You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1551 lines
62 KiB
1551 lines
62 KiB
//
|
|
// Copyright (C) 2012 The Android Open Source Project
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
//
|
|
|
|
#include "update_engine/payload_consumer/delta_performer.h"
|
|
|
|
#include <errno.h>
|
|
#include <linux/fs.h>
|
|
|
|
#include <algorithm>
|
|
#include <cstring>
|
|
#include <map>
|
|
#include <memory>
|
|
#include <set>
|
|
#include <string>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include <base/files/file_util.h>
|
|
#include <base/format_macros.h>
|
|
#include <base/metrics/histogram_macros.h>
|
|
#include <base/strings/string_number_conversions.h>
|
|
#include <base/strings/string_util.h>
|
|
#include <base/strings/stringprintf.h>
|
|
#include <base/time/time.h>
|
|
#include <brillo/data_encoding.h>
|
|
#include <bsdiff/bspatch.h>
|
|
#include <google/protobuf/repeated_field.h>
|
|
#include <puffin/puffpatch.h>
|
|
|
|
#include "update_engine/common/constants.h"
|
|
#include "update_engine/common/download_action.h"
|
|
#include "update_engine/common/error_code.h"
|
|
#include "update_engine/common/error_code_utils.h"
|
|
#include "update_engine/common/hardware_interface.h"
|
|
#include "update_engine/common/prefs_interface.h"
|
|
#include "update_engine/common/subprocess.h"
|
|
#include "update_engine/common/terminator.h"
|
|
#include "update_engine/common/utils.h"
|
|
#include "update_engine/payload_consumer/bzip_extent_writer.h"
|
|
#include "update_engine/payload_consumer/cached_file_descriptor.h"
|
|
#include "update_engine/payload_consumer/certificate_parser_interface.h"
|
|
#include "update_engine/payload_consumer/extent_reader.h"
|
|
#include "update_engine/payload_consumer/extent_writer.h"
|
|
#include "update_engine/payload_consumer/partition_update_generator_interface.h"
|
|
#include "update_engine/payload_consumer/partition_writer.h"
|
|
#if USE_FEC
|
|
#include "update_engine/payload_consumer/fec_file_descriptor.h"
|
|
#endif // USE_FEC
|
|
#include "update_engine/payload_consumer/file_descriptor_utils.h"
|
|
#include "update_engine/payload_consumer/mount_history.h"
|
|
#include "update_engine/payload_consumer/payload_constants.h"
|
|
#include "update_engine/payload_consumer/payload_verifier.h"
|
|
#include "update_engine/payload_consumer/xz_extent_writer.h"
|
|
|
|
using google::protobuf::RepeatedPtrField;
|
|
using std::min;
|
|
using std::string;
|
|
using std::vector;
|
|
|
|
namespace chromeos_update_engine {
|
|
const unsigned DeltaPerformer::kProgressLogMaxChunks = 10;
|
|
const unsigned DeltaPerformer::kProgressLogTimeoutSeconds = 30;
|
|
const unsigned DeltaPerformer::kProgressDownloadWeight = 50;
|
|
const unsigned DeltaPerformer::kProgressOperationsWeight = 50;
|
|
const uint64_t DeltaPerformer::kCheckpointFrequencySeconds = 1;
|
|
|
|
namespace {
|
|
const int kUpdateStateOperationInvalid = -1;
|
|
const int kMaxResumedUpdateFailures = 10;
|
|
|
|
} // namespace
|
|
|
|
// Computes the ratio of |part| and |total|, scaled to |norm|, using integer
|
|
// arithmetic.
|
|
static uint64_t IntRatio(uint64_t part, uint64_t total, uint64_t norm) {
|
|
return part * norm / total;
|
|
}
|
|
|
|
void DeltaPerformer::LogProgress(const char* message_prefix) {
|
|
// Format operations total count and percentage.
|
|
string total_operations_str("?");
|
|
string completed_percentage_str("");
|
|
if (num_total_operations_) {
|
|
total_operations_str = std::to_string(num_total_operations_);
|
|
// Upcasting to 64-bit to avoid overflow, back to size_t for formatting.
|
|
completed_percentage_str = base::StringPrintf(
|
|
" (%" PRIu64 "%%)",
|
|
IntRatio(next_operation_num_, num_total_operations_, 100));
|
|
}
|
|
|
|
// Format download total count and percentage.
|
|
size_t payload_size = payload_->size;
|
|
string payload_size_str("?");
|
|
string downloaded_percentage_str("");
|
|
if (payload_size) {
|
|
payload_size_str = std::to_string(payload_size);
|
|
// Upcasting to 64-bit to avoid overflow, back to size_t for formatting.
|
|
downloaded_percentage_str = base::StringPrintf(
|
|
" (%" PRIu64 "%%)", IntRatio(total_bytes_received_, payload_size, 100));
|
|
}
|
|
|
|
LOG(INFO) << (message_prefix ? message_prefix : "") << next_operation_num_
|
|
<< "/" << total_operations_str << " operations"
|
|
<< completed_percentage_str << ", " << total_bytes_received_ << "/"
|
|
<< payload_size_str << " bytes downloaded"
|
|
<< downloaded_percentage_str << ", overall progress "
|
|
<< overall_progress_ << "%";
|
|
}
|
|
|
|
void DeltaPerformer::UpdateOverallProgress(bool force_log,
|
|
const char* message_prefix) {
|
|
// Compute our download and overall progress.
|
|
unsigned new_overall_progress = 0;
|
|
static_assert(kProgressDownloadWeight + kProgressOperationsWeight == 100,
|
|
"Progress weights don't add up");
|
|
// Only consider download progress if its total size is known; otherwise
|
|
// adjust the operations weight to compensate for the absence of download
|
|
// progress. Also, make sure to cap the download portion at
|
|
// kProgressDownloadWeight, in case we end up downloading more than we
|
|
// initially expected (this indicates a problem, but could generally happen).
|
|
// TODO(garnold) the correction of operations weight when we do not have the
|
|
// total payload size, as well as the conditional guard below, should both be
|
|
// eliminated once we ensure that the payload_size in the install plan is
|
|
// always given and is non-zero. This currently isn't the case during unit
|
|
// tests (see chromium-os:37969).
|
|
size_t payload_size = payload_->size;
|
|
unsigned actual_operations_weight = kProgressOperationsWeight;
|
|
if (payload_size)
|
|
new_overall_progress +=
|
|
min(static_cast<unsigned>(IntRatio(
|
|
total_bytes_received_, payload_size, kProgressDownloadWeight)),
|
|
kProgressDownloadWeight);
|
|
else
|
|
actual_operations_weight += kProgressDownloadWeight;
|
|
|
|
// Only add completed operations if their total number is known; we definitely
|
|
// expect an update to have at least one operation, so the expectation is that
|
|
// this will eventually reach |actual_operations_weight|.
|
|
if (num_total_operations_)
|
|
new_overall_progress += IntRatio(
|
|
next_operation_num_, num_total_operations_, actual_operations_weight);
|
|
|
|
// Progress ratio cannot recede, unless our assumptions about the total
|
|
// payload size, total number of operations, or the monotonicity of progress
|
|
// is breached.
|
|
if (new_overall_progress < overall_progress_) {
|
|
LOG(WARNING) << "progress counter receded from " << overall_progress_
|
|
<< "% down to " << new_overall_progress << "%; this is a bug";
|
|
force_log = true;
|
|
}
|
|
overall_progress_ = new_overall_progress;
|
|
|
|
// Update chunk index, log as needed: if forced by called, or we completed a
|
|
// progress chunk, or a timeout has expired.
|
|
base::TimeTicks curr_time = base::TimeTicks::Now();
|
|
unsigned curr_progress_chunk =
|
|
overall_progress_ * kProgressLogMaxChunks / 100;
|
|
if (force_log || curr_progress_chunk > last_progress_chunk_ ||
|
|
curr_time > forced_progress_log_time_) {
|
|
forced_progress_log_time_ = curr_time + forced_progress_log_wait_;
|
|
LogProgress(message_prefix);
|
|
}
|
|
last_progress_chunk_ = curr_progress_chunk;
|
|
}
|
|
|
|
size_t DeltaPerformer::CopyDataToBuffer(const char** bytes_p,
|
|
size_t* count_p,
|
|
size_t max) {
|
|
const size_t count = *count_p;
|
|
if (!count)
|
|
return 0; // Special case shortcut.
