You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1551 lines
62 KiB

//
// Copyright (C) 2012 The Android Open Source Project
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include "update_engine/payload_consumer/delta_performer.h"
#include <errno.h>
#include <linux/fs.h>
#include <algorithm>
#include <cstring>
#include <map>
#include <memory>
#include <set>
#include <string>
#include <utility>
#include <vector>
#include <base/files/file_util.h>
#include <base/format_macros.h>
#include <base/metrics/histogram_macros.h>
#include <base/strings/string_number_conversions.h>
#include <base/strings/string_util.h>
#include <base/strings/stringprintf.h>
#include <base/time/time.h>
#include <brillo/data_encoding.h>
#include <bsdiff/bspatch.h>
#include <google/protobuf/repeated_field.h>
#include <puffin/puffpatch.h>
#include "update_engine/common/constants.h"
#include "update_engine/common/download_action.h"
#include "update_engine/common/error_code.h"
#include "update_engine/common/error_code_utils.h"
#include "update_engine/common/hardware_interface.h"
#include "update_engine/common/prefs_interface.h"
#include "update_engine/common/subprocess.h"
#include "update_engine/common/terminator.h"
#include "update_engine/common/utils.h"
#include "update_engine/payload_consumer/bzip_extent_writer.h"
#include "update_engine/payload_consumer/cached_file_descriptor.h"
#include "update_engine/payload_consumer/certificate_parser_interface.h"
#include "update_engine/payload_consumer/extent_reader.h"
#include "update_engine/payload_consumer/extent_writer.h"
#include "update_engine/payload_consumer/partition_update_generator_interface.h"
#include "update_engine/payload_consumer/partition_writer.h"
#if USE_FEC
#include "update_engine/payload_consumer/fec_file_descriptor.h"
#endif // USE_FEC
#include "update_engine/payload_consumer/file_descriptor_utils.h"
#include "update_engine/payload_consumer/mount_history.h"
#include "update_engine/payload_consumer/payload_constants.h"
#include "update_engine/payload_consumer/payload_verifier.h"
#include "update_engine/payload_consumer/xz_extent_writer.h"
using google::protobuf::RepeatedPtrField;
using std::min;
using std::string;
using std::vector;
namespace chromeos_update_engine {
const unsigned DeltaPerformer::kProgressLogMaxChunks = 10;
const unsigned DeltaPerformer::kProgressLogTimeoutSeconds = 30;
const unsigned DeltaPerformer::kProgressDownloadWeight = 50;
const unsigned DeltaPerformer::kProgressOperationsWeight = 50;
const uint64_t DeltaPerformer::kCheckpointFrequencySeconds = 1;
namespace {
const int kUpdateStateOperationInvalid = -1;
const int kMaxResumedUpdateFailures = 10;
} // namespace
// Computes the ratio of |part| and |total|, scaled to |norm|, using integer
// arithmetic.
static uint64_t IntRatio(uint64_t part, uint64_t total, uint64_t norm) {
return part * norm / total;
}
void DeltaPerformer::LogProgress(const char* message_prefix) {
// Format operations total count and percentage.
string total_operations_str("?");
string completed_percentage_str("");
if (num_total_operations_) {
total_operations_str = std::to_string(num_total_operations_);
// Upcasting to 64-bit to avoid overflow, back to size_t for formatting.
completed_percentage_str = base::StringPrintf(
" (%" PRIu64 "%%)",
IntRatio(next_operation_num_, num_total_operations_, 100));
}
// Format download total count and percentage.
size_t payload_size = payload_->size;
string payload_size_str("?");
string downloaded_percentage_str("");
if (payload_size) {
payload_size_str = std::to_string(payload_size);
// Upcasting to 64-bit to avoid overflow, back to size_t for formatting.
downloaded_percentage_str = base::StringPrintf(
" (%" PRIu64 "%%)", IntRatio(total_bytes_received_, payload_size, 100));
}
LOG(INFO) << (message_prefix ? message_prefix : "") << next_operation_num_
<< "/" << total_operations_str << " operations"
<< completed_percentage_str << ", " << total_bytes_received_ << "/"
<< payload_size_str << " bytes downloaded"
<< downloaded_percentage_str << ", overall progress "
<< overall_progress_ << "%";
}
void DeltaPerformer::UpdateOverallProgress(bool force_log,
const char* message_prefix) {
// Compute our download and overall progress.
unsigned new_overall_progress = 0;
static_assert(kProgressDownloadWeight + kProgressOperationsWeight == 100,
"Progress weights don't add up");
// Only consider download progress if its total size is known; otherwise
// adjust the operations weight to compensate for the absence of download
// progress. Also, make sure to cap the download portion at
// kProgressDownloadWeight, in case we end up downloading more than we
// initially expected (this indicates a problem, but could generally happen).
// TODO(garnold) the correction of operations weight when we do not have the
// total payload size, as well as the conditional guard below, should both be
// eliminated once we ensure that the payload_size in the install plan is
// always given and is non-zero. This currently isn't the case during unit
// tests (see chromium-os:37969).
size_t payload_size = payload_->size;
unsigned actual_operations_weight = kProgressOperationsWeight;
if (payload_size)
new_overall_progress +=
min(static_cast<unsigned>(IntRatio(
total_bytes_received_, payload_size, kProgressDownloadWeight)),
kProgressDownloadWeight);
else
actual_operations_weight += kProgressDownloadWeight;
// Only add completed operations if their total number is known; we definitely
// expect an update to have at least one operation, so the expectation is that
// this will eventually reach |actual_operations_weight|.
if (num_total_operations_)
new_overall_progress += IntRatio(
next_operation_num_, num_total_operations_, actual_operations_weight);
// Progress ratio cannot recede, unless our assumptions about the total
// payload size, total number of operations, or the monotonicity of progress
// is breached.
if (new_overall_progress < overall_progress_) {
LOG(WARNING) << "progress counter receded from " << overall_progress_
<< "% down to " << new_overall_progress << "%; this is a bug";
force_log = true;
}
overall_progress_ = new_overall_progress;
// Update chunk index, log as needed: if forced by called, or we completed a
// progress chunk, or a timeout has expired.
base::TimeTicks curr_time = base::TimeTicks::Now();
unsigned curr_progress_chunk =
overall_progress_ * kProgressLogMaxChunks / 100;
if (force_log || curr_progress_chunk > last_progress_chunk_ ||
curr_time > forced_progress_log_time_) {
forced_progress_log_time_ = curr_time + forced_progress_log_wait_;
LogProgress(message_prefix);
}
last_progress_chunk_ = curr_progress_chunk;
}
size_t DeltaPerformer::CopyDataToBuffer(const char** bytes_p,
size_t* count_p,
size_t max) {
const size_t count = *count_p;
if (!count)
return 0; // Special case shortcut.
