You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

546 lines
16 KiB

/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdint.h>
#include <ios>
#include <vector>
#include <gtest/gtest.h>
#include <unwindstack/DwarfMemory.h>
#include "MemoryFake.h"
namespace unwindstack {
class DwarfMemoryTest : public ::testing::Test {
protected:
void SetUp() override {
memory_.Clear();
dwarf_mem_.reset(new DwarfMemory(&memory_));
}
template <typename AddressType>
void GetEncodedSizeTest(uint8_t value, size_t expected);
template <typename AddressType>
void ReadEncodedValue_omit();
template <typename AddressType>
void ReadEncodedValue_leb128();
template <typename AddressType>
void ReadEncodedValue_data1();
template <typename AddressType>
void ReadEncodedValue_data2();
template <typename AddressType>
void ReadEncodedValue_data4();
template <typename AddressType>
void ReadEncodedValue_data8();
template <typename AddressType>
void ReadEncodedValue_non_zero_adjust();
template <typename AddressType>
void ReadEncodedValue_overflow();
template <typename AddressType>
void ReadEncodedValue_high_bit_set();
template <typename AddressType>
void ReadEncodedValue_all();
MemoryFake memory_;
std::unique_ptr<DwarfMemory> dwarf_mem_;
};
TEST_F(DwarfMemoryTest, ReadBytes) {
memory_.SetMemory(0, std::vector<uint8_t>{0x10, 0x18, 0xff, 0xfe});
uint8_t byte;
ASSERT_TRUE(dwarf_mem_->ReadBytes(&byte, 1));
ASSERT_EQ(0x10U, byte);
ASSERT_TRUE(dwarf_mem_->ReadBytes(&byte, 1));
ASSERT_EQ(0x18U, byte);
ASSERT_TRUE(dwarf_mem_->ReadBytes(&byte, 1));
ASSERT_EQ(0xffU, byte);
ASSERT_TRUE(dwarf_mem_->ReadBytes(&byte, 1));
ASSERT_EQ(0xfeU, byte);
ASSERT_EQ(4U, dwarf_mem_->cur_offset());
dwarf_mem_->set_cur_offset(2);
ASSERT_TRUE(dwarf_mem_->ReadBytes(&byte, 1));
ASSERT_EQ(0xffU, byte);
ASSERT_EQ(3U, dwarf_mem_->cur_offset());
}
TEST_F(DwarfMemoryTest, ReadSigned_check) {
uint64_t value;
// Signed 8 byte reads.
memory_.SetData8(0, static_cast<uint8_t>(-10));
memory_.SetData8(1, 200);
ASSERT_TRUE(dwarf_mem_->ReadSigned<int8_t>(&value));
ASSERT_EQ(static_cast<int8_t>(-10), static_cast<int8_t>(value));
ASSERT_TRUE(dwarf_mem_->ReadSigned<int8_t>(&value));
ASSERT_EQ(static_cast<int8_t>(200), static_cast<int8_t>(value));
// Signed 16 byte reads.
memory_.SetData16(0x10, static_cast<uint16_t>(-1000));
memory_.SetData16(0x12, 50100);
dwarf_mem_->set_cur_offset(0x10);
ASSERT_TRUE(dwarf_mem_->ReadSigned<int16_t>(&value));
ASSERT_EQ(static_cast<int16_t>(-1000), static_cast<int16_t>(value));
ASSERT_TRUE(dwarf_mem_->ReadSigned<int16_t>(&value));
ASSERT_EQ(static_cast<int16_t>(50100), static_cast<int16_t>(value));
// Signed 32 byte reads.
memory_.SetData32(0x100, static_cast<uint32_t>(-1000000000));
memory_.SetData32(0x104, 3000000000);
dwarf_mem_->set_cur_offset(0x100);
ASSERT_TRUE(dwarf_mem_->ReadSigned<int32_t>(&value));
ASSERT_EQ(static_cast<int32_t>(-1000000000), static_cast<int32_t>(value));
ASSERT_TRUE(dwarf_mem_->ReadSigned<int32_t>(&value));
ASSERT_EQ(static_cast<int32_t>(3000000000), static_cast<int32_t>(value));
// Signed 64 byte reads.