|
|
size_t read_len = min(count, max - buffer_.size());
|
|
const char* bytes_start = *bytes_p;
|
|
const char* bytes_end = bytes_start + read_len;
|
|
buffer_.reserve(max);
|
|
buffer_.insert(buffer_.end(), bytes_start, bytes_end);
|
|
*bytes_p = bytes_end;
|
|
*count_p = count - read_len;
|
|
return read_len;
|
|
}
|
|
|
|
bool DeltaPerformer::HandleOpResult(bool op_result,
|
|
const char* op_type_name,
|
|
ErrorCode* error) {
|
|
if (op_result)
|
|
return true;
|
|
|
|
LOG(ERROR) << "Failed to perform " << op_type_name << " operation "
|
|
<< next_operation_num_ << ", which is the operation "
|
|
<< GetPartitionOperationNum() << " in partition \""
|
|
<< partitions_[current_partition_].partition_name() << "\"";
|
|
if (*error == ErrorCode::kSuccess)
|
|
*error = ErrorCode::kDownloadOperationExecutionError;
|
|
return false;
|
|
}
|
|
|
|
int DeltaPerformer::Close() {
|
|
int err = -CloseCurrentPartition();
|
|
LOG_IF(ERROR,
|
|
!payload_hash_calculator_.Finalize() ||
|
|
!signed_hash_calculator_.Finalize())
|
|
<< "Unable to finalize the hash.";
|
|
if (!buffer_.empty()) {
|
|
LOG(INFO) << "Discarding " << buffer_.size() << " unused downloaded bytes";
|
|
if (err >= 0)
|
|
err = 1;
|
|
}
|
|
return -err;
|
|
}
|
|
|
|
int DeltaPerformer::CloseCurrentPartition() {
|
|
if (!partition_writer_) {
|
|
return 0;
|
|
}
|
|
int err = partition_writer_->Close();
|
|
partition_writer_ = nullptr;
|
|
return err;
|
|
}
|
|
|
|
bool DeltaPerformer::OpenCurrentPartition() {
|
|
if (current_partition_ >= partitions_.size())
|
|
return false;
|
|
|
|
const PartitionUpdate& partition = partitions_[current_partition_];
|
|
size_t num_previous_partitions =
|
|
install_plan_->partitions.size() - partitions_.size();
|
|
const InstallPlan::Partition& install_part =
|
|
install_plan_->partitions[num_previous_partitions + current_partition_];
|
|
auto dynamic_control = boot_control_->GetDynamicPartitionControl();
|
|
partition_writer_ = CreatePartitionWriter(
|
|
partition,
|
|
install_part,
|
|
dynamic_control,
|
|
block_size_,
|
|
interactive_,
|
|
IsDynamicPartition(install_part.name, install_plan_->target_slot));
|
|
// Open source fds if we have a delta payload, or for partitions in the
|
|
// partial update.
|
|
bool source_may_exist = manifest_.partial_update() ||
|
|
payload_->type == InstallPayloadType::kDelta;
|
|
const size_t partition_operation_num = GetPartitionOperationNum();
|
|
|
|
TEST_AND_RETURN_FALSE(partition_writer_->Init(
|
|
install_plan_, source_may_exist, partition_operation_num));
|
|
CheckpointUpdateProgress(true);
|
|
return true;
|
|
}
|
|
|
|
size_t DeltaPerformer::GetPartitionOperationNum() {
|
|
return next_operation_num_ -
|
|
(current_partition_ ? acc_num_operations_[current_partition_ - 1] : 0);
|
|
}
|
|
|
|
namespace {
|
|
|
|
void LogPartitionInfoHash(const PartitionInfo& info, const string& tag) {
|
|
string sha256 = brillo::data_encoding::Base64Encode(info.hash());
|
|
LOG(INFO) << "PartitionInfo " << tag << " sha256: " << sha256
|
|
<< " size: " << info.size();
|
|
}
|
|
|
|
void LogPartitionInfo(const vector<PartitionUpdate>& partitions) {
|
|
for (const PartitionUpdate& partition : partitions) {
|
|
if (partition.has_old_partition_info()) {
|
|
LogPartitionInfoHash(partition.old_partition_info(),
|
|
"old " + partition.partition_name());
|
|
}
|
|
LogPartitionInfoHash(partition.new_partition_info(),
|
|
"new " + partition.partition_name());
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
bool DeltaPerformer::IsHeaderParsed() const {
|
|
return metadata_size_ != 0;
|
|
}
|
|
|
|
MetadataParseResult DeltaPerformer::ParsePayloadMetadata(
|
|
const brillo::Blob& payload, ErrorCode* error) {
|
|
*error = ErrorCode::kSuccess;
|
|
|
|
if (!IsHeaderParsed()) {
|
|
MetadataParseResult result =
|
|
payload_metadata_.ParsePayloadHeader(payload, error);
|
|
if (result != MetadataParseResult::kSuccess)
|
|
return result;
|
|
|
|
metadata_size_ = payload_metadata_.GetMetadataSize();
|
|
metadata_signature_size_ = payload_metadata_.GetMetadataSignatureSize();
|
|
major_payload_version_ = payload_metadata_.GetMajorVersion();
|
|
|
|
// If the metadata size is present in install plan, check for it immediately
|
|
// even before waiting for that many number of bytes to be downloaded in the
|
|
// payload. This will prevent any attack which relies on us downloading data
|
|
// beyond the expected metadata size.
|
|
if (install_plan_->hash_checks_mandatory) {
|
|
if (payload_->metadata_size != metadata_size_) {
|
|
LOG(ERROR) << "Mandatory metadata size in Omaha response ("
|
|
<< payload_->metadata_size
|
|
<< ") is missing/incorrect, actual = " << metadata_size_;
|
|
*error = ErrorCode::kDownloadInvalidMetadataSize;
|
|
return MetadataParseResult::kError;
|
|
}
|
|
}
|
|
|
|
// Check that the |metadata signature size_| and |metadata_size_| are not
|
|
// very big numbers. This is necessary since |update_engine| needs to write
|
|
// these values into the buffer before being able to use them, and if an
|
|
// attacker sets these values to a very big number, the buffer will overflow
|
|
// and |update_engine| will crash. A simple way of solving this is to check
|
|
// that the size of both values is smaller than the payload itself.
|
|
if (metadata_size_ + metadata_signature_size_ > payload_->size) {
|
|
LOG(ERROR) << "The size of the metadata_size(" << metadata_size_ << ")"
|
|
<< " or metadata signature(" << metadata_signature_size_ << ")"
|
|
<< " is greater than the size of the payload"
|
|
<< "(" << payload_->size << ")";
|
|
*error = ErrorCode::kDownloadInvalidMetadataSize;
|
|
return MetadataParseResult::kError;
|
|
}
|
|
}
|
|
|
|
// Now that we have validated the metadata size, we should wait for the full
|
|
// metadata and its signature (if exist) to be read in before we can parse it.
|
|
if (payload.size() < metadata_size_ + metadata_signature_size_)
|
|
return MetadataParseResult::kInsufficientData;
|
|
|
|
// Log whether we validated the size or simply trusting what's in the payload
|
|
// here. This is logged here (after we received the full metadata data) so
|
|
// that we just log once (instead of logging n times) if it takes n
|
|
// DeltaPerformer::Write calls to download the full manifest.
|
|
if (payload_->metadata_size == metadata_size_) {
|
|
LOG(INFO) << "Manifest size in payload matches expected value from Omaha";
|
|
} else {
|
|
// For mandatory-cases, we'd have already returned a kMetadataParseError
|
|
// above. We'll be here only for non-mandatory cases. Just send a UMA stat.
|
|
LOG(WARNING) << "Ignoring missing/incorrect metadata size ("
|
|
<< payload_->metadata_size
|
|
<< ") in Omaha response as validation is not mandatory. "
|
|
<< "Trusting metadata size in payload = " << metadata_size_;
|
|
}
|
|
|
|
// NOLINTNEXTLINE(whitespace/braces)
|
|
auto [payload_verifier, perform_verification] = CreatePayloadVerifier();
|
|
if (!payload_verifier) {
|
|
LOG(ERROR) << "Failed to create payload verifier.";
|
|
*error = ErrorCode::kDownloadMetadataSignatureVerificationError;
|
|
if (perform_verification) {
|
|
return MetadataParseResult::kError;
|
|
}
|
|
} else {
|
|
// We have the full metadata in |payload|. Verify its integrity
|
|
// and authenticity based on the information we have in Omaha response.
|
|
*error = payload_metadata_.ValidateMetadataSignature(
|
|
payload, payload_->metadata_signature, *payload_verifier);
|
|
}
|
|
if (*error != ErrorCode::kSuccess) {
|
|
if (install_plan_->hash_checks_mandatory) {
|
|
// The autoupdate_CatchBadSignatures test checks for this string
|
|
// in log-files. Keep in sync.
|
|
LOG(ERROR) << "Mandatory metadata signature validation failed";
|
|
return MetadataParseResult::kError;
|
|
}
|
|
|
|
// For non-mandatory cases, just send a UMA stat.
|
|
LOG(WARNING) << "Ignoring metadata signature validation failures";
|
|
*error = ErrorCode::kSuccess;
|
|
}
|
|
|
|
// The payload metadata is deemed valid, it's safe to parse the protobuf.
