakeStatsMap);
ASSERT_EQ(0, parseBpfNetworkStatsDetailInternal(&lines, ifaces, TAG_ALL, TEST_UID1,
mFakeStatsMap, mFakeIfaceIndexNameMap));
ASSERT_EQ((unsigned long)2, lines.size());
lines.clear();
ASSERT_EQ(0, parseBpfNetworkStatsDetailInternal(&lines, ifaces, TAG_ALL, TEST_UID2,
mFakeStatsMap, mFakeIfaceIndexNameMap));
ASSERT_EQ((unsigned long)1, lines.size());
expectStatsLineEqual(value1, IFACE_NAME3, TEST_UID2, TEST_COUNTERSET1, 0, lines.front());
}
TEST_F(BpfNetworkStatsHelperTest, TestGetIfaceStatsInternal) {
updateIfaceMap(IFACE_NAME1, IFACE_INDEX1);
updateIfaceMap(IFACE_NAME2, IFACE_INDEX2);
updateIfaceMap(IFACE_NAME3, IFACE_INDEX3);
StatsValue value1 = {
.rxPackets = TEST_PACKET0,
.rxBytes = TEST_BYTES0,
.txPackets = TEST_PACKET1,
.txBytes = TEST_BYTES1,
};
StatsValue value2 = {
.rxPackets = TEST_PACKET1,
.rxBytes = TEST_BYTES1,
.txPackets = TEST_PACKET0,
.txBytes = TEST_BYTES0,
};
uint32_t ifaceStatsKey = IFACE_INDEX1;
EXPECT_RESULT_OK(mFakeIfaceStatsMap.writeValue(ifaceStatsKey, value1, BPF_ANY));
ifaceStatsKey = IFACE_INDEX2;
EXPECT_RESULT_OK(mFakeIfaceStatsMap.writeValue(ifaceStatsKey, value2, BPF_ANY));
ifaceStatsKey = IFACE_INDEX3;
EXPECT_RESULT_OK(mFakeIfaceStatsMap.writeValue(ifaceStatsKey, value1, BPF_ANY));
Stats result1 = {};
ASSERT_EQ(0, bpfGetIfaceStatsInternal(IFACE_NAME1, &result1, mFakeIfaceStatsMap,
mFakeIfaceIndexNameMap));
expectStatsEqual(value1, result1);
Stats result2 = {};
ASSERT_EQ(0, bpfGetIfaceStatsInternal(IFACE_NAME2, &result2, mFakeIfaceStatsMap,
mFakeIfaceIndexNameMap));
expectStatsEqual(value2, result2);
Stats totalResult = {};
ASSERT_EQ(0, bpfGetIfaceStatsInternal(NULL, &totalResult, mFakeIfaceStatsMap,
mFakeIfaceIndexNameMap));
StatsValue totalValue = {
.rxPackets = TEST_PACKET0 * 2 + TEST_PACKET1,
.rxBytes = TEST_BYTES0 * 2 + TEST_BYTES1,
.txPackets = TEST_PACKET1 * 2 + TEST_PACKET0,
.txBytes = TEST_BYTES1 * 2 + TEST_BYTES0,
};
expectStatsEqual(totalValue, totalResult);
}
TEST_F(BpfNetworkStatsHelperTest, TestGetStatsDetail) {
updateIfaceMap(IFACE_NAME1, IFACE_INDEX1);
updateIfaceMap(IFACE_NAME2, IFACE_INDEX2);
StatsValue value1 = {
.rxPackets = TEST_PACKET0,
.rxBytes = TEST_BYTES0,
.txPackets = TEST_PACKET1,
.txBytes = TEST_BYTES1,
};
populateFakeStats(TEST_UID1, TEST_TAG, IFACE_INDEX1, TEST_COUNTERSET0, value1, mFakeStatsMap);
populateFakeStats(TEST_UID1, TEST_TAG, IFACE_INDEX2, TEST_COUNTERSET0, value1, mFakeStatsMap);
populateFakeStats(TEST_UID1, TEST_TAG + 1, IFACE_INDEX1, TEST_COUNTERSET0, value1,
mFakeStatsMap);
populateFakeStats(TEST_UID2, TEST_TAG, IFACE_INDEX1, TEST_COUNTERSET0, value1, mFakeStatsMap);
std::vector<stats_line> lines;
std::vector<std::string> ifaces;
ASSERT_EQ(0, parseBpfNetworkStatsDetailInternal(&lines, ifaces, TAG_ALL, UID_ALL, mFakeStatsMap,
mFakeIfaceIndexNameMap));
ASSERT_EQ((unsigned long)4, lines.size());
lines.clear();