memory_.SetData64(0x200, static_cast<uint64_t>(-2000000000000LL));
memory_.SetData64(0x208, 5000000000000LL);
dwarf_mem_->set_cur_offset(0x200);
ASSERT_TRUE(dwarf_mem_->ReadSigned<int64_t>(&value));
ASSERT_EQ(static_cast<int64_t>(-2000000000000), static_cast<int64_t>(value));
ASSERT_TRUE(dwarf_mem_->ReadSigned<int64_t>(&value));
ASSERT_EQ(static_cast<int64_t>(5000000000000), static_cast<int64_t>(value));
}
TEST_F(DwarfMemoryTest, ReadULEB128) {
memory_.SetMemory(0, std::vector<uint8_t>{0x01, 0x80, 0x24, 0xff, 0xc3, 0xff, 0x7f});
uint64_t value;
ASSERT_TRUE(dwarf_mem_->ReadULEB128(&value));
ASSERT_EQ(1U, dwarf_mem_->cur_offset());
ASSERT_EQ(1U, value);
ASSERT_TRUE(dwarf_mem_->ReadULEB128(&value));
ASSERT_EQ(3U, dwarf_mem_->cur_offset());
ASSERT_EQ(0x1200U, value);
ASSERT_TRUE(dwarf_mem_->ReadULEB128(&value));
ASSERT_EQ(7U, dwarf_mem_->cur_offset());
ASSERT_EQ(0xfffe1ffU, value);
}
TEST_F(DwarfMemoryTest, ReadSLEB128) {
memory_.SetMemory(0, std::vector<uint8_t>{0x06, 0x40, 0x82, 0x34, 0x89, 0x64, 0xf9, 0xc3, 0x8f,
0x2f, 0xbf, 0xc3, 0xf7, 0x5f});
int64_t value;
ASSERT_TRUE(dwarf_mem_->ReadSLEB128(&value));
ASSERT_EQ(1U, dwarf_mem_->cur_offset());
ASSERT_EQ(6U, value);
ASSERT_TRUE(dwarf_mem_->ReadSLEB128(&value));
ASSERT_EQ(2U, dwarf_mem_->cur_offset());
ASSERT_EQ(0xffffffffffffffc0ULL, static_cast<uint64_t>(value));
ASSERT_TRUE(dwarf_mem_->ReadSLEB128(&value));
ASSERT_EQ(4U, dwarf_mem_->cur_offset());
ASSERT_EQ(0x1a02U, value);
ASSERT_TRUE(dwarf_mem_->ReadSLEB128(&value));
ASSERT_EQ(6U, dwarf_mem_->cur_offset());
ASSERT_EQ(0xfffffffffffff209ULL, static_cast<uint64_t>(value));
ASSERT_TRUE(dwarf_mem_->ReadSLEB128(&value));
ASSERT_EQ(10U, dwarf_mem_->cur_offset());
ASSERT_EQ(0x5e3e1f9U, value);
ASSERT_TRUE(dwarf_mem_->ReadSLEB128(&value));
ASSERT_EQ(14U, dwarf_mem_->cur_offset());
ASSERT_EQ(0xfffffffffbfde1bfULL, static_cast<uint64_t>(value));
}
template <typename AddressType>
void DwarfMemoryTest::GetEncodedSizeTest(uint8_t value, size_t expected) {
for (size_t i = 0; i < 16; i++) {
uint8_t encoding = (i << 4) | value;
ASSERT_EQ(expected, dwarf_mem_->GetEncodedSize<AddressType>(encoding))
<< "encoding 0x" << std::hex << static_cast<uint32_t>(encoding) << " test value 0x"
<< static_cast<size_t>(value);
}
}
TEST_F(DwarfMemoryTest, GetEncodedSize_absptr_uint32_t) {
GetEncodedSizeTest<uint32_t>(0, sizeof(uint32_t));
}
TEST_F(DwarfMemoryTest, GetEncodedSize_absptr_uint64_t) {
GetEncodedSizeTest<uint64_t>(0, sizeof(uint64_t));
}