|
|
if (!payload_metadata_.GetManifest(payload, &manifest_)) {
|
|
LOG(ERROR) << "Unable to parse manifest in update file.";
|
|
*error = ErrorCode::kDownloadManifestParseError;
|
|
return MetadataParseResult::kError;
|
|
}
|
|
|
|
manifest_parsed_ = true;
|
|
return MetadataParseResult::kSuccess;
|
|
}
|
|
|
|
#define OP_DURATION_HISTOGRAM(_op_name, _start_time) \
|
|
LOCAL_HISTOGRAM_CUSTOM_TIMES( \
|
|
"UpdateEngine.DownloadAction.InstallOperation::" _op_name ".Duration", \
|
|
(base::TimeTicks::Now() - _start_time), \
|
|
base::TimeDelta::FromMilliseconds(10), \
|
|
base::TimeDelta::FromMinutes(5), \
|
|
20);
|
|
|
|
// Wrapper around write. Returns true if all requested bytes
|
|
// were written, or false on any error, regardless of progress
|
|
// and stores an action exit code in |error|.
|
|
bool DeltaPerformer::Write(const void* bytes, size_t count, ErrorCode* error) {
|
|
*error = ErrorCode::kSuccess;
|
|
const char* c_bytes = reinterpret_cast<const char*>(bytes);
|
|
|
|
// Update the total byte downloaded count and the progress logs.
|
|
total_bytes_received_ += count;
|
|
UpdateOverallProgress(false, "Completed ");
|
|
|
|
while (!manifest_valid_) {
|
|
// Read data up to the needed limit; this is either maximium payload header
|
|
// size, or the full metadata size (once it becomes known).
|
|
const bool do_read_header = !IsHeaderParsed();
|
|
CopyDataToBuffer(
|
|
&c_bytes,
|
|
&count,
|
|
(do_read_header ? kMaxPayloadHeaderSize
|
|
: metadata_size_ + metadata_signature_size_));
|
|
|
|
MetadataParseResult result = ParsePayloadMetadata(buffer_, error);
|
|
if (result == MetadataParseResult::kError)
|
|
return false;
|
|
if (result == MetadataParseResult::kInsufficientData) {
|
|
// If we just processed the header, make an attempt on the manifest.
|
|
if (do_read_header && IsHeaderParsed())
|
|
continue;
|
|
|
|
return true;
|
|
}
|
|
|
|
// Checks the integrity of the payload manifest.
|
|
if ((*error = ValidateManifest()) != ErrorCode::kSuccess)
|
|
return false;
|
|
manifest_valid_ = true;
|
|
if (!install_plan_->is_resume) {
|
|
auto begin = reinterpret_cast<const char*>(buffer_.data());
|
|
prefs_->SetString(kPrefsManifestBytes, {begin, buffer_.size()});
|
|
}
|
|
|
|
// Clear the download buffer.
|
|
DiscardBuffer(false, metadata_size_);
|
|
|
|
block_size_ = manifest_.block_size();
|
|
|
|
// This populates |partitions_| and the |install_plan.partitions| with the
|
|
// list of partitions from the manifest.
|
|
if (!ParseManifestPartitions(error))
|
|
return false;
|
|
|
|
// |install_plan.partitions| was filled in, nothing need to be done here if
|
|
// the payload was already applied, returns false to terminate http fetcher,
|
|
// but keep |error| as ErrorCode::kSuccess.
|
|
if (payload_->already_applied)
|
|
return false;
|
|
|
|
num_total_operations_ = 0;
|
|
for (const auto& partition : partitions_) {
|
|
num_total_operations_ += partition.operations_size();
|
|
acc_num_operations_.push_back(num_total_operations_);
|
|
}
|
|
|
|
LOG_IF(WARNING,
|
|
!prefs_->SetInt64(kPrefsManifestMetadataSize, metadata_size_))
|
|
<< "Unable to save the manifest metadata size.";
|
|
LOG_IF(WARNING,
|
|
!prefs_->SetInt64(kPrefsManifestSignatureSize,
|
|
metadata_signature_size_))
|
|
<< "Unable to save the manifest signature size.";
|
|
|
|
if (!PrimeUpdateState()) {
|
|
*error = ErrorCode::kDownloadStateInitializationError;
|
|
LOG(ERROR) << "Unable to prime the update state.";
|
|
return false;
|
|
}
|
|
|
|
if (next_operation_num_ < acc_num_operations_[current_partition_]) {
|
|
if (!OpenCurrentPartition()) {
|
|
*error = ErrorCode::kInstallDeviceOpenError;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (next_operation_num_ > 0)
|
|
UpdateOverallProgress(true, "Resuming after ");
|
|
LOG(INFO) << "Starting to apply update payload operations";
|
|
}
|
|
|
|
while (next_operation_num_ < num_total_operations_) {
|
|
// Check if we should cancel the current attempt for any reason.
|
|
// In this case, *error will have already been populated with the reason
|
|
// why we're canceling.
|
|
if (download_delegate_ && download_delegate_->ShouldCancel(error))
|
|
return false;
|
|
|
|
// We know there are more operations to perform because we didn't reach the
|
|
// |num_total_operations_| limit yet.
|
|
if (next_operation_num_ >= acc_num_operations_[current_partition_]) {
|
|
if (partition_writer_) {
|
|
TEST_AND_RETURN_FALSE(partition_writer_->FinishedInstallOps());
|
|
}
|
|
CloseCurrentPartition();
|
|
// Skip until there are operations for current_partition_.
|
|
while (next_operation_num_ >= acc_num_operations_[current_partition_]) {
|
|
current_partition_++;
|
|
}
|
|
if (!OpenCurrentPartition()) {
|
|
*error = ErrorCode::kInstallDeviceOpenError;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
const InstallOperation& op =
|
|
partitions_[current_partition_].operations(GetPartitionOperationNum());
|
|
|
|
CopyDataToBuffer(&c_bytes, &count, op.data_length());
|
|
|
|
// Check whether we received all of the next operation's data payload.
|
|
if (!CanPerformInstallOperation(op))
|
|
return true;
|
|
|
|
// Validate the operation unconditionally. This helps prevent the
|
|
// exploitation of vulnerabilities in the patching libraries, e.g. bspatch.
|
|
// The hash of the patch data for a given operation is embedded in the
|
|
// payload metadata; and thus has been verified against the public key on
|
|
// device.
|
|
// Note: Validate must be called only if CanPerformInstallOperation is
|
|
// called. Otherwise, we might be failing operations before even if there
|
|
// isn't sufficient data to compute the proper hash.
|
|
*error = ValidateOperationHash(op);
|
|
if (*error != ErrorCode::kSuccess) {
|
|
if (install_plan_->hash_checks_mandatory) {
|
|
LOG(ERROR) << "Mandatory operation hash check failed";
|
|
return false;
|
|
}
|
|
|
|
// For non-mandatory cases, just send a UMA stat.
|
|
LOG(WARNING) << "Ignoring operation validation errors";
|
|
*error = ErrorCode::kSuccess;
|
|
}
|
|
|
|
// Makes sure we unblock exit when this operation completes.
|
|
ScopedTerminatorExitUnblocker exit_unblocker =
|
|
ScopedTerminatorExitUnblocker(); // Avoids a compiler unused var bug.
|
|
|
|
base::TimeTicks op_start_time = base::TimeTicks::Now();
|
|
|
|
bool op_result;
|
|
switch (op.type()) {
|
|
case InstallOperation::REPLACE:
|
|
case InstallOperation::REPLACE_BZ:
|
|
case InstallOperation::REPLACE_XZ:
|
|
op_result = PerformReplaceOperation(op);
|
|
OP_DURATION_HISTOGRAM("REPLACE", op_start_time);
|
|
break;
|
|
case InstallOperation::ZERO:
|
|
case InstallOperation::DISCARD:
|
|
op_result = PerformZeroOrDiscardOperation(op);
|
|
OP_DURATION_HISTOGRAM("ZERO_OR_DISCARD", op_start_time);
|
|
break;
|
|
case InstallOperation::SOURCE_COPY:
|
|
op_result = PerformSourceCopyOperation(op, error);
|
|
OP_DURATION_HISTOGRAM("SOURCE_COPY", op_start_time);
|
|
break;
|
|
case InstallOperation::SOURCE_BSDIFF:
|
|
case InstallOperation::BROTLI_BSDIFF:
|
|
op_result = PerformSourceBsdiffOperation(op, error);
|
|
OP_DURATION_HISTOGRAM("SOURCE_BSDIFF", op_start_time);
|
|
break;
|
|
case InstallOperation::PUFFDIFF:
|
|
op_result = PerformPuffDiffOperation(op, error);
|
|
OP_DURATION_HISTOGRAM("PUFFDIFF", op_start_time);
|
|
break;
|
|
default:
|
|
op_result = false;
|
|
}
|
|
if (!HandleOpResult(op_result, InstallOperationTypeName(op.type()), error))
|
|
return false;
|
|
|
|
next_operation_num_++;
|
|
UpdateOverallProgress(false, "Completed ");
|
|
CheckpointUpdateProgress(false);
|
|
}
|
|
|
|
if (partition_writer_) {
|
|
TEST_AND_RETURN_FALSE(partition_writer_->FinishedInstallOps());
|
|
}
|
|
CloseCurrentPartition();
|
|
|
|
// In major version 2, we don't add unused operation to the payload.
|
|
// If we already extracted the signature we should skip this step.