ASSERT_EQ(0, parseBpfNetworkStatsDetailInternal(&lines, ifaces, TAG_ALL, TEST_UID1,
mFakeStatsMap, mFakeIfaceIndexNameMap));
ASSERT_EQ((unsigned long)3, lines.size());
lines.clear();
ASSERT_EQ(0, parseBpfNetworkStatsDetailInternal(&lines, ifaces, TEST_TAG, TEST_UID1,
mFakeStatsMap, mFakeIfaceIndexNameMap));
ASSERT_EQ((unsigned long)2, lines.size());
lines.clear();
ifaces.push_back(std::string(IFACE_NAME1));
ASSERT_EQ(0, parseBpfNetworkStatsDetailInternal(&lines, ifaces, TEST_TAG, TEST_UID1,
mFakeStatsMap, mFakeIfaceIndexNameMap));
ASSERT_EQ((unsigned long)1, lines.size());
expectStatsLineEqual(value1, IFACE_NAME1, TEST_UID1, TEST_COUNTERSET0, TEST_TAG, lines.front());
}
TEST_F(BpfNetworkStatsHelperTest, TestGetStatsWithSkippedIface) {
updateIfaceMap(IFACE_NAME1, IFACE_INDEX1);
updateIfaceMap(IFACE_NAME2, IFACE_INDEX2);
StatsValue value1 = {
.rxPackets = TEST_PACKET0,
.rxBytes = TEST_BYTES0,
.txPackets = TEST_PACKET1,
.txBytes = TEST_BYTES1,
};
populateFakeStats(0, 0, 0, OVERFLOW_COUNTERSET, value1, mFakeStatsMap);
populateFakeStats(TEST_UID1, 0, IFACE_INDEX1, TEST_COUNTERSET0, value1, mFakeStatsMap);
populateFakeStats(TEST_UID1, 0, IFACE_INDEX2, TEST_COUNTERSET0, value1, mFakeStatsMap);
populateFakeStats(TEST_UID1, 0, IFACE_INDEX1, TEST_COUNTERSET1, value1, mFakeStatsMap);
populateFakeStats(TEST_UID2, 0, IFACE_INDEX1, TEST_COUNTERSET0, value1, mFakeStatsMap);
std::vector<stats_line> lines;
std::vector<std::string> ifaces;
ASSERT_EQ(0, parseBpfNetworkStatsDetailInternal(&lines, ifaces, TAG_ALL, UID_ALL, mFakeStatsMap,
mFakeIfaceIndexNameMap));
ASSERT_EQ((unsigned long)4, lines.size());
lines.clear();
ASSERT_EQ(0, parseBpfNetworkStatsDetailInternal(&lines, ifaces, TAG_ALL, TEST_UID1,
mFakeStatsMap, mFakeIfaceIndexNameMap));
ASSERT_EQ((unsigned long)3, lines.size());
lines.clear();
ASSERT_EQ(0, parseBpfNetworkStatsDetailInternal(&lines, ifaces, TAG_ALL, TEST_UID2,
mFakeStatsMap, mFakeIfaceIndexNameMap));
ASSERT_EQ((unsigned long)1, lines.size());
expectStatsLineEqual(value1, IFACE_NAME1, TEST_UID2, TEST_COUNTERSET0, 0, lines.front());
lines.clear();
ifaces.push_back(std::string(IFACE_NAME1));
ASSERT_EQ(0, parseBpfNetworkStatsDetailInternal(&lines, ifaces, TAG_ALL, TEST_UID1,
mFakeStatsMap, mFakeIfaceIndexNameMap));
ASSERT_EQ((unsigned long)2, lines.size());
}
TEST_F(BpfNetworkStatsHelperTest, TestUnkownIfaceError) {
updateIfaceMap(IFACE_NAME1, IFACE_INDEX1);
StatsValue value1 = {
.rxPackets = TEST_PACKET0,
.rxBytes = TEST_BYTES0 * 20,
.txPackets = TEST_PACKET1,
.txBytes = TEST_BYTES1 * 20,
};
uint32_t ifaceIndex = UNKNOWN_IFACE;
populateFakeStats(TEST_UID1, 0, ifaceIndex, TEST_COUNTERSET0, value1, mFakeStatsMap);
populateFakeStats(TEST_UID1, 0, IFACE_INDEX1, TEST_COUNTERSET0, value1, mFakeStatsMap);
StatsValue value2 = {
.rxPackets = TEST_PACKET0,
.rxBytes = TEST_BYTES0 * 40,
.txPackets = TEST_PACKET1,
.txBytes = TEST_BYTES1 * 40,