size_t read_len = min(count, max - buffer_.size());
const char* bytes_start = *bytes_p;
const char* bytes_end = bytes_start + read_len;
buffer_.reserve(max);
buffer_.insert(buffer_.end(), bytes_start, bytes_end);
*bytes_p = bytes_end;
*count_p = count - read_len;
return read_len;
}
bool DeltaPerformer::HandleOpResult(bool op_result,
const char* op_type_name,
ErrorCode* error) {
if (op_result)
return true;
LOG(ERROR) << "Failed to perform " << op_type_name << " operation "
<< next_operation_num_ << ", which is the operation "
<< GetPartitionOperationNum() << " in partition \""
<< partitions_[current_partition_].partition_name() << "\"";
if (*error == ErrorCode::kSuccess)
*error = ErrorCode::kDownloadOperationExecutionError;
return false;
}
int DeltaPerformer::Close() {
int err = -CloseCurrentPartition();
LOG_IF(ERROR,
!payload_hash_calculator_.Finalize() ||
!signed_hash_calculator_.Finalize())
<< "Unable to finalize the hash.";
if (!buffer_.empty()) {
LOG(INFO) << "Discarding " << buffer_.size() << " unused downloaded bytes";
if (err >= 0)
err = 1;
}
return -err;
}
int DeltaPerformer::CloseCurrentPartition() {
if (!partition_writer_) {
return 0;
}
int err = partition_writer_->Close();
partition_writer_ = nullptr;
return err;
}
bool DeltaPerformer::OpenCurrentPartition() {
if (current_partition_ >= partitions_.size())
return false;
const PartitionUpdate& partition = partitions_[current_partition_];
size_t num_previous_partitions =
install_plan_->partitions.size() - partitions_.size();
const InstallPlan::Partition& install_part =
install_plan_->partitions[num_previous_partitions + current_partition_];
auto dynamic_control = boot_control_->GetDynamicPartitionControl();
partition_writer_ = CreatePartitionWriter(
partition,
install_part,
dynamic_control,
block_size_,
interactive_,
IsDynamicPartition(install_part.name, install_plan_->target_slot));
// Open source fds if we have a delta payload, or for partitions in the
// partial update.
bool source_may_exist = manifest_.partial_update() ||
payload_->type == InstallPayloadType::kDelta;
const size_t partition_operation_num = GetPartitionOperationNum();
TEST_AND_RETURN_FALSE(partition_writer_->Init(
install_plan_, source_may_exist, partition_operation_num));
CheckpointUpdateProgress(true);
return true;
}
size_t DeltaPerformer::GetPartitionOperationNum() {
return next_operation_num_ -
(current_partition_ ? acc_num_operations_[current_partition_ - 1] : 0);
}
namespace {
void LogPartitionInfoHash(const PartitionInfo& info, const string& tag) {
string sha256 = brillo::data_encoding::Base64Encode(info.hash());
LOG(INFO) << "PartitionInfo " << tag << " sha256: " << sha256
<< " size: " << info.size();
}
void LogPartitionInfo(const vector<PartitionUpdate>& partitions) {
for (const PartitionUpdate& partition : partitions) {
if (partition.has_old_partition_info()) {
LogPartitionInfoHash(partition.old_partition_info(),
"old " + partition.partition_name());
}
LogPartitionInfoHash(partition.new_partition_info(),
"new " + partition.partition_name());
}
}
} // namespace
bool DeltaPerformer::IsHeaderParsed() const {
return metadata_size_ != 0;
}
MetadataParseResult DeltaPerformer::ParsePayloadMetadata(
const brillo::Blob& payload, ErrorCode* error) {
*error = ErrorCode::kSuccess;
if (!IsHeaderParsed()) {
MetadataParseResult result =
payload_metadata_.ParsePayloadHeader(payload, error);
if (result != MetadataParseResult::kSuccess)
return result;
metadata_size_ = payload_metadata_.GetMetadataSize();
metadata_signature_size_ = payload_metadata_.GetMetadataSignatureSize();
major_payload_version_ = payload_metadata_.GetMajorVersion();
// If the metadata size is present in install plan, check for it immediately
// even before waiting for that many number of bytes to be downloaded in the
// payload. This will prevent any attack which relies on us downloading data
// beyond the expected metadata size.
if (install_plan_->hash_checks_mandatory) {
if (payload_->metadata_size != metadata_size_) {
LOG(ERROR) << "Mandatory metadata size in Omaha response ("
<< payload_->metadata_size
<< ") is missing/incorrect, actual = " << metadata_size_;
*error = ErrorCode::kDownloadInvalidMetadataSize;
return MetadataParseResult::kError;
}
}
// Check that the |metadata signature size_| and |metadata_size_| are not
// very big numbers. This is necessary since |update_engine| needs to write
// these values into the buffer before being able to use them, and if an
// attacker sets these values to a very big number, the buffer will overflow
// and |update_engine| will crash. A simple way of solving this is to check
// that the size of both values is smaller than the payload itself.
if (metadata_size_ + metadata_signature_size_ > payload_->size) {
LOG(ERROR) << "The size of the metadata_size(" << metadata_size_ << ")"
<< " or metadata signature(" << metadata_signature_size_ << ")"
<< " is greater than the size of the payload"
<< "(" << payload_->size << ")";
*error = ErrorCode::kDownloadInvalidMetadataSize;
return MetadataParseResult::kError;
}
}
// Now that we have validated the metadata size, we should wait for the full
// metadata and its signature (if exist) to be read in before we can parse it.
if (payload.size() < metadata_size_ + metadata_signature_size_)
return MetadataParseResult::kInsufficientData;
// Log whether we validated the size or simply trusting what's in the payload
// here. This is logged here (after we received the full metadata data) so
// that we just log once (instead of logging n times) if it takes n
// DeltaPerformer::Write calls to download the full manifest.
if (payload_->metadata_size == metadata_size_) {
LOG(INFO) << "Manifest size in payload matches expected value from Omaha";
} else {
// For mandatory-cases, we'd have already returned a kMetadataParseError
// above. We'll be here only for non-mandatory cases. Just send a UMA stat.
LOG(WARNING) << "Ignoring missing/incorrect metadata size ("
<< payload_->metadata_size
<< ") in Omaha response as validation is not mandatory. "
<< "Trusting metadata size in payload = " << metadata_size_;
}
// NOLINTNEXTLINE(whitespace/braces)
auto [payload_verifier, perform_verification] = CreatePayloadVerifier();
if (!payload_verifier) {
LOG(ERROR) << "Failed to create payload verifier.";
*error = ErrorCode::kDownloadMetadataSignatureVerificationError;
if (perform_verification) {
return MetadataParseResult::kError;
}
} else {
// We have the full metadata in |payload|. Verify its integrity
// and authenticity based on the information we have in Omaha response.
*error = payload_metadata_.ValidateMetadataSignature(
payload, payload_->metadata_signature, *payload_verifier);
}
if (*error != ErrorCode::kSuccess) {
if (install_plan_->hash_checks_mandatory) {
// The autoupdate_CatchBadSignatures test checks for this string
// in log-files. Keep in sync.
LOG(ERROR) << "Mandatory metadata signature validation failed";
return MetadataParseResult::kError;
}
// For non-mandatory cases, just send a UMA stat.