|
|
if (manifest_.has_signatures_offset() && manifest_.has_signatures_size() &&
|
|
signatures_message_data_.empty()) {
|
|
if (manifest_.signatures_offset() != buffer_offset_) {
|
|
LOG(ERROR) << "Payload signatures offset points to blob offset "
|
|
<< manifest_.signatures_offset()
|
|
<< " but signatures are expected at offset " << buffer_offset_;
|
|
*error = ErrorCode::kDownloadPayloadVerificationError;
|
|
return false;
|
|
}
|
|
CopyDataToBuffer(&c_bytes, &count, manifest_.signatures_size());
|
|
// Needs more data to cover entire signature.
|
|
if (buffer_.size() < manifest_.signatures_size())
|
|
return true;
|
|
if (!ExtractSignatureMessage()) {
|
|
LOG(ERROR) << "Extract payload signature failed.";
|
|
*error = ErrorCode::kDownloadPayloadVerificationError;
|
|
return false;
|
|
}
|
|
DiscardBuffer(true, 0);
|
|
// Since we extracted the SignatureMessage we need to advance the
|
|
// checkpoint, otherwise we would reload the signature and try to extract
|
|
// it again.
|
|
// This is the last checkpoint for an update, force this checkpoint to be
|
|
// saved.
|
|
CheckpointUpdateProgress(true);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool DeltaPerformer::IsManifestValid() {
|
|
return manifest_valid_;
|
|
}
|
|
|
|
bool DeltaPerformer::ParseManifestPartitions(ErrorCode* error) {
|
|
partitions_.clear();
|
|
for (const PartitionUpdate& partition : manifest_.partitions()) {
|
|
partitions_.push_back(partition);
|
|
}
|
|
|
|
// For VAB and partial updates, the partition preparation will copy the
|
|
// dynamic partitions metadata to the target metadata slot, and rename the
|
|
// slot suffix of the partitions in the metadata.
|
|
if (install_plan_->target_slot != BootControlInterface::kInvalidSlot) {
|
|
uint64_t required_size = 0;
|
|
if (!PreparePartitionsForUpdate(&required_size)) {
|
|
if (required_size > 0) {
|
|
*error = ErrorCode::kNotEnoughSpace;
|
|
} else {
|
|
*error = ErrorCode::kInstallDeviceOpenError;
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Partitions in manifest are no longer needed after preparing partitions.
|
|
manifest_.clear_partitions();
|
|
// TODO(xunchang) TBD: allow partial update only on devices with dynamic
|
|
// partition.
|
|
if (manifest_.partial_update()) {
|
|
std::set<std::string> touched_partitions;
|
|
for (const auto& partition_update : partitions_) {
|
|
touched_partitions.insert(partition_update.partition_name());
|
|
}
|
|
|
|
auto generator = partition_update_generator::Create(boot_control_,
|
|
manifest_.block_size());
|
|
std::vector<PartitionUpdate> untouched_static_partitions;
|
|
TEST_AND_RETURN_FALSE(
|
|
generator->GenerateOperationsForPartitionsNotInPayload(
|
|
install_plan_->source_slot,
|
|
install_plan_->target_slot,
|
|
touched_partitions,
|
|
&untouched_static_partitions));
|
|
partitions_.insert(partitions_.end(),
|
|
untouched_static_partitions.begin(),
|
|
untouched_static_partitions.end());
|
|
|
|
// Save the untouched dynamic partitions in install plan.
|
|
std::vector<std::string> dynamic_partitions;
|
|
if (!boot_control_->GetDynamicPartitionControl()
|
|
->ListDynamicPartitionsForSlot(install_plan_->source_slot,
|
|
boot_control_->GetCurrentSlot(),
|
|
&dynamic_partitions)) {
|
|
LOG(ERROR) << "Failed to load dynamic partitions from slot "
|
|
<< install_plan_->source_slot;
|
|
return false;
|
|
}
|
|
install_plan_->untouched_dynamic_partitions.clear();
|
|
for (const auto& name : dynamic_partitions) {
|
|
if (touched_partitions.find(name) == touched_partitions.end()) {
|
|
install_plan_->untouched_dynamic_partitions.push_back(name);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Fill in the InstallPlan::partitions based on the partitions from the
|
|
// payload.
|
|
for (const auto& partition : partitions_) {
|
|
InstallPlan::Partition install_part;
|
|
install_part.name = partition.partition_name();
|
|
install_part.run_postinstall =
|
|
partition.has_run_postinstall() && partition.run_postinstall();
|
|
if (install_part.run_postinstall) {
|
|
install_part.postinstall_path =
|
|
(partition.has_postinstall_path() ? partition.postinstall_path()
|
|
: kPostinstallDefaultScript);
|
|
install_part.filesystem_type = partition.filesystem_type();
|
|
install_part.postinstall_optional = partition.postinstall_optional();
|
|
}
|
|
|
|
if (partition.has_old_partition_info()) {
|
|
const PartitionInfo& info = partition.old_partition_info();
|
|
install_part.source_size = info.size();
|
|
install_part.source_hash.assign(info.hash().begin(), info.hash().end());
|
|
}
|
|
|
|
if (!partition.has_new_partition_info()) {
|
|
LOG(ERROR) << "Unable to get new partition hash info on partition "
|
|
<< install_part.name << ".";
|
|
*error = ErrorCode::kDownloadNewPartitionInfoError;
|
|
return false;
|
|
}
|
|
const PartitionInfo& info = partition.new_partition_info();
|
|
install_part.target_size = info.size();
|
|
install_part.target_hash.assign(info.hash().begin(), info.hash().end());
|
|
|
|
install_part.block_size = block_size_;
|
|
if (partition.has_hash_tree_extent()) {
|
|
Extent extent = partition.hash_tree_data_extent();
|
|
install_part.hash_tree_data_offset = extent.start_block() * block_size_;
|
|
install_part.hash_tree_data_size = extent.num_blocks() * block_size_;
|
|
extent = partition.hash_tree_extent();
|
|
install_part.hash_tree_offset = extent.start_block() * block_size_;
|
|
install_part.hash_tree_size = extent.num_blocks() * block_size_;
|
|
uint64_t hash_tree_data_end =
|
|
install_part.hash_tree_data_offset + install_part.hash_tree_data_size;
|
|
if (install_part.hash_tree_offset < hash_tree_data_end) {
|
|
LOG(ERROR) << "Invalid hash tree extents, hash tree data ends at "
|
|
<< hash_tree_data_end << ", but hash tree starts at "
|
|
<< install_part.hash_tree_offset;
|
|
*error = ErrorCode::kDownloadNewPartitionInfoError;
|
|
return false;
|
|
}
|
|
install_part.hash_tree_algorithm = partition.hash_tree_algorithm();
|
|
install_part.hash_tree_salt.assign(partition.hash_tree_salt().begin(),
|
|
partition.hash_tree_salt().end());
|
|
}
|
|
if (partition.has_fec_extent()) {
|
|
Extent extent = partition.fec_data_extent();
|
|
install_part.fec_data_offset = extent.start_block() * block_size_;
|
|
install_part.fec_data_size = extent.num_blocks() * block_size_;
|
|
extent = partition.fec_extent();
|
|
install_part.fec_offset = extent.start_block() * block_size_;
|
|
install_part.fec_size = extent.num_blocks() * block_size_;
|
|
uint64_t fec_data_end =
|
|
install_part.fec_data_offset + install_part.fec_data_size;
|
|
if (install_part.fec_offset < fec_data_end) {
|
|
LOG(ERROR) << "Invalid fec extents, fec data ends at " << fec_data_end
|
|
<< ", but fec starts at " << install_part.fec_offset;
|
|
*error = ErrorCode::kDownloadNewPartitionInfoError;
|
|
return false;
|
|
}
|
|
install_part.fec_roots = partition.fec_roots();
|
|
}
|
|
|
|
install_plan_->partitions.push_back(install_part);
|
|
}
|
|
|
|
// TODO(xunchang) only need to load the partitions for those in payload.
|
|
// Because we have already loaded the other once when generating SOURCE_COPY
|
|
// operations.
|
|
if (!install_plan_->LoadPartitionsFromSlots(boot_control_)) {
|
|
LOG(ERROR) << "Unable to determine all the partition devices.";
|
|
*error = ErrorCode::kInstallDeviceOpenError;
|
|
return false;
|
|
}
|
|
LogPartitionInfo(partitions_);
|
|
return true;
|
|
}
|
|
|
|
bool DeltaPerformer::PreparePartitionsForUpdate(uint64_t* required_size) {
|
|
// Call static PreparePartitionsForUpdate with hash from
|
|
// kPrefsUpdateCheckResponseHash to ensure hash of payload that space is
|
|
// preallocated for is the same as the hash of payload being applied.