};
populateFakeStats(TEST_UID1, 0, IFACE_INDEX2, TEST_COUNTERSET0, value2, mFakeStatsMap);
StatsKey curKey = {
.uid = TEST_UID1,
.tag = 0,
.counterSet = TEST_COUNTERSET0,
.ifaceIndex = ifaceIndex,
};
char ifname[IFNAMSIZ];
int64_t unknownIfaceBytesTotal = 0;
ASSERT_EQ(-ENODEV, getIfaceNameFromMap(mFakeIfaceIndexNameMap, mFakeStatsMap, ifaceIndex,
ifname, curKey, &unknownIfaceBytesTotal));
ASSERT_EQ(((int64_t)(TEST_BYTES0 * 20 + TEST_BYTES1 * 20)), unknownIfaceBytesTotal);
curKey.ifaceIndex = IFACE_INDEX2;
ASSERT_EQ(-ENODEV, getIfaceNameFromMap(mFakeIfaceIndexNameMap, mFakeStatsMap, ifaceIndex,
ifname, curKey, &unknownIfaceBytesTotal));
ASSERT_EQ(-1, unknownIfaceBytesTotal);
std::vector<stats_line> lines;
std::vector<std::string> ifaces;
// TODO: find a way to test the total of unknown Iface Bytes go above limit.
ASSERT_EQ(0, parseBpfNetworkStatsDetailInternal(&lines, ifaces, TAG_ALL, UID_ALL, mFakeStatsMap,
mFakeIfaceIndexNameMap));
ASSERT_EQ((unsigned long)1, lines.size());
expectStatsLineEqual(value1, IFACE_NAME1, TEST_UID1, TEST_COUNTERSET0, 0, lines.front());
}
TEST_F(BpfNetworkStatsHelperTest, TestGetIfaceStatsDetail) {
updateIfaceMap(IFACE_NAME1, IFACE_INDEX1);
updateIfaceMap(IFACE_NAME2, IFACE_INDEX2);
updateIfaceMap(IFACE_NAME3, IFACE_INDEX3);
updateIfaceMap(LONG_IFACE_NAME, IFACE_INDEX4);
StatsValue value1 = {
.rxPackets = TEST_PACKET0,
.rxBytes = TEST_BYTES0,
.txPackets = TEST_PACKET1,
.txBytes = TEST_BYTES1,
};
StatsValue value2 = {
.rxPackets = TEST_PACKET1,
.rxBytes = TEST_BYTES1,
.txPackets = TEST_PACKET0,
.txBytes = TEST_BYTES0,
};
uint32_t ifaceStatsKey = IFACE_INDEX1;
EXPECT_RESULT_OK(mFakeIfaceStatsMap.writeValue(ifaceStatsKey, value1, BPF_ANY));
ifaceStatsKey = IFACE_INDEX2;
EXPECT_RESULT_OK(mFakeIfaceStatsMap.writeValue(ifaceStatsKey, value2, BPF_ANY));
ifaceStatsKey = IFACE_INDEX3;
EXPECT_RESULT_OK(mFakeIfaceStatsMap.writeValue(ifaceStatsKey, value1, BPF_ANY));
ifaceStatsKey = IFACE_INDEX4;
EXPECT_RESULT_OK(mFakeIfaceStatsMap.writeValue(ifaceStatsKey, value2, BPF_ANY));
std::vector<stats_line> lines;
ASSERT_EQ(0,
parseBpfNetworkStatsDevInternal(&lines, mFakeIfaceStatsMap, mFakeIfaceIndexNameMap));
ASSERT_EQ((unsigned long)4, lines.size());
expectStatsLineEqual(value1, IFACE_NAME1, UID_ALL, SET_ALL, TAG_NONE, lines[0]);
expectStatsLineEqual(value1, IFACE_NAME3, UID_ALL, SET_ALL, TAG_NONE, lines[1]);
expectStatsLineEqual(value2, IFACE_NAME2, UID_ALL, SET_ALL, TAG_NONE, lines[2]);
ASSERT_EQ(0, strcmp(TRUNCATED_IFACE_NAME, lines[3].iface));
expectStatsLineEqual(value2, TRUNCATED_IFACE_NAME, UID_ALL, SET_ALL, TAG_NONE, lines[3]);
}
TEST_F(BpfNetworkStatsHelperTest, TestGetStatsSortedAndGrouped) {
// Create iface indexes with duplicate iface name.
updateIfaceMap(IFACE_NAME1, IFACE_INDEX1);
updateIfaceMap(IFACE_NAME2, IFACE_INDEX2);
updateIfaceMap(IFACE_NAME1, IFACE_INDEX3); // Duplicate!