LOG(WARNING) << "Ignoring metadata signature validation failures";
*error = ErrorCode::kSuccess;
}
// The payload metadata is deemed valid, it's safe to parse the protobuf.
if (!payload_metadata_.GetManifest(payload, &manifest_)) {
LOG(ERROR) << "Unable to parse manifest in update file.";
*error = ErrorCode::kDownloadManifestParseError;
return MetadataParseResult::kError;
}
manifest_parsed_ = true;
return MetadataParseResult::kSuccess;
}
#define OP_DURATION_HISTOGRAM(_op_name, _start_time) \
LOCAL_HISTOGRAM_CUSTOM_TIMES( \
"UpdateEngine.DownloadAction.InstallOperation::" _op_name ".Duration", \
(base::TimeTicks::Now() - _start_time), \
base::TimeDelta::FromMilliseconds(10), \
base::TimeDelta::FromMinutes(5), \
20);
// Wrapper around write. Returns true if all requested bytes
// were written, or false on any error, regardless of progress
// and stores an action exit code in |error|.
bool DeltaPerformer::Write(const void* bytes, size_t count, ErrorCode* error) {
*error = ErrorCode::kSuccess;
const char* c_bytes = reinterpret_cast<const char*>(bytes);
// Update the total byte downloaded count and the progress logs.
total_bytes_received_ += count;
UpdateOverallProgress(false, "Completed ");
while (!manifest_valid_) {
// Read data up to the needed limit; this is either maximium payload header
// size, or the full metadata size (once it becomes known).
const bool do_read_header = !IsHeaderParsed();
CopyDataToBuffer(
&c_bytes,
&count,
(do_read_header ? kMaxPayloadHeaderSize
: metadata_size_ + metadata_signature_size_));
MetadataParseResult result = ParsePayloadMetadata(buffer_, error);
if (result == MetadataParseResult::kError)
return false;
if (result == MetadataParseResult::kInsufficientData) {
// If we just processed the header, make an attempt on the manifest.
if (do_read_header && IsHeaderParsed())
continue;
return true;
}
// Checks the integrity of the payload manifest.
if ((*error = ValidateManifest()) != ErrorCode::kSuccess)
return false;
manifest_valid_ = true;
if (!install_plan_->is_resume) {
auto begin = reinterpret_cast<const char*>(buffer_.data());
prefs_->SetString(kPrefsManifestBytes, {begin, buffer_.size()});
}
// Clear the download buffer.
DiscardBuffer(false, metadata_size_);
block_size_ = manifest_.block_size();
// This populates |partitions_| and the |install_plan.partitions| with the
// list of partitions from the manifest.
if (!ParseManifestPartitions(error))
return false;
// |install_plan.partitions| was filled in, nothing need to be done here if
// the payload was already applied, returns false to terminate http fetcher,
// but keep |error| as ErrorCode::kSuccess.
if (payload_->already_applied)
return false;
num_total_operations_ = 0;
for (const auto& partition : partitions_) {
num_total_operations_ += partition.operations_size();
acc_num_operations_.push_back(num_total_operations_);
}
LOG_IF(WARNING,
!prefs_->SetInt64(kPrefsManifestMetadataSize, metadata_size_))
<< "Unable to save the manifest metadata size.";
LOG_IF(WARNING,
!prefs_->SetInt64(kPrefsManifestSignatureSize,
metadata_signature_size_))
<< "Unable to save the manifest signature size.";
if (!PrimeUpdateState()) {
*error = ErrorCode::kDownloadStateInitializationError;
LOG(ERROR) << "Unable to prime the update state.";
return false;
}
if (next_operation_num_ < acc_num_operations_[current_partition_]) {
if (!OpenCurrentPartition()) {
*error = ErrorCode::kInstallDeviceOpenError;
return false;
}
}
if (next_operation_num_ > 0)
UpdateOverallProgress(true, "Resuming after ");
LOG(INFO) << "Starting to apply update payload operations";
}
while (next_operation_num_ < num_total_operations_) {
// Check if we should cancel the current attempt for any reason.
// In this case, *error will have already been populated with the reason
// why we're canceling.
if (download_delegate_ && download_delegate_->ShouldCancel(error))
return false;
// We know there are more operations to perform because we didn't reach the
// |num_total_operations_| limit yet.
if (next_operation_num_ >= acc_num_operations_[current_partition_]) {
if (partition_writer_) {
TEST_AND_RETURN_FALSE(partition_writer_->FinishedInstallOps());
}
CloseCurrentPartition();
// Skip until there are operations for current_partition_.
while (next_operation_num_ >= acc_num_operations_[current_partition_]) {
current_partition_++;
}
if (!OpenCurrentPartition()) {
*error = ErrorCode::kInstallDeviceOpenError;
return false;
}
}
const InstallOperation& op =
partitions_[current_partition_].operations(GetPartitionOperationNum());
CopyDataToBuffer(&c_bytes, &count, op.data_length());
// Check whether we received all of the next operation's data payload.
if (!CanPerformInstallOperation(op))
return true;
// Validate the operation unconditionally. This helps prevent the
// exploitation of vulnerabilities in the patching libraries, e.g. bspatch.
// The hash of the patch data for a given operation is embedded in the
// payload metadata; and thus has been verified against the public key on
// device.
// Note: Validate must be called only if CanPerformInstallOperation is
// called. Otherwise, we might be failing operations before even if there
// isn't sufficient data to compute the proper hash.
*error = ValidateOperationHash(op);
if (*error != ErrorCode::kSuccess) {
if (install_plan_->hash_checks_mandatory) {
LOG(ERROR) << "Mandatory operation hash check failed";
return false;
}
// For non-mandatory cases, just send a UMA stat.
LOG(WARNING) << "Ignoring operation validation errors";
*error = ErrorCode::kSuccess;
}
// Makes sure we unblock exit when this operation completes.
ScopedTerminatorExitUnblocker exit_unblocker =
ScopedTerminatorExitUnblocker(); // Avoids a compiler unused var bug.
base::TimeTicks op_start_time = base::TimeTicks::Now();
bool op_result;
switch (op.type()) {
case InstallOperation::REPLACE:
case InstallOperation::REPLACE_BZ:
case InstallOperation::REPLACE_XZ:
op_result = PerformReplaceOperation(op);
OP_DURATION_HISTOGRAM("REPLACE", op_start_time);
break;
case InstallOperation::ZERO:
case InstallOperation::DISCARD:
op_result = PerformZeroOrDiscardOperation(op);
OP_DURATION_HISTOGRAM("ZERO_OR_DISCARD", op_start_time);
break;
case InstallOperation::SOURCE_COPY:
op_result = PerformSourceCopyOperation(op, error);
OP_DURATION_HISTOGRAM("SOURCE_COPY", op_start_time);
break;
case InstallOperation::SOURCE_BSDIFF:
case InstallOperation::BROTLI_BSDIFF:
op_result = PerformSourceBsdiffOperation(op, error);
OP_DURATION_HISTOGRAM("SOURCE_BSDIFF", op_start_time);
break;
case InstallOperation::PUFFDIFF:
op_result = PerformPuffDiffOperation(op, error);
OP_DURATION_HISTOGRAM("PUFFDIFF", op_start_time);
break;
default:
op_result = false;
}
if (!HandleOpResult(op_result, InstallOperationTypeName(op.type()), error))
return false;
next_operation_num_++;
UpdateOverallProgress(false, "Completed ");
CheckpointUpdateProgress(false);
}
if (partition_writer_) {
TEST_AND_RETURN_FALSE(partition_writer_->FinishedInstallOps());
}
CloseCurrentPartition();
// In major version 2, we don't add unused operation to the payload.