|
|
string update_check_response_hash;
|
|
ignore_result(prefs_->GetString(kPrefsUpdateCheckResponseHash,
|
|
&update_check_response_hash));
|
|
return PreparePartitionsForUpdate(prefs_,
|
|
boot_control_,
|
|
install_plan_->target_slot,
|
|
manifest_,
|
|
update_check_response_hash,
|
|
required_size);
|
|
}
|
|
|
|
bool DeltaPerformer::PreparePartitionsForUpdate(
|
|
PrefsInterface* prefs,
|
|
BootControlInterface* boot_control,
|
|
BootControlInterface::Slot target_slot,
|
|
const DeltaArchiveManifest& manifest,
|
|
const std::string& update_check_response_hash,
|
|
uint64_t* required_size) {
|
|
string last_hash;
|
|
ignore_result(
|
|
prefs->GetString(kPrefsDynamicPartitionMetadataUpdated, &last_hash));
|
|
|
|
bool is_resume = !update_check_response_hash.empty() &&
|
|
last_hash == update_check_response_hash;
|
|
|
|
if (is_resume) {
|
|
LOG(INFO) << "Using previously prepared partitions for update. hash = "
|
|
<< last_hash;
|
|
} else {
|
|
LOG(INFO) << "Preparing partitions for new update. last hash = "
|
|
<< last_hash << ", new hash = " << update_check_response_hash;
|
|
ResetUpdateProgress(prefs, false);
|
|
}
|
|
|
|
if (!boot_control->GetDynamicPartitionControl()->PreparePartitionsForUpdate(
|
|
boot_control->GetCurrentSlot(),
|
|
target_slot,
|
|
manifest,
|
|
!is_resume /* should update */,
|
|
required_size)) {
|
|
LOG(ERROR) << "Unable to initialize partition metadata for slot "
|
|
<< BootControlInterface::SlotName(target_slot);
|
|
return false;
|
|
}
|
|
|
|
TEST_AND_RETURN_FALSE(prefs->SetString(kPrefsDynamicPartitionMetadataUpdated,
|
|
update_check_response_hash));
|
|
LOG(INFO) << "PreparePartitionsForUpdate done.";
|
|
|
|
return true;
|
|
}
|
|
|
|
bool DeltaPerformer::CanPerformInstallOperation(
|
|
const chromeos_update_engine::InstallOperation& operation) {
|
|
// If we don't have a data blob we can apply it right away.
|
|
if (!operation.has_data_offset() && !operation.has_data_length())
|
|
return true;
|
|
|
|
// See if we have the entire data blob in the buffer
|
|
if (operation.data_offset() < buffer_offset_) {
|
|
LOG(ERROR) << "we threw away data it seems?";
|
|
return false;
|
|
}
|
|
|
|
return (operation.data_offset() + operation.data_length() <=
|
|
buffer_offset_ + buffer_.size());
|
|
}
|
|
|
|
bool DeltaPerformer::PerformReplaceOperation(
|
|
const InstallOperation& operation) {
|
|
CHECK(operation.type() == InstallOperation::REPLACE ||
|
|
operation.type() == InstallOperation::REPLACE_BZ ||
|
|
operation.type() == InstallOperation::REPLACE_XZ);
|
|
|
|
// Since we delete data off the beginning of the buffer as we use it,
|
|
// the data we need should be exactly at the beginning of the buffer.
|
|
TEST_AND_RETURN_FALSE(buffer_.size() >= operation.data_length());
|
|
|
|
TEST_AND_RETURN_FALSE(partition_writer_->PerformReplaceOperation(
|
|
operation, buffer_.data(), buffer_.size()));
|
|
// Update buffer
|
|
DiscardBuffer(true, buffer_.size());
|
|
return true;
|
|
}
|
|
|
|
bool DeltaPerformer::PerformZeroOrDiscardOperation(
|
|
const InstallOperation& operation) {
|
|
CHECK(operation.type() == InstallOperation::DISCARD ||
|
|
operation.type() == InstallOperation::ZERO);
|
|
|
|
// These operations have no blob.
|
|
TEST_AND_RETURN_FALSE(!operation.has_data_offset());
|
|
TEST_AND_RETURN_FALSE(!operation.has_data_length());
|
|
|
|
return partition_writer_->PerformZeroOrDiscardOperation(operation);
|
|
}
|
|
|
|
bool PartitionWriter::ValidateSourceHash(const brillo::Blob& calculated_hash,
|
|
const InstallOperation& operation,
|
|
const FileDescriptorPtr source_fd,
|
|
ErrorCode* error) {
|
|
brillo::Blob expected_source_hash(operation.src_sha256_hash().begin(),
|
|
operation.src_sha256_hash().end());
|
|
if (calculated_hash != expected_source_hash) {
|
|
LOG(ERROR) << "The hash of the source data on disk for this operation "
|
|
<< "doesn't match the expected value. This could mean that the "
|
|
<< "delta update payload was targeted for another version, or "
|
|
<< "that the source partition was modified after it was "
|
|
<< "installed, for example, by mounting a filesystem.";
|
|
LOG(ERROR) << "Expected: sha256|hex = "
|
|
<< base::HexEncode(expected_source_hash.data(),
|
|
expected_source_hash.size());
|
|
LOG(ERROR) << "Calculated: sha256|hex = "
|
|
<< base::HexEncode(calculated_hash.data(),
|
|
calculated_hash.size());
|
|
|
|
vector<string> source_extents;
|
|
for (const Extent& ext : operation.src_extents()) {
|
|
source_extents.push_back(
|
|
base::StringPrintf("%" PRIu64 ":%" PRIu64,
|
|
static_cast<uint64_t>(ext.start_block()),
|
|
static_cast<uint64_t>(ext.num_blocks())));
|
|
}
|
|
LOG(ERROR) << "Operation source (offset:size) in blocks: "
|
|
<< base::JoinString(source_extents, ",");
|
|
|
|
// Log remount history if this device is an ext4 partition.
|
|
LogMountHistory(source_fd);
|
|
|
|
*error = ErrorCode::kDownloadStateInitializationError;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool DeltaPerformer::PerformSourceCopyOperation(
|
|
const InstallOperation& operation, ErrorCode* error) {
|
|
if (operation.has_src_length())
|
|
TEST_AND_RETURN_FALSE(operation.src_length() % block_size_ == 0);
|
|
if (operation.has_dst_length())
|
|
TEST_AND_RETURN_FALSE(operation.dst_length() % block_size_ == 0);
|
|
return partition_writer_->PerformSourceCopyOperation(operation, error);
|
|
}
|
|
|
|
bool DeltaPerformer::ExtentsToBsdiffPositionsString(
|
|
const RepeatedPtrField<Extent>& extents,
|
|
uint64_t block_size,
|
|
uint64_t full_length,
|
|
string* positions_string) {
|
|
string ret;
|
|
uint64_t length = 0;
|
|
for (const Extent& extent : extents) {
|
|
int64_t start = extent.start_block() * block_size;
|
|
uint64_t this_length =
|
|
min(full_length - length,
|
|
static_cast<uint64_t>(extent.num_blocks()) * block_size);
|
|
ret += base::StringPrintf("%" PRIi64 ":%" PRIu64 ",", start, this_length);
|
|
length += this_length;
|
|
}
|
|
TEST_AND_RETURN_FALSE(length == full_length);
|
|
if (!ret.empty())
|
|
ret.resize(ret.size() - 1); // Strip trailing comma off
|
|
*positions_string = ret;
|
|
return true;
|
|
}
|
|
|
|
bool DeltaPerformer::PerformSourceBsdiffOperation(
|
|
const InstallOperation& operation, ErrorCode* error) {
|
|
// Since we delete data off the beginning of the buffer as we use it,
|
|
// the data we need should be exactly at the beginning of the buffer.
|
|
TEST_AND_RETURN_FALSE(buffer_offset_ == operation.data_offset());
|
|
TEST_AND_RETURN_FALSE(buffer_.size() >= operation.data_length());
|
|
if (operation.has_src_length())
|
|
TEST_AND_RETURN_FALSE(operation.src_length() % block_size_ == 0);
|
|
if (operation.has_dst_length())
|
|
TEST_AND_RETURN_FALSE(operation.dst_length() % block_size_ == 0);
|
|
|
|
TEST_AND_RETURN_FALSE(partition_writer_->PerformSourceBsdiffOperation(
|
|
operation, error, buffer_.data(), buffer_.size()));
|
|
DiscardBuffer(true, buffer_.size());
|
|
return true;
|
|
}
|
|
|
|
bool DeltaPerformer::PerformPuffDiffOperation(const InstallOperation& operation,
|
|
ErrorCode* error) {
|
|
// Since we delete data off the beginning of the buffer as we use it,
|
|
// the data we need should be exactly at the beginning of the buffer.