StatsValue value1 = {
.rxPackets = TEST_PACKET0,
.rxBytes = TEST_BYTES0,
.txPackets = TEST_PACKET1,
.txBytes = TEST_BYTES1,
};
StatsValue value2 = {
.rxPackets = TEST_PACKET1,
.rxBytes = TEST_BYTES1,
.txPackets = TEST_PACKET0,
.txBytes = TEST_BYTES0,
};
StatsValue value3 = {
.rxPackets = TEST_PACKET0 * 2,
.rxBytes = TEST_BYTES0 * 2,
.txPackets = TEST_PACKET1 * 2,
.txBytes = TEST_BYTES1 * 2,
};
std::vector<stats_line> lines;
std::vector<std::string> ifaces;
// Test empty stats.
ASSERT_EQ(0, parseBpfNetworkStatsDetailInternal(&lines, ifaces, TAG_ALL, UID_ALL, mFakeStatsMap,
mFakeIfaceIndexNameMap));
ASSERT_EQ((size_t) 0, lines.size());
lines.clear();
// Test 1 line stats.
populateFakeStats(TEST_UID1, TEST_TAG, IFACE_INDEX1, TEST_COUNTERSET0, value1, mFakeStatsMap);
ASSERT_EQ(0, parseBpfNetworkStatsDetailInternal(&lines, ifaces, TAG_ALL, UID_ALL, mFakeStatsMap,
mFakeIfaceIndexNameMap));
ASSERT_EQ((size_t) 1, lines.size());
expectStatsLineEqual(value1, IFACE_NAME1, TEST_UID1, TEST_COUNTERSET0, TEST_TAG, lines[0]);
lines.clear();
// These items should not be grouped.
populateFakeStats(TEST_UID1, TEST_TAG, IFACE_INDEX2, TEST_COUNTERSET0, value2, mFakeStatsMap);
populateFakeStats(TEST_UID1, TEST_TAG, IFACE_INDEX3, TEST_COUNTERSET1, value2, mFakeStatsMap);
populateFakeStats(TEST_UID1, TEST_TAG + 1, IFACE_INDEX1, TEST_COUNTERSET0, value2,
mFakeStatsMap);
populateFakeStats(TEST_UID2, TEST_TAG, IFACE_INDEX1, TEST_COUNTERSET0, value1, mFakeStatsMap);
ASSERT_EQ(0, parseBpfNetworkStatsDetailInternal(&lines, ifaces, TAG_ALL, UID_ALL, mFakeStatsMap,
mFakeIfaceIndexNameMap));
ASSERT_EQ((size_t) 5, lines.size());
lines.clear();
// These items should be grouped.
populateFakeStats(TEST_UID1, TEST_TAG, IFACE_INDEX3, TEST_COUNTERSET0, value1, mFakeStatsMap);
populateFakeStats(TEST_UID2, TEST_TAG, IFACE_INDEX3, TEST_COUNTERSET0, value1, mFakeStatsMap);
ASSERT_EQ(0, parseBpfNetworkStatsDetailInternal(&lines, ifaces, TAG_ALL, UID_ALL, mFakeStatsMap,
mFakeIfaceIndexNameMap));
ASSERT_EQ((size_t) 5, lines.size());
// Verify Sorted & Grouped.
expectStatsLineEqual(value3, IFACE_NAME1, TEST_UID1, TEST_COUNTERSET0, TEST_TAG, lines[0]);
expectStatsLineEqual(value2, IFACE_NAME1, TEST_UID1, TEST_COUNTERSET1, TEST_TAG, lines[1]);
expectStatsLineEqual(value2, IFACE_NAME1, TEST_UID1, TEST_COUNTERSET0, TEST_TAG + 1, lines[2]);
expectStatsLineEqual(value3, IFACE_NAME1, TEST_UID2, TEST_COUNTERSET0, TEST_TAG, lines[3]);
expectStatsLineEqual(value2, IFACE_NAME2, TEST_UID1, TEST_COUNTERSET0, TEST_TAG, lines[4]);
lines.clear();
// Perform test on IfaceStats.
uint32_t ifaceStatsKey = IFACE_INDEX2;
EXPECT_RESULT_OK(mFakeIfaceStatsMap.writeValue(ifaceStatsKey, value2, BPF_ANY));
ifaceStatsKey = IFACE_INDEX1;
EXPECT_RESULT_OK(mFakeIfaceStatsMap.writeValue(ifaceStatsKey, value1, BPF_ANY));
// This should be grouped.