TEST_F(DwarfMemoryTest, GetEncodedSize_data1) {
// udata1
GetEncodedSizeTest<uint32_t>(0x0d, 1);
GetEncodedSizeTest<uint64_t>(0x0d, 1);
// sdata1
GetEncodedSizeTest<uint32_t>(0x0e, 1);
GetEncodedSizeTest<uint64_t>(0x0e, 1);
}
TEST_F(DwarfMemoryTest, GetEncodedSize_data2) {
// udata2
GetEncodedSizeTest<uint32_t>(0x02, 2);
GetEncodedSizeTest<uint64_t>(0x02, 2);
// sdata2
GetEncodedSizeTest<uint32_t>(0x0a, 2);
GetEncodedSizeTest<uint64_t>(0x0a, 2);
}
TEST_F(DwarfMemoryTest, GetEncodedSize_data4) {
// udata4
GetEncodedSizeTest<uint32_t>(0x03, 4);
GetEncodedSizeTest<uint64_t>(0x03, 4);
// sdata4
GetEncodedSizeTest<uint32_t>(0x0b, 4);
GetEncodedSizeTest<uint64_t>(0x0b, 4);
}
TEST_F(DwarfMemoryTest, GetEncodedSize_data8) {
// udata8
GetEncodedSizeTest<uint32_t>(0x04, 8);
GetEncodedSizeTest<uint64_t>(0x04, 8);
// sdata8
GetEncodedSizeTest<uint32_t>(0x0c, 8);
GetEncodedSizeTest<uint64_t>(0x0c, 8);
}
TEST_F(DwarfMemoryTest, GetEncodedSize_unknown) {
GetEncodedSizeTest<uint32_t>(0x01, 0);
GetEncodedSizeTest<uint64_t>(0x01, 0);
GetEncodedSizeTest<uint32_t>(0x09, 0);
GetEncodedSizeTest<uint64_t>(0x09, 0);
GetEncodedSizeTest<uint32_t>(0x0f, 0);
GetEncodedSizeTest<uint64_t>(0x0f, 0);
}
template <typename AddressType>
void DwarfMemoryTest::ReadEncodedValue_omit() {
uint64_t value = 123;
ASSERT_TRUE(dwarf_mem_->ReadEncodedValue<AddressType>(0xff, &value));
ASSERT_EQ(0U, value);
}
TEST_F(DwarfMemoryTest, ReadEncodedValue_omit_uint32_t) {
ReadEncodedValue_omit<uint32_t>();
}
TEST_F(DwarfMemoryTest, ReadEncodedValue_omit_uint64_t) {
ReadEncodedValue_omit<uint64_t>();
}
TEST_F(DwarfMemoryTest, ReadEncodedValue_absptr_uint32_t) {
uint64_t value = 100;
ASSERT_FALSE(dwarf_mem_->ReadEncodedValue<uint32_t>(0x00, &value));
memory_.SetData32(0, 0x12345678);
ASSERT_TRUE(dwarf_mem_->ReadEncodedValue<uint32_t>(0x00, &value));
ASSERT_EQ(4U, dwarf_mem_->cur_offset());
ASSERT_EQ(0x12345678U, value);
}
TEST_F(DwarfMemoryTest, ReadEncodedValue_absptr_uint64_t) {
uint64_t value = 100;
ASSERT_FALSE(dwarf_mem_->ReadEncodedValue<uint64_t>(0x00, &value));
memory_.SetData64(0, 0x12345678f1f2f3f4ULL);
ASSERT_TRUE(dwarf_mem_->ReadEncodedValue<uint64_t>(0x00, &value));
ASSERT_EQ(8U, dwarf_mem_->cur_offset());
ASSERT_EQ(0x12345678f1f2f3f4ULL, value);
}
TEST_F(DwarfMemoryTest, ReadEncodedValue_aligned_uint32_t) {
uint64_t value = 100;
dwarf_mem_->set_cur_offset(1);
ASSERT_FALSE(dwarf_mem_->ReadEncodedValue<uint32_t>(0x50, &value));
memory_.SetData32(4, 0x12345678);