|
|
TEST_AND_RETURN_FALSE(buffer_offset_ == operation.data_offset());
|
|
TEST_AND_RETURN_FALSE(buffer_.size() >= operation.data_length());
|
|
TEST_AND_RETURN_FALSE(partition_writer_->PerformPuffDiffOperation(
|
|
operation, error, buffer_.data(), buffer_.size()));
|
|
DiscardBuffer(true, buffer_.size());
|
|
return true;
|
|
}
|
|
|
|
bool DeltaPerformer::ExtractSignatureMessage() {
|
|
TEST_AND_RETURN_FALSE(signatures_message_data_.empty());
|
|
TEST_AND_RETURN_FALSE(buffer_offset_ == manifest_.signatures_offset());
|
|
TEST_AND_RETURN_FALSE(buffer_.size() >= manifest_.signatures_size());
|
|
signatures_message_data_.assign(
|
|
buffer_.begin(), buffer_.begin() + manifest_.signatures_size());
|
|
|
|
LOG(INFO) << "Extracted signature data of size "
|
|
<< manifest_.signatures_size() << " at "
|
|
<< manifest_.signatures_offset();
|
|
return true;
|
|
}
|
|
|
|
bool DeltaPerformer::GetPublicKey(string* out_public_key) {
|
|
out_public_key->clear();
|
|
|
|
if (utils::FileExists(public_key_path_.c_str())) {
|
|
LOG(INFO) << "Verifying using public key: " << public_key_path_;
|
|
return utils::ReadFile(public_key_path_, out_public_key);
|
|
}
|
|
|
|
// If this is an official build then we are not allowed to use public key
|
|
// from Omaha response.
|
|
if (!hardware_->IsOfficialBuild() && !install_plan_->public_key_rsa.empty()) {
|
|
LOG(INFO) << "Verifying using public key from Omaha response.";
|
|
return brillo::data_encoding::Base64Decode(install_plan_->public_key_rsa,
|
|
out_public_key);
|
|
}
|
|
LOG(INFO) << "No public keys found for verification.";
|
|
return true;
|
|
}
|
|
|
|
std::pair<std::unique_ptr<PayloadVerifier>, bool>
|
|
DeltaPerformer::CreatePayloadVerifier() {
|
|
if (utils::FileExists(update_certificates_path_.c_str())) {
|
|
LOG(INFO) << "Verifying using certificates: " << update_certificates_path_;
|
|
return {
|
|
PayloadVerifier::CreateInstanceFromZipPath(update_certificates_path_),
|
|
true};
|
|
}
|
|
|
|
string public_key;
|
|
if (!GetPublicKey(&public_key)) {
|
|
LOG(ERROR) << "Failed to read public key";
|
|
return {nullptr, true};
|
|
}
|
|
|
|
// Skips the verification if the public key is empty.
|
|
if (public_key.empty()) {
|
|
return {nullptr, false};
|
|
}
|
|
return {PayloadVerifier::CreateInstance(public_key), true};
|
|
}
|
|
|
|
ErrorCode DeltaPerformer::ValidateManifest() {
|
|
// Perform assorted checks to validation check the manifest, make sure it
|
|
// matches data from other sources, and that it is a supported version.
|
|
bool has_old_fields = std::any_of(manifest_.partitions().begin(),
|
|
manifest_.partitions().end(),
|
|
[](const PartitionUpdate& partition) {
|
|
return partition.has_old_partition_info();
|
|
});
|
|
|
|
// The presence of an old partition hash is the sole indicator for a delta
|
|
// update. Also, always treat the partial update as delta so that we can
|
|
// perform the minor version check correctly.
|
|
InstallPayloadType actual_payload_type =
|
|
(has_old_fields || manifest_.partial_update())
|
|
? InstallPayloadType::kDelta
|
|
: InstallPayloadType::kFull;
|
|
|
|
if (payload_->type == InstallPayloadType::kUnknown) {
|
|
LOG(INFO) << "Detected a '"
|
|
<< InstallPayloadTypeToString(actual_payload_type)
|
|
<< "' payload.";
|
|
payload_->type = actual_payload_type;
|
|
} else if (payload_->type != actual_payload_type) {
|
|
LOG(ERROR) << "InstallPlan expected a '"
|
|
<< InstallPayloadTypeToString(payload_->type)
|
|
<< "' payload but the downloaded manifest contains a '"
|
|
<< InstallPayloadTypeToString(actual_payload_type)
|
|
<< "' payload.";
|
|
return ErrorCode::kPayloadMismatchedType;
|
|
}
|
|
// Check that the minor version is compatible.
|
|
// TODO(xunchang) increment minor version & add check for partial update
|
|
if (actual_payload_type == InstallPayloadType::kFull) {
|
|
if (manifest_.minor_version() != kFullPayloadMinorVersion) {
|
|
LOG(ERROR) << "Manifest contains minor version "
|
|
<< manifest_.minor_version()
|
|
<< ", but all full payloads should have version "
|
|
<< kFullPayloadMinorVersion << ".";
|
|
return ErrorCode::kUnsupportedMinorPayloadVersion;
|
|
}
|
|
} else {
|
|
if (manifest_.minor_version() < kMinSupportedMinorPayloadVersion ||
|
|
manifest_.minor_version() > kMaxSupportedMinorPayloadVersion) {
|
|
LOG(ERROR) << "Manifest contains minor version "
|
|
<< manifest_.minor_version()
|
|
<< " not in the range of supported minor versions ["
|
|
<< kMinSupportedMinorPayloadVersion << ", "
|
|
<< kMaxSupportedMinorPayloadVersion << "].";
|
|
return ErrorCode::kUnsupportedMinorPayloadVersion;
|
|
}
|
|
}
|
|
|
|
ErrorCode error_code = CheckTimestampError();
|
|
if (error_code != ErrorCode::kSuccess) {
|
|
if (error_code == ErrorCode::kPayloadTimestampError) {
|
|
if (!hardware_->AllowDowngrade()) {
|
|
return ErrorCode::kPayloadTimestampError;
|
|
}
|
|
LOG(INFO) << "The current OS build allows downgrade, continuing to apply"
|
|
" the payload with an older timestamp.";
|
|
} else {
|
|
LOG(ERROR) << "Timestamp check returned "
|
|
<< utils::ErrorCodeToString(error_code);
|
|
return error_code;
|
|
}
|
|
}
|
|
|
|
// TODO(crbug.com/37661) we should be adding more and more manifest checks,
|
|
// such as partition boundaries, etc.
|
|
|
|
return ErrorCode::kSuccess;
|
|
}
|
|
|
|
ErrorCode DeltaPerformer::CheckTimestampError() const {
|
|
bool is_partial_update =
|
|
manifest_.has_partial_update() && manifest_.partial_update();
|
|
const auto& partitions = manifest_.partitions();
|
|
|
|
// Check version field for a given PartitionUpdate object. If an error
|
|
// is encountered, set |error_code| accordingly. If downgrade is detected,
|
|
// |downgrade_detected| is set. Return true if the program should continue
|
|
// to check the next partition or not, or false if it should exit early due
|
|
// to errors.
|
|
auto&& timestamp_valid = [this](const PartitionUpdate& partition,
|
|
bool allow_empty_version,
|
|
bool* downgrade_detected) -> ErrorCode {
|
|
const auto& partition_name = partition.partition_name();
|
|
if (!partition.has_version()) {
|
|
if (hardware_->GetVersionForLogging(partition_name).empty()) {
|
|
LOG(INFO) << partition_name << " does't have version, skipping "
|
|
<< "downgrade check.";
|
|
return ErrorCode::kSuccess;
|
|
}
|
|
|
|
if (allow_empty_version) {
|
|
return ErrorCode::kSuccess;
|
|
}
|
|
LOG(ERROR)
|
|
<< "PartitionUpdate " << partition_name
|
|
<< " doesn't have a version field. Not allowed in partial updates.";
|
|
return ErrorCode::kDownloadManifestParseError;
|
|
}
|
|
|
|
auto error_code =
|
|
hardware_->IsPartitionUpdateValid(partition_name, partition.version());
|
|
switch (error_code) {
|
|
case ErrorCode::kSuccess:
|
|
break;
|
|
case ErrorCode::kPayloadTimestampError:
|
|
*downgrade_detected = true;
|
|
LOG(WARNING) << "PartitionUpdate " << partition_name
|
|
<< " has an older version than partition on device.";
|
|
break;
|
|
default:
|
|
LOG(ERROR) << "IsPartitionUpdateValid(" << partition_name
|
|
<< ") returned" << utils::ErrorCodeToString(error_code);
|
|
break;
|
|
}
|
|
return error_code;
|
|
};
|
|
|
|
bool downgrade_detected = false;
|
|
|
|
if (is_partial_update) {
|
|
// for partial updates, all partition MUST have valid timestamps
|
|
// But max_timestamp can be empty
|
|
for (const auto& partition : partitions) {
|
|
auto error_code = timestamp_valid(
|
|
partition, false /* allow_empty_version */, &downgrade_detected);
|
|
if (error_code != ErrorCode::kSuccess &&
|
|
error_code != ErrorCode::kPayloadTimestampError) {
|
|
return error_code;
|
|
}
|
|
}
|
|
if (downgrade_detected) {
|
|
return ErrorCode::kPayloadTimestampError;
|
|
}
|
|
return ErrorCode::kSuccess;
|
|
}
|
|
|
|
// For non-partial updates, check max_timestamp first.
|
|
if (manifest_.max_timestamp() < hardware_->GetBuildTimestamp()) {
|
|
LOG(ERROR) << "The current OS build timestamp ("
|
|
<< hardware_->GetBuildTimestamp()
|
|
<< ") is newer than the maximum timestamp in the manifest ("
|
|
<< manifest_.max_timestamp() << ")";
|
|
return ErrorCode::kPayloadTimestampError;
|
|
}
|
|
// Otherwise... partitions can have empty timestamps.