// If we already extracted the signature we should skip this step.
if (manifest_.has_signatures_offset() && manifest_.has_signatures_size() &&
signatures_message_data_.empty()) {
if (manifest_.signatures_offset() != buffer_offset_) {
LOG(ERROR) << "Payload signatures offset points to blob offset "
<< manifest_.signatures_offset()
<< " but signatures are expected at offset " << buffer_offset_;
*error = ErrorCode::kDownloadPayloadVerificationError;
return false;
}
CopyDataToBuffer(&c_bytes, &count, manifest_.signatures_size());
// Needs more data to cover entire signature.
if (buffer_.size() < manifest_.signatures_size())
return true;
if (!ExtractSignatureMessage()) {
LOG(ERROR) << "Extract payload signature failed.";
*error = ErrorCode::kDownloadPayloadVerificationError;
return false;
}
DiscardBuffer(true, 0);
// Since we extracted the SignatureMessage we need to advance the
// checkpoint, otherwise we would reload the signature and try to extract
// it again.
// This is the last checkpoint for an update, force this checkpoint to be
// saved.
CheckpointUpdateProgress(true);
}
return true;
}
bool DeltaPerformer::IsManifestValid() {
return manifest_valid_;
}
bool DeltaPerformer::ParseManifestPartitions(ErrorCode* error) {
partitions_.clear();
for (const PartitionUpdate& partition : manifest_.partitions()) {
partitions_.push_back(partition);
}
// For VAB and partial updates, the partition preparation will copy the
// dynamic partitions metadata to the target metadata slot, and rename the
// slot suffix of the partitions in the metadata.
if (install_plan_->target_slot != BootControlInterface::kInvalidSlot) {
uint64_t required_size = 0;
if (!PreparePartitionsForUpdate(&required_size)) {
if (required_size > 0) {
*error = ErrorCode::kNotEnoughSpace;
} else {
*error = ErrorCode::kInstallDeviceOpenError;
}
return false;
}
}
// Partitions in manifest are no longer needed after preparing partitions.
manifest_.clear_partitions();
// TODO(xunchang) TBD: allow partial update only on devices with dynamic
// partition.
if (manifest_.partial_update()) {
std::set<std::string> touched_partitions;
for (const auto& partition_update : partitions_) {
touched_partitions.insert(partition_update.partition_name());
}
auto generator = partition_update_generator::Create(boot_control_,
manifest_.block_size());
std::vector<PartitionUpdate> untouched_static_partitions;
TEST_AND_RETURN_FALSE(
generator->GenerateOperationsForPartitionsNotInPayload(
install_plan_->source_slot,
install_plan_->target_slot,
touched_partitions,
&untouched_static_partitions));
partitions_.insert(partitions_.end(),
untouched_static_partitions.begin(),
untouched_static_partitions.end());
// Save the untouched dynamic partitions in install plan.
std::vector<std::string> dynamic_partitions;
if (!boot_control_->GetDynamicPartitionControl()
->ListDynamicPartitionsForSlot(install_plan_->source_slot,
boot_control_->GetCurrentSlot(),
&dynamic_partitions)) {
LOG(ERROR) << "Failed to load dynamic partitions from slot "
<< install_plan_->source_slot;
return false;
}
install_plan_->untouched_dynamic_partitions.clear();
for (const auto& name : dynamic_partitions) {
if (touched_partitions.find(name) == touched_partitions.end()) {
install_plan_->untouched_dynamic_partitions.push_back(name);
}
}
}
// Fill in the InstallPlan::partitions based on the partitions from the
// payload.
for (const auto& partition : partitions_) {
InstallPlan::Partition install_part;
install_part.name = partition.partition_name();
install_part.run_postinstall =
partition.has_run_postinstall() && partition.run_postinstall();
if (install_part.run_postinstall) {
install_part.postinstall_path =
(partition.has_postinstall_path() ? partition.postinstall_path()
: kPostinstallDefaultScript);
install_part.filesystem_type = partition.filesystem_type();
install_part.postinstall_optional = partition.postinstall_optional();
}
if (partition.has_old_partition_info()) {
const PartitionInfo& info = partition.old_partition_info();
install_part.source_size = info.size();
install_part.source_hash.assign(info.hash().begin(), info.hash().end());
}
if (!partition.has_new_partition_info()) {
LOG(ERROR) << "Unable to get new partition hash info on partition "
<< install_part.name << ".";
*error = ErrorCode::kDownloadNewPartitionInfoError;
return false;
}
const PartitionInfo& info = partition.new_partition_info();
install_part.target_size = info.size();
install_part.target_hash.assign(info.hash().begin(), info.hash().end());
install_part.block_size = block_size_;
if (partition.has_hash_tree_extent()) {
Extent extent = partition.hash_tree_data_extent();
install_part.hash_tree_data_offset = extent.start_block() * block_size_;
install_part.hash_tree_data_size = extent.num_blocks() * block_size_;
extent = partition.hash_tree_extent();
install_part.hash_tree_offset = extent.start_block() * block_size_;
install_part.hash_tree_size = extent.num_blocks() * block_size_;
uint64_t hash_tree_data_end =
install_part.hash_tree_data_offset + install_part.hash_tree_data_size;
if (install_part.hash_tree_offset < hash_tree_data_end) {
LOG(ERROR) << "Invalid hash tree extents, hash tree data ends at "
<< hash_tree_data_end << ", but hash tree starts at "
<< install_part.hash_tree_offset;
*error = ErrorCode::kDownloadNewPartitionInfoError;
return false;
}
install_part.hash_tree_algorithm = partition.hash_tree_algorithm();
install_part.hash_tree_salt.assign(partition.hash_tree_salt().begin(),
partition.hash_tree_salt().end());
}
if (partition.has_fec_extent()) {
Extent extent = partition.fec_data_extent();
install_part.fec_data_offset = extent.start_block() * block_size_;
install_part.fec_data_size = extent.num_blocks() * block_size_;
extent = partition.fec_extent();
install_part.fec_offset = extent.start_block() * block_size_;
install_part.fec_size = extent.num_blocks() * block_size_;
uint64_t fec_data_end =
install_part.fec_data_offset + install_part.fec_data_size;
if (install_part.fec_offset < fec_data_end) {
LOG(ERROR) << "Invalid fec extents, fec data ends at " << fec_data_end
<< ", but fec starts at " << install_part.fec_offset;
*error = ErrorCode::kDownloadNewPartitionInfoError;
return false;
}
install_part.fec_roots = partition.fec_roots();
}
install_plan_->partitions.push_back(install_part);
}
// TODO(xunchang) only need to load the partitions for those in payload.