ifaceStatsKey = IFACE_INDEX3;
EXPECT_RESULT_OK(mFakeIfaceStatsMap.writeValue(ifaceStatsKey, value1, BPF_ANY));
ASSERT_EQ(0,
parseBpfNetworkStatsDevInternal(&lines, mFakeIfaceStatsMap, mFakeIfaceIndexNameMap));
ASSERT_EQ((size_t) 2, lines.size());
expectStatsLineEqual(value3, IFACE_NAME1, UID_ALL, SET_ALL, TAG_NONE, lines[0]);
expectStatsLineEqual(value2, IFACE_NAME2, UID_ALL, SET_ALL, TAG_NONE, lines[1]);
lines.clear();
}
// Test to verify that subtract overflow will not be triggered by the compare function invoked from
// sorting. See http:/b/119193941.
TEST_F(BpfNetworkStatsHelperTest, TestGetStatsSortAndOverflow) {
updateIfaceMap(IFACE_NAME1, IFACE_INDEX1);
StatsValue value1 = {
.rxPackets = TEST_PACKET0,
.rxBytes = TEST_BYTES0,
.txPackets = TEST_PACKET1,
.txBytes = TEST_BYTES1,
};
// Mutate uid, 0 < TEST_UID1 < INT_MAX < INT_MIN < UINT_MAX.
populateFakeStats(0, TEST_TAG, IFACE_INDEX1, TEST_COUNTERSET0, value1, mFakeStatsMap);
populateFakeStats(UINT_MAX, TEST_TAG, IFACE_INDEX1, TEST_COUNTERSET0, value1, mFakeStatsMap);
populateFakeStats(INT_MIN, TEST_TAG, IFACE_INDEX1, TEST_COUNTERSET0, value1, mFakeStatsMap);
populateFakeStats(INT_MAX, TEST_TAG, IFACE_INDEX1, TEST_COUNTERSET0, value1, mFakeStatsMap);
// Mutate tag, 0 < TEST_TAG < INT_MAX < INT_MIN < UINT_MAX.
populateFakeStats(TEST_UID1, INT_MAX, IFACE_INDEX1, TEST_COUNTERSET0, value1, mFakeStatsMap);
populateFakeStats(TEST_UID1, INT_MIN, IFACE_INDEX1, TEST_COUNTERSET0, value1, mFakeStatsMap);
populateFakeStats(TEST_UID1, 0, IFACE_INDEX1, TEST_COUNTERSET0, value1, mFakeStatsMap);
populateFakeStats(TEST_UID1, UINT_MAX, IFACE_INDEX1, TEST_COUNTERSET0, value1, mFakeStatsMap);
// TODO: Mutate counterSet and enlarge TEST_MAP_SIZE if overflow on counterSet is possible.
std::vector<stats_line> lines;
std::vector<std::string> ifaces;
ASSERT_EQ(0, parseBpfNetworkStatsDetailInternal(&lines, ifaces, TAG_ALL, UID_ALL, mFakeStatsMap,
mFakeIfaceIndexNameMap));
ASSERT_EQ((size_t) 8, lines.size());
// Uid 0 first
expectStatsLineEqual(value1, IFACE_NAME1, 0, TEST_COUNTERSET0, TEST_TAG, lines[0]);
// Test uid, mutate tag.
expectStatsLineEqual(value1, IFACE_NAME1, TEST_UID1, TEST_COUNTERSET0, 0, lines[1]);
expectStatsLineEqual(value1, IFACE_NAME1, TEST_UID1, TEST_COUNTERSET0, INT_MAX, lines[2]);
expectStatsLineEqual(value1, IFACE_NAME1, TEST_UID1, TEST_COUNTERSET0, INT_MIN, lines[3]);
expectStatsLineEqual(value1, IFACE_NAME1, TEST_UID1, TEST_COUNTERSET0, UINT_MAX, lines[4]);
// Mutate uid.
expectStatsLineEqual(value1, IFACE_NAME1, INT_MAX, TEST_COUNTERSET0, TEST_TAG, lines[5]);
expectStatsLineEqual(value1, IFACE_NAME1, INT_MIN, TEST_COUNTERSET0, TEST_TAG, lines[6]);
expectStatsLineEqual(value1, IFACE_NAME1, UINT_MAX, TEST_COUNTERSET0, TEST_TAG, lines[7]);
lines.clear();
}
} // namespace bpf
} // namespace android