ASSERT_TRUE(dwarf_mem_->ReadEncodedValue<uint32_t>(0x50, &value));
ASSERT_EQ(8U, dwarf_mem_->cur_offset());
ASSERT_EQ(0x12345678U, value);
}
TEST_F(DwarfMemoryTest, ReadEncodedValue_aligned_uint64_t) {
uint64_t value = 100;
dwarf_mem_->set_cur_offset(1);
ASSERT_FALSE(dwarf_mem_->ReadEncodedValue<uint64_t>(0x50, &value));
memory_.SetData64(8, 0x12345678f1f2f3f4ULL);
ASSERT_TRUE(dwarf_mem_->ReadEncodedValue<uint64_t>(0x50, &value));
ASSERT_EQ(16U, dwarf_mem_->cur_offset());
ASSERT_EQ(0x12345678f1f2f3f4ULL, value);
}
template <typename AddressType>
void DwarfMemoryTest::ReadEncodedValue_leb128() {
memory_.SetMemory(0, std::vector<uint8_t>{0x80, 0x42});
uint64_t value = 100;
// uleb128
ASSERT_TRUE(dwarf_mem_->ReadEncodedValue<AddressType>(0x01, &value));
ASSERT_EQ(0x2100U, value);
dwarf_mem_->set_cur_offset(0);
// sleb128
ASSERT_TRUE(dwarf_mem_->ReadEncodedValue<AddressType>(0x09, &value));
ASSERT_EQ(0xffffffffffffe100ULL, value);
}
TEST_F(DwarfMemoryTest, ReadEncodedValue_leb128_uint32_t) {
ReadEncodedValue_leb128<uint32_t>();
}
TEST_F(DwarfMemoryTest, ReadEncodedValue_leb128_uint64_t) {
ReadEncodedValue_leb128<uint64_t>();
}
template <typename AddressType>
void DwarfMemoryTest::ReadEncodedValue_data1() {
memory_.SetData8(0, 0xe0);
uint64_t value = 0;
ASSERT_TRUE(dwarf_mem_->ReadEncodedValue<AddressType>(0x0d, &value));
ASSERT_EQ(0xe0U, value);
dwarf_mem_->set_cur_offset(0);
ASSERT_TRUE(dwarf_mem_->ReadEncodedValue<AddressType>(0x0e, &value));
ASSERT_EQ(0xffffffffffffffe0ULL, value);
}
TEST_F(DwarfMemoryTest, ReadEncodedValue_data1_uint32_t) {
ReadEncodedValue_data1<uint32_t>();
}
TEST_F(DwarfMemoryTest, ReadEncodedValue_data1_uint64_t) {
ReadEncodedValue_data1<uint64_t>();
}
template <typename AddressType>
void DwarfMemoryTest::ReadEncodedValue_data2() {
memory_.SetData16(0, 0xe000);
uint64_t value = 0;
ASSERT_TRUE(dwarf_mem_->ReadEncodedValue<AddressType>(0x02, &value));
ASSERT_EQ(0xe000U, value);
dwarf_mem_->set_cur_offset(0);
ASSERT_TRUE(dwarf_mem_->ReadEncodedValue<AddressType>(0x0a, &value));
ASSERT_EQ(0xffffffffffffe000ULL, value);
}
TEST_F(DwarfMemoryTest, ReadEncodedValue_data2_uint32_t) {
ReadEncodedValue_data2<uint32_t>();
}
TEST_F(DwarfMemoryTest, ReadEncodedValue_data2_uint64_t) {
ReadEncodedValue_data2<uint64_t>();
}
template <typename AddressType>
void DwarfMemoryTest::ReadEncodedValue_data4() {
memory_.SetData32(0, 0xe0000000);
uint64_t value = 0;
ASSERT_TRUE(dwarf_mem_->ReadEncodedValue<AddressType>(0x03, &value));