// Because we have already loaded the other once when generating SOURCE_COPY
// operations.
if (!install_plan_->LoadPartitionsFromSlots(boot_control_)) {
LOG(ERROR) << "Unable to determine all the partition devices.";
*error = ErrorCode::kInstallDeviceOpenError;
return false;
}
LogPartitionInfo(partitions_);
return true;
}
bool DeltaPerformer::PreparePartitionsForUpdate(uint64_t* required_size) {
// Call static PreparePartitionsForUpdate with hash from
// kPrefsUpdateCheckResponseHash to ensure hash of payload that space is
// preallocated for is the same as the hash of payload being applied.
string update_check_response_hash;
ignore_result(prefs_->GetString(kPrefsUpdateCheckResponseHash,
&update_check_response_hash));
return PreparePartitionsForUpdate(prefs_,
boot_control_,
install_plan_->target_slot,
manifest_,
update_check_response_hash,
required_size);
}
bool DeltaPerformer::PreparePartitionsForUpdate(
PrefsInterface* prefs,
BootControlInterface* boot_control,
BootControlInterface::Slot target_slot,
const DeltaArchiveManifest& manifest,
const std::string& update_check_response_hash,
uint64_t* required_size) {
string last_hash;
ignore_result(
prefs->GetString(kPrefsDynamicPartitionMetadataUpdated, &last_hash));
bool is_resume = !update_check_response_hash.empty() &&
last_hash == update_check_response_hash;
if (is_resume) {
LOG(INFO) << "Using previously prepared partitions for update. hash = "
<< last_hash;
} else {
LOG(INFO) << "Preparing partitions for new update. last hash = "
<< last_hash << ", new hash = " << update_check_response_hash;
ResetUpdateProgress(prefs, false);
}
if (!boot_control->GetDynamicPartitionControl()->PreparePartitionsForUpdate(
boot_control->GetCurrentSlot(),
target_slot,
manifest,
!is_resume /* should update */,
required_size)) {
LOG(ERROR) << "Unable to initialize partition metadata for slot "
<< BootControlInterface::SlotName(target_slot);
return false;
}
TEST_AND_RETURN_FALSE(prefs->SetString(kPrefsDynamicPartitionMetadataUpdated,
update_check_response_hash));
LOG(INFO) << "PreparePartitionsForUpdate done.";
return true;
}
bool DeltaPerformer::CanPerformInstallOperation(
const chromeos_update_engine::InstallOperation& operation) {
// If we don't have a data blob we can apply it right away.
if (!operation.has_data_offset() && !operation.has_data_length())
return true;
// See if we have the entire data blob in the buffer
if (operation.data_offset() < buffer_offset_) {
LOG(ERROR) << "we threw away data it seems?";
return false;
}
return (operation.data_offset() + operation.data_length() <=
buffer_offset_ + buffer_.size());
}
bool DeltaPerformer::PerformReplaceOperation(
const InstallOperation& operation) {
CHECK(operation.type() == InstallOperation::REPLACE ||
operation.type() == InstallOperation::REPLACE_BZ ||
operation.type() == InstallOperation::REPLACE_XZ);
// Since we delete data off the beginning of the buffer as we use it,
// the data we need should be exactly at the beginning of the buffer.
TEST_AND_RETURN_FALSE(buffer_.size() >= operation.data_length());
TEST_AND_RETURN_FALSE(partition_writer_->PerformReplaceOperation(
operation, buffer_.data(), buffer_.size()));
// Update buffer
DiscardBuffer(true, buffer_.size());
return true;
}
bool DeltaPerformer::PerformZeroOrDiscardOperation(
const InstallOperation& operation) {
CHECK(operation.type() == InstallOperation::DISCARD ||
operation.type() == InstallOperation::ZERO);
// These operations have no blob.
TEST_AND_RETURN_FALSE(!operation.has_data_offset());
TEST_AND_RETURN_FALSE(!operation.has_data_length());
return partition_writer_->PerformZeroOrDiscardOperation(operation);
}
bool PartitionWriter::ValidateSourceHash(const brillo::Blob& calculated_hash,
const InstallOperation& operation,
const FileDescriptorPtr source_fd,
ErrorCode* error) {
brillo::Blob expected_source_hash(operation.src_sha256_hash().begin(),
operation.src_sha256_hash().end());
if (calculated_hash != expected_source_hash) {
LOG(ERROR) << "The hash of the source data on disk for this operation "
<< "doesn't match the expected value. This could mean that the "
<< "delta update payload was targeted for another version, or "
<< "that the source partition was modified after it was "
<< "installed, for example, by mounting a filesystem.";
LOG(ERROR) << "Expected: sha256|hex = "
<< base::HexEncode(expected_source_hash.data(),
expected_source_hash.size());
LOG(ERROR) << "Calculated: sha256|hex = "
<< base::HexEncode(calculated_hash.data(),
calculated_hash.size());
vector<string> source_extents;
for (const Extent& ext : operation.src_extents()) {
source_extents.push_back(
base::StringPrintf("%" PRIu64 ":%" PRIu64,
static_cast<uint64_t>(ext.start_block()),
static_cast<uint64_t>(ext.num_blocks())));
}
LOG(ERROR) << "Operation source (offset:size) in blocks: "
<< base::JoinString(source_extents, ",");
// Log remount history if this device is an ext4 partition.
LogMountHistory(source_fd);
*error = ErrorCode::kDownloadStateInitializationError;
return false;
}
return true;
}
bool DeltaPerformer::PerformSourceCopyOperation(
const InstallOperation& operation, ErrorCode* error) {
if (operation.has_src_length())
TEST_AND_RETURN_FALSE(operation.src_length() % block_size_ == 0);
if (operation.has_dst_length())
TEST_AND_RETURN_FALSE(operation.dst_length() % block_size_ == 0);
return partition_writer_->PerformSourceCopyOperation(operation, error);
}
bool DeltaPerformer::ExtentsToBsdiffPositionsString(
const RepeatedPtrField<Extent>& extents,
uint64_t block_size,
uint64_t full_length,
string* positions_string) {
string ret;
uint64_t length = 0;
for (const Extent& extent : extents) {
int64_t start = extent.start_block() * block_size;
uint64_t this_length =
min(full_length - length,
static_cast<uint64_t>(extent.num_blocks()) * block_size);
ret += base::StringPrintf("%" PRIi64 ":%" PRIu64 ",", start, this_length);
length += this_length;
}
TEST_AND_RETURN_FALSE(length == full_length);
if (!ret.empty())
ret.resize(ret.size() - 1); // Strip trailing comma off
*positions_string = ret;
return true;
}
bool DeltaPerformer::PerformSourceBsdiffOperation(
const InstallOperation& operation, ErrorCode* error) {
// Since we delete data off the beginning of the buffer as we use it,
// the data we need should be exactly at the beginning of the buffer.
TEST_AND_RETURN_FALSE(buffer_offset_ == operation.data_offset());
TEST_AND_RETURN_FALSE(buffer_.size() >= operation.data_length());
if (operation.has_src_length())
TEST_AND_RETURN_FALSE(operation.src_length() % block_size_ == 0);
if (operation.has_dst_length())
TEST_AND_RETURN_FALSE(operation.dst_length() % block_size_ == 0);
TEST_AND_RETURN_FALSE(partition_writer_->PerformSourceBsdiffOperation(
operation, error, buffer_.data(), buffer_.size()));
DiscardBuffer(true, buffer_.size());
return true;
}
bool DeltaPerformer::PerformPuffDiffOperation(const InstallOperation& operation,
ErrorCode* error) {
// Since we delete data off the beginning of the buffer as we use it,
// the data we need should be exactly at the beginning of the buffer.