|
|
for (const auto& partition : partitions) {
|
|
auto error_code = timestamp_valid(
|
|
partition, true /* allow_empty_version */, &downgrade_detected);
|
|
if (error_code != ErrorCode::kSuccess &&
|
|
error_code != ErrorCode::kPayloadTimestampError) {
|
|
return error_code;
|
|
}
|
|
}
|
|
if (downgrade_detected) {
|
|
return ErrorCode::kPayloadTimestampError;
|
|
}
|
|
return ErrorCode::kSuccess;
|
|
}
|
|
|
|
ErrorCode DeltaPerformer::ValidateOperationHash(
|
|
const InstallOperation& operation) {
|
|
if (!operation.data_sha256_hash().size()) {
|
|
if (!operation.data_length()) {
|
|
// Operations that do not have any data blob won't have any operation
|
|
// hash either. So, these operations are always considered validated
|
|
// since the metadata that contains all the non-data-blob portions of
|
|
// the operation has already been validated. This is true for both HTTP
|
|
// and HTTPS cases.
|
|
return ErrorCode::kSuccess;
|
|
}
|
|
|
|
// No hash is present for an operation that has data blobs. This shouldn't
|
|
// happen normally for any client that has this code, because the
|
|
// corresponding update should have been produced with the operation
|
|
// hashes. So if it happens it means either we've turned operation hash
|
|
// generation off in DeltaDiffGenerator or it's a regression of some sort.
|
|
// One caveat though: The last operation is a unused signature operation
|
|
// that doesn't have a hash at the time the manifest is created. So we
|
|
// should not complaint about that operation. This operation can be
|
|
// recognized by the fact that it's offset is mentioned in the manifest.
|
|
if (manifest_.signatures_offset() &&
|
|
manifest_.signatures_offset() == operation.data_offset()) {
|
|
LOG(INFO) << "Skipping hash verification for signature operation "
|
|
<< next_operation_num_ + 1;
|
|
} else {
|
|
if (install_plan_->hash_checks_mandatory) {
|
|
LOG(ERROR) << "Missing mandatory operation hash for operation "
|
|
<< next_operation_num_ + 1;
|
|
return ErrorCode::kDownloadOperationHashMissingError;
|
|
}
|
|
|
|
LOG(WARNING) << "Cannot validate operation " << next_operation_num_ + 1
|
|
<< " as there's no operation hash in manifest";
|
|
}
|
|
return ErrorCode::kSuccess;
|
|
}
|
|
|
|
brillo::Blob expected_op_hash;
|
|
expected_op_hash.assign(operation.data_sha256_hash().data(),
|
|
(operation.data_sha256_hash().data() +
|
|
operation.data_sha256_hash().size()));
|
|
|
|
brillo::Blob calculated_op_hash;
|
|
if (!HashCalculator::RawHashOfBytes(
|
|
buffer_.data(), operation.data_length(), &calculated_op_hash)) {
|
|
LOG(ERROR) << "Unable to compute actual hash of operation "
|
|
<< next_operation_num_;
|
|
return ErrorCode::kDownloadOperationHashVerificationError;
|
|
}
|
|
|
|
if (calculated_op_hash != expected_op_hash) {
|
|
LOG(ERROR) << "Hash verification failed for operation "
|
|
<< next_operation_num_ << ". Expected hash = ";
|
|
utils::HexDumpVector(expected_op_hash);
|
|
LOG(ERROR) << "Calculated hash over " << operation.data_length()
|
|
<< " bytes at offset: " << operation.data_offset() << " = ";
|
|
utils::HexDumpVector(calculated_op_hash);
|
|
return ErrorCode::kDownloadOperationHashMismatch;
|
|
}
|
|
|
|
return ErrorCode::kSuccess;
|
|
}
|
|
|
|
#define TEST_AND_RETURN_VAL(_retval, _condition) \
|
|
do { \
|
|
if (!(_condition)) { \
|
|
LOG(ERROR) << "VerifyPayload failure: " << #_condition; \
|
|
return _retval; \
|
|
} \
|
|
} while (0);
|
|
|
|
ErrorCode DeltaPerformer::VerifyPayload(
|
|
const brillo::Blob& update_check_response_hash,
|
|
const uint64_t update_check_response_size) {
|
|
// Verifies the download size.
|
|
if (update_check_response_size !=
|
|
metadata_size_ + metadata_signature_size_ + buffer_offset_) {
|
|
LOG(ERROR) << "update_check_response_size (" << update_check_response_size
|
|
<< ") doesn't match metadata_size (" << metadata_size_
|
|
<< ") + metadata_signature_size (" << metadata_signature_size_
|
|
<< ") + buffer_offset (" << buffer_offset_ << ").";
|
|
return ErrorCode::kPayloadSizeMismatchError;
|
|
}
|
|
|
|
// Verifies the payload hash.
|
|
TEST_AND_RETURN_VAL(ErrorCode::kDownloadPayloadVerificationError,
|
|
!payload_hash_calculator_.raw_hash().empty());
|
|
TEST_AND_RETURN_VAL(
|
|
ErrorCode::kPayloadHashMismatchError,
|
|
payload_hash_calculator_.raw_hash() == update_check_response_hash);
|
|
|
|
// NOLINTNEXTLINE(whitespace/braces)
|
|
auto [payload_verifier, perform_verification] = CreatePayloadVerifier();
|
|
if (!perform_verification) {
|
|
LOG(WARNING) << "Not verifying signed delta payload -- missing public key.";
|
|
return ErrorCode::kSuccess;
|
|
}
|
|
if (!payload_verifier) {
|
|
LOG(ERROR) << "Failed to create the payload verifier.";
|
|
return ErrorCode::kDownloadPayloadPubKeyVerificationError;
|
|
}
|
|
|
|
TEST_AND_RETURN_VAL(ErrorCode::kSignedDeltaPayloadExpectedError,
|
|
!signatures_message_data_.empty());
|
|
brillo::Blob hash_data = signed_hash_calculator_.raw_hash();
|
|
TEST_AND_RETURN_VAL(ErrorCode::kDownloadPayloadPubKeyVerificationError,
|
|
hash_data.size() == kSHA256Size);
|
|
|
|
if (!payload_verifier->VerifySignature(signatures_message_data_, hash_data)) {
|
|
// The autoupdate_CatchBadSignatures test checks for this string
|
|
// in log-files. Keep in sync.
|
|
LOG(ERROR) << "Public key verification failed, thus update failed.";
|
|
return ErrorCode::kDownloadPayloadPubKeyVerificationError;
|
|
}
|
|
|
|
LOG(INFO) << "Payload hash matches value in payload.";
|
|
return ErrorCode::kSuccess;
|
|
}
|
|
|
|
void DeltaPerformer::DiscardBuffer(bool do_advance_offset,
|
|
size_t signed_hash_buffer_size) {
|
|
// Update the buffer offset.
|
|
if (do_advance_offset)
|
|
buffer_offset_ += buffer_.size();
|
|
|
|
// Hash the content.
|
|
payload_hash_calculator_.Update(buffer_.data(), buffer_.size());
|
|
signed_hash_calculator_.Update(buffer_.data(), signed_hash_buffer_size);
|
|
|
|
// Swap content with an empty vector to ensure that all memory is released.
|
|
brillo::Blob().swap(buffer_);
|
|
}
|
|
|
|
bool DeltaPerformer::CanResumeUpdate(PrefsInterface* prefs,
|
|
const string& update_check_response_hash) {
|
|
int64_t next_operation = kUpdateStateOperationInvalid;
|
|
if (!(prefs->GetInt64(kPrefsUpdateStateNextOperation, &next_operation) &&
|
|
next_operation != kUpdateStateOperationInvalid && next_operation > 0))
|
|
return false;
|
|
|
|
string interrupted_hash;
|
|
if (!(prefs->GetString(kPrefsUpdateCheckResponseHash, &interrupted_hash) &&
|
|
!interrupted_hash.empty() &&
|
|
interrupted_hash == update_check_response_hash))
|
|
return false;
|
|
|
|
int64_t resumed_update_failures;
|
|
// Note that storing this value is optional, but if it is there it should
|
|
// not be more than the limit.
|
|
if (prefs->GetInt64(kPrefsResumedUpdateFailures, &resumed_update_failures) &&
|
|
resumed_update_failures > kMaxResumedUpdateFailures)
|
|
return false;
|
|
|
|
// Validation check the rest.