ASSERT_EQ(0xe0000000U, value);
dwarf_mem_->set_cur_offset(0);
ASSERT_TRUE(dwarf_mem_->ReadEncodedValue<AddressType>(0x0b, &value));
ASSERT_EQ(0xffffffffe0000000ULL, value);
}
TEST_F(DwarfMemoryTest, ReadEncodedValue_data4_uint32_t) {
ReadEncodedValue_data4<uint32_t>();
}
TEST_F(DwarfMemoryTest, ReadEncodedValue_data4_uint64_t) {
ReadEncodedValue_data4<uint64_t>();
}
template <typename AddressType>
void DwarfMemoryTest::ReadEncodedValue_data8() {
memory_.SetData64(0, 0xe000000000000000ULL);
uint64_t value = 0;
ASSERT_TRUE(dwarf_mem_->ReadEncodedValue<AddressType>(0x04, &value));
ASSERT_EQ(0xe000000000000000ULL, value);
dwarf_mem_->set_cur_offset(0);
ASSERT_TRUE(dwarf_mem_->ReadEncodedValue<AddressType>(0x0c, &value));
ASSERT_EQ(0xe000000000000000ULL, value);
}
TEST_F(DwarfMemoryTest, ReadEncodedValue_data8_uint32_t) {
ReadEncodedValue_data8<uint32_t>();
}
TEST_F(DwarfMemoryTest, ReadEncodedValue_data8_uint64_t) {
ReadEncodedValue_data8<uint64_t>();
}
template <typename AddressType>
void DwarfMemoryTest::ReadEncodedValue_non_zero_adjust() {
memory_.SetData64(0, 0xe000000000000000ULL);
uint64_t value = 0;
dwarf_mem_->set_pc_offset(0x2000);
ASSERT_TRUE(dwarf_mem_->ReadEncodedValue<AddressType>(0x14, &value));
ASSERT_EQ(0xe000000000002000ULL, value);
}
TEST_F(DwarfMemoryTest, ReadEncodedValue_non_zero_adjust_uint32_t) {
ReadEncodedValue_non_zero_adjust<uint32_t>();
}
TEST_F(DwarfMemoryTest, ReadEncodedValue_non_zero_adjust_uint64_t) {
ReadEncodedValue_non_zero_adjust<uint64_t>();
}
template <typename AddressType>
void DwarfMemoryTest::ReadEncodedValue_overflow() {
memory_.SetData64(0, 0);
uint64_t value = 0;
dwarf_mem_->set_cur_offset(UINT64_MAX);
ASSERT_FALSE(dwarf_mem_->ReadEncodedValue<AddressType>(0x50, &value));
}
TEST_F(DwarfMemoryTest, ReadEncodedValue_overflow_uint32_t) {
ReadEncodedValue_overflow<uint32_t>();
}
TEST_F(DwarfMemoryTest, ReadEncodedValue_overflow_uint64_t) {
ReadEncodedValue_overflow<uint64_t>();
}
template <typename AddressType>
void DwarfMemoryTest::ReadEncodedValue_high_bit_set() {
uint64_t value;
memory_.SetData32(0, 0x15234);
ASSERT_FALSE(dwarf_mem_->ReadEncodedValue<AddressType>(0xc3, &value));
dwarf_mem_->set_func_offset(0x60000);
dwarf_mem_->set_cur_offset(0);
ASSERT_TRUE(dwarf_mem_->ReadEncodedValue<AddressType>(0xc3, &value));
ASSERT_EQ(0x75234U, value);
}
TEST_F(DwarfMemoryTest, ReadEncodedValue_high_bit_set_uint32_t) {
ReadEncodedValue_high_bit_set<uint32_t>();
}