TEST_AND_RETURN_FALSE(buffer_offset_ == operation.data_offset());
TEST_AND_RETURN_FALSE(buffer_.size() >= operation.data_length());
TEST_AND_RETURN_FALSE(partition_writer_->PerformPuffDiffOperation(
operation, error, buffer_.data(), buffer_.size()));
DiscardBuffer(true, buffer_.size());
return true;
}
bool DeltaPerformer::ExtractSignatureMessage() {
TEST_AND_RETURN_FALSE(signatures_message_data_.empty());
TEST_AND_RETURN_FALSE(buffer_offset_ == manifest_.signatures_offset());
TEST_AND_RETURN_FALSE(buffer_.size() >= manifest_.signatures_size());
signatures_message_data_.assign(
buffer_.begin(), buffer_.begin() + manifest_.signatures_size());
LOG(INFO) << "Extracted signature data of size "
<< manifest_.signatures_size() << " at "
<< manifest_.signatures_offset();
return true;
}
bool DeltaPerformer::GetPublicKey(string* out_public_key) {
out_public_key->clear();
if (utils::FileExists(public_key_path_.c_str())) {
LOG(INFO) << "Verifying using public key: " << public_key_path_;
return utils::ReadFile(public_key_path_, out_public_key);
}
// If this is an official build then we are not allowed to use public key
// from Omaha response.
if (!hardware_->IsOfficialBuild() && !install_plan_->public_key_rsa.empty()) {
LOG(INFO) << "Verifying using public key from Omaha response.";
return brillo::data_encoding::Base64Decode(install_plan_->public_key_rsa,
out_public_key);
}
LOG(INFO) << "No public keys found for verification.";
return true;
}
std::pair<std::unique_ptr<PayloadVerifier>, bool>
DeltaPerformer::CreatePayloadVerifier() {
if (utils::FileExists(update_certificates_path_.c_str())) {
LOG(INFO) << "Verifying using certificates: " << update_certificates_path_;
return {
PayloadVerifier::CreateInstanceFromZipPath(update_certificates_path_),
true};
}
string public_key;
if (!GetPublicKey(&public_key)) {
LOG(ERROR) << "Failed to read public key";
return {nullptr, true};
}
// Skips the verification if the public key is empty.
if (public_key.empty()) {
return {nullptr, false};
}
return {PayloadVerifier::CreateInstance(public_key), true};
}
ErrorCode DeltaPerformer::ValidateManifest() {
// Perform assorted checks to validation check the manifest, make sure it
// matches data from other sources, and that it is a supported version.
bool has_old_fields = std::any_of(manifest_.partitions().begin(),
manifest_.partitions().end(),
[](const PartitionUpdate& partition) {
return partition.has_old_partition_info();
});
// The presence of an old partition hash is the sole indicator for a delta
// update. Also, always treat the partial update as delta so that we can
// perform the minor version check correctly.
InstallPayloadType actual_payload_type =
(has_old_fields || manifest_.partial_update())
? InstallPayloadType::kDelta
: InstallPayloadType::kFull;
if (payload_->type == InstallPayloadType::kUnknown) {
LOG(INFO) << "Detected a '"
<< InstallPayloadTypeToString(actual_payload_type)
<< "' payload.";
payload_->type = actual_payload_type;
} else if (payload_->type != actual_payload_type) {
LOG(ERROR) << "InstallPlan expected a '"
<< InstallPayloadTypeToString(payload_->type)
<< "' payload but the downloaded manifest contains a '"
<< InstallPayloadTypeToString(actual_payload_type)
<< "' payload.";
return ErrorCode::kPayloadMismatchedType;
}
// Check that the minor version is compatible.
// TODO(xunchang) increment minor version & add check for partial update
if (actual_payload_type == InstallPayloadType::kFull) {
if (manifest_.minor_version() != kFullPayloadMinorVersion) {
LOG(ERROR) << "Manifest contains minor version "
<< manifest_.minor_version()
<< ", but all full payloads should have version "
<< kFullPayloadMinorVersion << ".";
return ErrorCode::kUnsupportedMinorPayloadVersion;
}
} else {
if (manifest_.minor_version() < kMinSupportedMinorPayloadVersion ||
manifest_.minor_version() > kMaxSupportedMinorPayloadVersion) {
LOG(ERROR) << "Manifest contains minor version "
<< manifest_.minor_version()
<< " not in the range of supported minor versions ["
<< kMinSupportedMinorPayloadVersion << ", "
<< kMaxSupportedMinorPayloadVersion << "].";
return ErrorCode::kUnsupportedMinorPayloadVersion;
}
}
ErrorCode error_code = CheckTimestampError();
if (error_code != ErrorCode::kSuccess) {
if (error_code == ErrorCode::kPayloadTimestampError) {
if (!hardware_->AllowDowngrade()) {
return ErrorCode::kPayloadTimestampError;
}
LOG(INFO) << "The current OS build allows downgrade, continuing to apply"
" the payload with an older timestamp.";
} else {
LOG(ERROR) << "Timestamp check returned "
<< utils::ErrorCodeToString(error_code);
return error_code;
}
}
// TODO(crbug.com/37661) we should be adding more and more manifest checks,
// such as partition boundaries, etc.
return ErrorCode::kSuccess;
}
ErrorCode DeltaPerformer::CheckTimestampError() const {
bool is_partial_update =
manifest_.has_partial_update() && manifest_.partial_update();
const auto& partitions = manifest_.partitions();
// Check version field for a given PartitionUpdate object. If an error
// is encountered, set |error_code| accordingly. If downgrade is detected,
// |downgrade_detected| is set. Return true if the program should continue
// to check the next partition or not, or false if it should exit early due
// to errors.
auto&& timestamp_valid = [this](const PartitionUpdate& partition,
bool allow_empty_version,
bool* downgrade_detected) -> ErrorCode {
const auto& partition_name = partition.partition_name();
if (!partition.has_version()) {
if (hardware_->GetVersionForLogging(partition_name).empty()) {
LOG(INFO) << partition_name << " does't have version, skipping "
<< "downgrade check.";
return ErrorCode::kSuccess;
}
if (allow_empty_version) {
return ErrorCode::kSuccess;
}
LOG(ERROR)
<< "PartitionUpdate " << partition_name
<< " doesn't have a version field. Not allowed in partial updates.";
return ErrorCode::kDownloadManifestParseError;
}
auto error_code =
hardware_->IsPartitionUpdateValid(partition_name, partition.version());
switch (error_code) {
case ErrorCode::kSuccess:
break;
case ErrorCode::kPayloadTimestampError:
*downgrade_detected = true;
LOG(WARNING) << "PartitionUpdate " << partition_name
<< " has an older version than partition on device.";
break;
default:
LOG(ERROR) << "IsPartitionUpdateValid(" << partition_name
<< ") returned" << utils::ErrorCodeToString(error_code);
break;
}
return error_code;
};
bool downgrade_detected = false;
if (is_partial_update) {
// for partial updates, all partition MUST have valid timestamps
// But max_timestamp can be empty
for (const auto& partition : partitions) {
auto error_code = timestamp_valid(
partition, false /* allow_empty_version */, &downgrade_detected);
if (error_code != ErrorCode::kSuccess &&
error_code != ErrorCode::kPayloadTimestampError) {
return error_code;
}
}
if (downgrade_detected) {
return ErrorCode::kPayloadTimestampError;
}
return ErrorCode::kSuccess;
}
// For non-partial updates, check max_timestamp first.
if (manifest_.max_timestamp() < hardware_->GetBuildTimestamp()) {
LOG(ERROR) << "The current OS build timestamp ("
<< hardware_->GetBuildTimestamp()
<< ") is newer than the maximum timestamp in the manifest ("
<< manifest_.max_timestamp() << ")";
return ErrorCode::kPayloadTimestampError;
}
// Otherwise... partitions can have empty timestamps.
for (const auto& partition : partitions) {
auto error_code = timestamp_valid(
partition, true /* allow_empty_version */, &downgrade_detected);
if (error_code != ErrorCode::kSuccess &&
error_code != ErrorCode::kPayloadTimestampError) {
return error_code;
}
}
if (downgrade_detected) {
return ErrorCode::kPayloadTimestampError;
}
return ErrorCode::kSuccess;
}
ErrorCode DeltaPerformer::ValidateOperationHash(
const InstallOperation& operation) {
if (!operation.data_sha256_hash().size()) {
if (!operation.data_length()) {
// Operations that do not have any data blob won't have any operation
// hash either. So, these operations are always considered validated
// since the metadata that contains all the non-data-blob portions of
// the operation has already been validated. This is true for both HTTP
// and HTTPS cases.
return ErrorCode::kSuccess;
}
// No hash is present for an operation that has data blobs. This shouldn't
// happen normally for any client that has this code, because the
// corresponding update should have been produced with the operation
// hashes. So if it happens it means either we've turned operation hash
// generation off in DeltaDiffGenerator or it's a regression of some sort.