|
|
int64_t next_data_offset = -1;
|
|
if (!(prefs->GetInt64(kPrefsUpdateStateNextDataOffset, &next_data_offset) &&
|
|
next_data_offset >= 0))
|
|
return false;
|
|
|
|
string sha256_context;
|
|
if (!(prefs->GetString(kPrefsUpdateStateSHA256Context, &sha256_context) &&
|
|
!sha256_context.empty()))
|
|
return false;
|
|
|
|
int64_t manifest_metadata_size = 0;
|
|
if (!(prefs->GetInt64(kPrefsManifestMetadataSize, &manifest_metadata_size) &&
|
|
manifest_metadata_size > 0))
|
|
return false;
|
|
|
|
int64_t manifest_signature_size = 0;
|
|
if (!(prefs->GetInt64(kPrefsManifestSignatureSize,
|
|
&manifest_signature_size) &&
|
|
manifest_signature_size >= 0))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool DeltaPerformer::ResetUpdateProgress(
|
|
PrefsInterface* prefs,
|
|
bool quick,
|
|
bool skip_dynamic_partititon_metadata_updated) {
|
|
TEST_AND_RETURN_FALSE(prefs->SetInt64(kPrefsUpdateStateNextOperation,
|
|
kUpdateStateOperationInvalid));
|
|
if (!quick) {
|
|
prefs->SetInt64(kPrefsUpdateStateNextDataOffset, -1);
|
|
prefs->SetInt64(kPrefsUpdateStateNextDataLength, 0);
|
|
prefs->SetString(kPrefsUpdateStateSHA256Context, "");
|
|
prefs->SetString(kPrefsUpdateStateSignedSHA256Context, "");
|
|
prefs->SetString(kPrefsUpdateStateSignatureBlob, "");
|
|
prefs->SetInt64(kPrefsManifestMetadataSize, -1);
|
|
prefs->SetInt64(kPrefsManifestSignatureSize, -1);
|
|
prefs->SetInt64(kPrefsResumedUpdateFailures, 0);
|
|
prefs->Delete(kPrefsPostInstallSucceeded);
|
|
prefs->Delete(kPrefsVerityWritten);
|
|
|
|
if (!skip_dynamic_partititon_metadata_updated) {
|
|
LOG(INFO) << "Resetting recorded hash for prepared partitions.";
|
|
prefs->Delete(kPrefsDynamicPartitionMetadataUpdated);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool DeltaPerformer::ShouldCheckpoint() {
|
|
base::TimeTicks curr_time = base::TimeTicks::Now();
|
|
if (curr_time > update_checkpoint_time_) {
|
|
update_checkpoint_time_ = curr_time + update_checkpoint_wait_;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool DeltaPerformer::CheckpointUpdateProgress(bool force) {
|
|
if (!force && !ShouldCheckpoint()) {
|
|
return false;
|
|
}
|
|
Terminator::set_exit_blocked(true);
|
|
if (last_updated_operation_num_ != next_operation_num_ || force) {
|
|
// Resets the progress in case we die in the middle of the state update.
|
|
ResetUpdateProgress(prefs_, true);
|
|
if (!signatures_message_data_.empty()) {
|
|
// Save the signature blob because if the update is interrupted after the
|
|
// download phase we don't go through this path anymore. Some alternatives
|
|
// to consider:
|
|
//
|
|
// 1. On resume, re-download the signature blob from the server and
|
|
// re-verify it.
|
|
//
|
|
// 2. Verify the signature as soon as it's received and don't checkpoint
|
|
// the blob and the signed sha-256 context.
|
|
LOG_IF(WARNING,
|
|
!prefs_->SetString(kPrefsUpdateStateSignatureBlob,
|
|
signatures_message_data_))
|
|
<< "Unable to store the signature blob.";
|
|
}
|
|
TEST_AND_RETURN_FALSE(prefs_->SetString(
|
|
kPrefsUpdateStateSHA256Context, payload_hash_calculator_.GetContext()));
|
|
TEST_AND_RETURN_FALSE(
|
|
prefs_->SetString(kPrefsUpdateStateSignedSHA256Context,
|
|
signed_hash_calculator_.GetContext()));
|
|
TEST_AND_RETURN_FALSE(
|
|
prefs_->SetInt64(kPrefsUpdateStateNextDataOffset, buffer_offset_));
|
|
last_updated_operation_num_ = next_operation_num_;
|
|
|
|
if (next_operation_num_ < num_total_operations_) {
|
|
size_t partition_index = current_partition_;
|
|
while (next_operation_num_ >= acc_num_operations_[partition_index]) {
|
|
partition_index++;
|
|
}
|
|
const size_t partition_operation_num =
|
|
next_operation_num_ -
|
|
(partition_index ? acc_num_operations_[partition_index - 1] : 0);
|
|
const InstallOperation& op =
|
|
partitions_[partition_index].operations(partition_operation_num);
|
|
TEST_AND_RETURN_FALSE(
|
|
prefs_->SetInt64(kPrefsUpdateStateNextDataLength, op.data_length()));
|
|
} else {
|
|
TEST_AND_RETURN_FALSE(
|
|
prefs_->SetInt64(kPrefsUpdateStateNextDataLength, 0));
|
|
}
|
|
if (partition_writer_) {
|
|
partition_writer_->CheckpointUpdateProgress(GetPartitionOperationNum());
|
|
} else {
|
|
CHECK_EQ(next_operation_num_, num_total_operations_)
|
|
<< "Partition writer is null, we are expected to finish all "
|
|
"operations: "
|
|
<< next_operation_num_ << "/" << num_total_operations_;
|
|
}
|
|
}
|
|
TEST_AND_RETURN_FALSE(
|
|
prefs_->SetInt64(kPrefsUpdateStateNextOperation, next_operation_num_));
|
|
return true;
|
|
}
|
|
|
|
bool DeltaPerformer::PrimeUpdateState() {
|
|
CHECK(manifest_valid_);
|
|
|
|
int64_t next_operation = kUpdateStateOperationInvalid;
|
|
if (!prefs_->GetInt64(kPrefsUpdateStateNextOperation, &next_operation) ||
|
|
next_operation == kUpdateStateOperationInvalid || next_operation <= 0) {
|
|
// Initiating a new update, no more state needs to be initialized.
|
|
return true;
|
|
}
|
|
next_operation_num_ = next_operation;
|
|
|
|
// Resuming an update -- load the rest of the update state.
|
|
int64_t next_data_offset = -1;
|
|
TEST_AND_RETURN_FALSE(
|
|
prefs_->GetInt64(kPrefsUpdateStateNextDataOffset, &next_data_offset) &&
|
|
next_data_offset >= 0);
|
|
buffer_offset_ = next_data_offset;
|
|
|
|
// The signed hash context and the signature blob may be empty if the
|
|
// interrupted update didn't reach the signature.
|
|
string signed_hash_context;
|
|
if (prefs_->GetString(kPrefsUpdateStateSignedSHA256Context,
|
|
&signed_hash_context)) {
|
|
TEST_AND_RETURN_FALSE(
|
|
signed_hash_calculator_.SetContext(signed_hash_context));
|
|
}
|
|
|
|
prefs_->GetString(kPrefsUpdateStateSignatureBlob, &signatures_message_data_);
|
|
|
|
string hash_context;
|
|
TEST_AND_RETURN_FALSE(
|
|
prefs_->GetString(kPrefsUpdateStateSHA256Context, &hash_context) &&
|
|
payload_hash_calculator_.SetContext(hash_context));
|
|
|
|
int64_t manifest_metadata_size = 0;
|
|
TEST_AND_RETURN_FALSE(
|
|
prefs_->GetInt64(kPrefsManifestMetadataSize, &manifest_metadata_size) &&
|
|
manifest_metadata_size > 0);
|
|
metadata_size_ = manifest_metadata_size;
|
|
|
|
int64_t manifest_signature_size = 0;
|
|
TEST_AND_RETURN_FALSE(
|
|
prefs_->GetInt64(kPrefsManifestSignatureSize, &manifest_signature_size) &&
|
|
manifest_signature_size >= 0);
|
|
metadata_signature_size_ = manifest_signature_size;
|
|
|
|
// Advance the download progress to reflect what doesn't need to be
|
|
// re-downloaded.
|
|
total_bytes_received_ += buffer_offset_;
|
|
|
|
// Speculatively count the resume as a failure.
|
|
int64_t resumed_update_failures;
|
|
if (prefs_->GetInt64(kPrefsResumedUpdateFailures, &resumed_update_failures)) {
|
|
resumed_update_failures++;
|
|
} else {
|
|
resumed_update_failures = 1;
|
|
}
|
|
prefs_->SetInt64(kPrefsResumedUpdateFailures, resumed_update_failures);
|
|
return true;
|
|
}
|
|
|
|
bool DeltaPerformer::IsDynamicPartition(const std::string& part_name,
|
|
uint32_t slot) {
|
|
return boot_control_->GetDynamicPartitionControl()->IsDynamicPartition(
|
|
part_name, slot);
|
|
}
|
|
|
|
std::unique_ptr<PartitionWriter> DeltaPerformer::CreatePartitionWriter(
|
|
const PartitionUpdate& partition_update,
|
|
const InstallPlan::Partition& install_part,
|
|
DynamicPartitionControlInterface* dynamic_control,
|
|
size_t block_size,
|
|
bool is_interactive,
|
|
bool is_dynamic_partition) {
|
|
return partition_writer::CreatePartitionWriter(
|
|
partition_update,
|
|
install_part,
|
|
dynamic_control,
|
|
block_size_,
|
|
interactive_,
|
|
IsDynamicPartition(install_part.name, install_plan_->target_slot));
|
|
}
|
|
|
|
} // namespace chromeos_update_engine
|