TEST_F(DwarfMemoryTest, ReadEncodedValue_high_bit_set_uint64_t) {
ReadEncodedValue_high_bit_set<uint64_t>();
}
template <typename AddressType>
void DwarfMemoryTest::ReadEncodedValue_all() {
MemoryFakeAlwaysReadZero memory;
DwarfMemory dwarf_mem(&memory);
for (size_t i = 0; i <= 0xff; i++) {
uint64_t value;
if (dwarf_mem.ReadEncodedValue<AddressType>(static_cast<uint8_t>(i), &value)) {
ASSERT_EQ(0U, value);
}
}
}
TEST_F(DwarfMemoryTest, ReadEncodedValue_all_uint32_t) {
ReadEncodedValue_all<uint32_t>();
}
TEST_F(DwarfMemoryTest, ReadEncodedValue_all_uint64_t) {
ReadEncodedValue_all<uint64_t>();
}
TEST_F(DwarfMemoryTest, AdjustEncodedValue_absptr) {
uint64_t value = 0x1234;
ASSERT_TRUE(dwarf_mem_->AdjustEncodedValue(0x00, &value));
ASSERT_EQ(0x1234U, value);
}
TEST_F(DwarfMemoryTest, AdjustEncodedValue_pcrel) {
uint64_t value = 0x1234;
ASSERT_FALSE(dwarf_mem_->AdjustEncodedValue(0x10, &value));
dwarf_mem_->set_pc_offset(0x2000);
ASSERT_TRUE(dwarf_mem_->AdjustEncodedValue(0x10, &value));
ASSERT_EQ(0x3234U, value);
dwarf_mem_->set_pc_offset(static_cast<uint64_t>(-4));
value = 0x1234;
ASSERT_TRUE(dwarf_mem_->AdjustEncodedValue(0x10, &value));
ASSERT_EQ(0x1230U, value);
}
TEST_F(DwarfMemoryTest, AdjustEncodedValue_textrel) {
uint64_t value = 0x8234;
ASSERT_FALSE(dwarf_mem_->AdjustEncodedValue(0x20, &value));
dwarf_mem_->set_text_offset(0x1000);
ASSERT_TRUE(dwarf_mem_->AdjustEncodedValue(0x20, &value));
ASSERT_EQ(0x9234U, value);
dwarf_mem_->set_text_offset(static_cast<uint64_t>(-16));
value = 0x8234;
ASSERT_TRUE(dwarf_mem_->AdjustEncodedValue(0x20, &value));
ASSERT_EQ(0x8224U, value);
}
TEST_F(DwarfMemoryTest, AdjustEncodedValue_datarel) {
uint64_t value = 0xb234;
ASSERT_FALSE(dwarf_mem_->AdjustEncodedValue(0x30, &value));
dwarf_mem_->set_data_offset(0x1200);
ASSERT_TRUE(dwarf_mem_->AdjustEncodedValue(0x30, &value));
ASSERT_EQ(0xc434U, value);
dwarf_mem_->set_data_offset(static_cast<uint64_t>(-256));
value = 0xb234;
ASSERT_TRUE(dwarf_mem_->AdjustEncodedValue(0x30, &value));
ASSERT_EQ(0xb134U, value);
}
TEST_F(DwarfMemoryTest, AdjustEncodedValue_funcrel) {
uint64_t value = 0x15234;
ASSERT_FALSE(dwarf_mem_->AdjustEncodedValue(0x40, &value));
dwarf_mem_->set_func_offset(0x60000);
ASSERT_TRUE(dwarf_mem_->AdjustEncodedValue(0x40, &value));
ASSERT_EQ(0x75234U, value);
dwarf_mem_->set_func_offset(static_cast<uint64_t>(-4096));
value = 0x15234;
ASSERT_TRUE(dwarf_mem_->AdjustEncodedValue(0x40, &value));
ASSERT_EQ(0x14234U, value);
}
} // namespace unwindstack