// One caveat though: The last operation is a unused signature operation
// that doesn't have a hash at the time the manifest is created. So we
// should not complaint about that operation. This operation can be
// recognized by the fact that it's offset is mentioned in the manifest.
if (manifest_.signatures_offset() &&
manifest_.signatures_offset() == operation.data_offset()) {
LOG(INFO) << "Skipping hash verification for signature operation "
<< next_operation_num_ + 1;
} else {
if (install_plan_->hash_checks_mandatory) {
LOG(ERROR) << "Missing mandatory operation hash for operation "
<< next_operation_num_ + 1;
return ErrorCode::kDownloadOperationHashMissingError;
}
LOG(WARNING) << "Cannot validate operation " << next_operation_num_ + 1
<< " as there's no operation hash in manifest";
}
return ErrorCode::kSuccess;
}
brillo::Blob expected_op_hash;
expected_op_hash.assign(operation.data_sha256_hash().data(),
(operation.data_sha256_hash().data() +
operation.data_sha256_hash().size()));
brillo::Blob calculated_op_hash;
if (!HashCalculator::RawHashOfBytes(
buffer_.data(), operation.data_length(), &calculated_op_hash)) {
LOG(ERROR) << "Unable to compute actual hash of operation "
<< next_operation_num_;
return ErrorCode::kDownloadOperationHashVerificationError;
}
if (calculated_op_hash != expected_op_hash) {
LOG(ERROR) << "Hash verification failed for operation "
<< next_operation_num_ << ". Expected hash = ";
utils::HexDumpVector(expected_op_hash);
LOG(ERROR) << "Calculated hash over " << operation.data_length()
<< " bytes at offset: " << operation.data_offset() << " = ";
utils::HexDumpVector(calculated_op_hash);
return ErrorCode::kDownloadOperationHashMismatch;
}
return ErrorCode::kSuccess;
}
#define TEST_AND_RETURN_VAL(_retval, _condition) \
do { \
if (!(_condition)) { \
LOG(ERROR) << "VerifyPayload failure: " << #_condition; \
return _retval; \
} \
} while (0);
ErrorCode DeltaPerformer::VerifyPayload(
const brillo::Blob& update_check_response_hash,
const uint64_t update_check_response_size) {
// Verifies the download size.
if (update_check_response_size !=
metadata_size_ + metadata_signature_size_ + buffer_offset_) {
LOG(ERROR) << "update_check_response_size (" << update_check_response_size
<< ") doesn't match metadata_size (" << metadata_size_
<< ") + metadata_signature_size (" << metadata_signature_size_
<< ") + buffer_offset (" << buffer_offset_ << ").";
return ErrorCode::kPayloadSizeMismatchError;
}
// Verifies the payload hash.
TEST_AND_RETURN_VAL(ErrorCode::kDownloadPayloadVerificationError,
!payload_hash_calculator_.raw_hash().empty());
TEST_AND_RETURN_VAL(
ErrorCode::kPayloadHashMismatchError,
payload_hash_calculator_.raw_hash() == update_check_response_hash);
// NOLINTNEXTLINE(whitespace/braces)
auto [payload_verifier, perform_verification] = CreatePayloadVerifier();
if (!perform_verification) {
LOG(WARNING) << "Not verifying signed delta payload -- missing public key.";
return ErrorCode::kSuccess;
}
if (!payload_verifier) {
LOG(ERROR) << "Failed to create the payload verifier.";
return ErrorCode::kDownloadPayloadPubKeyVerificationError;
}
TEST_AND_RETURN_VAL(ErrorCode::kSignedDeltaPayloadExpectedError,
!signatures_message_data_.empty());
brillo::Blob hash_data = signed_hash_calculator_.raw_hash();
TEST_AND_RETURN_VAL(ErrorCode::kDownloadPayloadPubKeyVerificationError,
hash_data.size() == kSHA256Size);
if (!payload_verifier->VerifySignature(signatures_message_data_, hash_data)) {
// The autoupdate_CatchBadSignatures test checks for this string
// in log-files. Keep in sync.
LOG(ERROR) << "Public key verification failed, thus update failed.";
return ErrorCode::kDownloadPayloadPubKeyVerificationError;
}
LOG(INFO) << "Payload hash matches value in payload.";
return ErrorCode::kSuccess;
}
void DeltaPerformer::DiscardBuffer(bool do_advance_offset,
size_t signed_hash_buffer_size) {
// Update the buffer offset.
if (do_advance_offset)
buffer_offset_ += buffer_.size();
// Hash the content.
payload_hash_calculator_.Update(buffer_.data(), buffer_.size());
signed_hash_calculator_.Update(buffer_.data(), signed_hash_buffer_size);
// Swap content with an empty vector to ensure that all memory is released.
brillo::Blob().swap(buffer_);
}
bool DeltaPerformer::CanResumeUpdate(PrefsInterface* prefs,
const string& update_check_response_hash) {
int64_t next_operation = kUpdateStateOperationInvalid;
if (!(prefs->GetInt64(kPrefsUpdateStateNextOperation, &next_operation) &&
next_operation != kUpdateStateOperationInvalid && next_operation > 0))
return false;
string interrupted_hash;
if (!(prefs->GetString(kPrefsUpdateCheckResponseHash, &interrupted_hash) &&
!interrupted_hash.empty() &&
interrupted_hash == update_check_response_hash))
return false;
int64_t resumed_update_failures;
// Note that storing this value is optional, but if it is there it should
// not be more than the limit.
if (prefs->GetInt64(kPrefsResumedUpdateFailures, &resumed_update_failures) &&
resumed_update_failures > kMaxResumedUpdateFailures)
return false;
// Validation check the rest.
int64_t next_data_offset = -1;
if (!(prefs->GetInt64(kPrefsUpdateStateNextDataOffset, &next_data_offset) &&
next_data_offset >= 0))
return false;
string sha256_context;
if (!(prefs->GetString(kPrefsUpdateStateSHA256Context, &sha256_context) &&
!sha256_context.empty()))
return false;
int64_t manifest_metadata_size = 0;
if (!(prefs->GetInt64(kPrefsManifestMetadataSize, &manifest_metadata_size) &&
manifest_metadata_size > 0))
return false;
int64_t manifest_signature_size = 0;
if (!(prefs->GetInt64(kPrefsManifestSignatureSize,
&manifest_signature_size) &&
manifest_signature_size >= 0))
return false;
return true;
}
bool DeltaPerformer::ResetUpdateProgress(
PrefsInterface* prefs,
bool quick,
bool skip_dynamic_partititon_metadata_updated) {
TEST_AND_RETURN_FALSE(prefs->SetInt64(kPrefsUpdateStateNextOperation,
kUpdateStateOperationInvalid));
if (!quick) {
prefs->SetInt64(kPrefsUpdateStateNextDataOffset, -1);
prefs->SetInt64(kPrefsUpdateStateNextDataLength, 0);
prefs->SetString(kPrefsUpdateStateSHA256Context, "");
prefs->SetString(kPrefsUpdateStateSignedSHA256Context, "");
prefs->SetString(kPrefsUpdateStateSignatureBlob, "");
prefs->SetInt64(kPrefsManifestMetadataSize, -1);
prefs->SetInt64(kPrefsManifestSignatureSize, -1);
prefs->SetInt64(kPrefsResumedUpdateFailures, 0);
prefs->Delete(kPrefsPostInstallSucceeded);
prefs->Delete(kPrefsVerityWritten);
if (!skip_dynamic_partititon_metadata_updated) {
LOG(INFO) << "Resetting recorded hash for prepared partitions.";
prefs->Delete(kPrefsDynamicPartitionMetadataUpdated);
}
}
return true;
}
bool DeltaPerformer::ShouldCheckpoint() {
base::TimeTicks curr_time = base::TimeTicks::Now();
if (curr_time > update_checkpoint_time_) {
update_checkpoint_time_ = curr_time + update_checkpoint_wait_;
return true;
}
return false;
}
bool DeltaPerformer::CheckpointUpdateProgress(bool force) {
if (!force && !ShouldCheckpoint()) {
return false;
}
Terminator::set_exit_blocked(true);
if (last_updated_operation_num_ != next_operation_num_ || force) {
// Resets the progress in case we die in the middle of the state update.
ResetUpdateProgress(prefs_, true);
if (!signatures_message_data_.empty()) {
// Save the signature blob because if the update is interrupted after the
// download phase we don't go through this path anymore. Some alternatives
// to consider:
//
// 1. On resume, re-download the signature blob from the server and
// re-verify it.
//
// 2. Verify the signature as soon as it's received and don't checkpoint
// the blob and the signed sha-256 context.
LOG_IF(WARNING,
!prefs_->SetString(kPrefsUpdateStateSignatureBlob,
signatures_message_data_))
<< "Unable to store the signature blob.";
}
TEST_AND_RETURN_FALSE(prefs_->SetString(
kPrefsUpdateStateSHA256Context, payload_hash_calculator_.GetContext()));
TEST_AND_RETURN_FALSE(
prefs_->SetString(kPrefsUpdateStateSignedSHA256Context,
signed_hash_calculator_.GetContext()));
TEST_AND_RETURN_FALSE(
prefs_->SetInt64(kPrefsUpdateStateNextDataOffset, buffer_offset_));
last_updated_operation_num_ = next_operation_num_;
if (next_operation_num_ < num_total_operations_) {
size_t partition_index = current_partition_;
while (next_operation_num_ >= acc_num_operations_[partition_index]) {
partition_index++;
}
const size_t partition_operation_num =
next_operation_num_ -
(partition_index ? acc_num_operations_[partition_index - 1] : 0);
const InstallOperation& op =
partitions_[partition_index].operations(partition_operation_num);
TEST_AND_RETURN_FALSE(
prefs_->SetInt64(kPrefsUpdateStateNextDataLength, op.data_length()));
} else {
TEST_AND_RETURN_FALSE(
prefs_->SetInt64(kPrefsUpdateStateNextDataLength, 0));
}
if (partition_writer_) {
partition_writer_->CheckpointUpdateProgress(GetPartitionOperationNum());
} else {
CHECK_EQ(next_operation_num_, num_total_operations_)
<< "Partition writer is null, we are expected to finish all "
"operations: "
<< next_operation_num_ << "/" << num_total_operations_;
}
}
TEST_AND_RETURN_FALSE(
prefs_->SetInt64(kPrefsUpdateStateNextOperation, next_operation_num_));
return true;
}
bool DeltaPerformer::PrimeUpdateState() {
CHECK(manifest_valid_);
int64_t next_operation = kUpdateStateOperationInvalid;
if (!prefs_->GetInt64(kPrefsUpdateStateNextOperation, &next_operation) ||
next_operation == kUpdateStateOperationInvalid || next_operation <= 0) {
// Initiating a new update, no more state needs to be initialized.
return true;
}
next_operation_num_ = next_operation;
// Resuming an update -- load the rest of the update state.
int64_t next_data_offset = -1;
TEST_AND_RETURN_FALSE(
prefs_->GetInt64(kPrefsUpdateStateNextDataOffset, &next_data_offset) &&
next_data_offset >= 0);
buffer_offset_ = next_data_offset;
// The signed hash context and the signature blob may be empty if the
// interrupted update didn't reach the signature.
string signed_hash_context;
if (prefs_->GetString(kPrefsUpdateStateSignedSHA256Context,
&signed_hash_context)) {
TEST_AND_RETURN_FALSE(
signed_hash_calculator_.SetContext(signed_hash_context));
}
prefs_->GetString(kPrefsUpdateStateSignatureBlob, &signatures_message_data_);
string hash_context;
TEST_AND_RETURN_FALSE(
prefs_->GetString(kPrefsUpdateStateSHA256Context, &hash_context) &&
payload_hash_calculator_.SetContext(hash_context));
int64_t manifest_metadata_size = 0;
TEST_AND_RETURN_FALSE(
prefs_->GetInt64(kPrefsManifestMetadataSize, &manifest_metadata_size) &&
manifest_metadata_size > 0);
metadata_size_ = manifest_metadata_size;
int64_t manifest_signature_size = 0;
TEST_AND_RETURN_FALSE(
prefs_->GetInt64(kPrefsManifestSignatureSize, &manifest_signature_size) &&
manifest_signature_size >= 0);
metadata_signature_size_ = manifest_signature_size;
// Advance the download progress to reflect what doesn't need to be
// re-downloaded.
total_bytes_received_ += buffer_offset_;
// Speculatively count the resume as a failure.
int64_t resumed_update_failures;
if (prefs_->GetInt64(kPrefsResumedUpdateFailures, &resumed_update_failures)) {
resumed_update_failures++;
} else {
resumed_update_failures = 1;
}
prefs_->SetInt64(kPrefsResumedUpdateFailures, resumed_update_failures);
return true;
}
bool DeltaPerformer::IsDynamicPartition(const std::string& part_name,
uint32_t slot) {
return boot_control_->GetDynamicPartitionControl()->IsDynamicPartition(
part_name, slot);
}
std::unique_ptr<PartitionWriter> DeltaPerformer::CreatePartitionWriter(
const PartitionUpdate& partition_update,
const InstallPlan::Partition& install_part,
DynamicPartitionControlInterface* dynamic_control,
size_t block_size,
bool is_interactive,
bool is_dynamic_partition) {
return partition_writer::CreatePartitionWriter(
partition_update,
install_part,
dynamic_control,
block_size_,
interactive_,
IsDynamicPartition(install_part.name, install_plan_->target_slot));
}
} // namespace chromeos_update_engine