You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
247 lines
8.9 KiB
247 lines
8.9 KiB
/*
|
|
* Copyright (C) 2011 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#ifndef ART_RUNTIME_GC_ACCOUNTING_CARD_TABLE_INL_H_
|
|
#define ART_RUNTIME_GC_ACCOUNTING_CARD_TABLE_INL_H_
|
|
|
|
#include "card_table.h"
|
|
|
|
#include <android-base/logging.h>
|
|
|
|
#include "base/atomic.h"
|
|
#include "base/bit_utils.h"
|
|
#include "base/mem_map.h"
|
|
#include "space_bitmap.h"
|
|
|
|
namespace art {
|
|
namespace gc {
|
|
namespace accounting {
|
|
|
|
static inline bool byte_cas(uint8_t old_value, uint8_t new_value, uint8_t* address) {
|
|
#if defined(__i386__) || defined(__x86_64__)
|
|
Atomic<uint8_t>* byte_atomic = reinterpret_cast<Atomic<uint8_t>*>(address);
|
|
return byte_atomic->CompareAndSetWeakRelaxed(old_value, new_value);
|
|
#else
|
|
// Little endian means most significant byte is on the left.
|
|
const size_t shift_in_bytes = reinterpret_cast<uintptr_t>(address) % sizeof(uintptr_t);
|
|
// Align the address down.
|
|
address -= shift_in_bytes;
|
|
const size_t shift_in_bits = shift_in_bytes * kBitsPerByte;
|
|
Atomic<uintptr_t>* word_atomic = reinterpret_cast<Atomic<uintptr_t>*>(address);
|
|
|
|
// Word with the byte we are trying to cas cleared.
|
|
const uintptr_t cur_word = word_atomic->load(std::memory_order_relaxed) &
|
|
~(static_cast<uintptr_t>(0xFF) << shift_in_bits);
|
|
const uintptr_t old_word = cur_word | (static_cast<uintptr_t>(old_value) << shift_in_bits);
|
|
const uintptr_t new_word = cur_word | (static_cast<uintptr_t>(new_value) << shift_in_bits);
|
|
return word_atomic->CompareAndSetWeakRelaxed(old_word, new_word);
|
|
#endif
|
|
}
|
|
|
|
template <bool kClearCard, typename Visitor>
|
|
inline size_t CardTable::Scan(ContinuousSpaceBitmap* bitmap,
|
|
uint8_t* const scan_begin,
|
|
uint8_t* const scan_end,
|
|
const Visitor& visitor,
|
|
const uint8_t minimum_age) {
|
|
DCHECK_GE(scan_begin, reinterpret_cast<uint8_t*>(bitmap->HeapBegin()));
|
|
// scan_end is the byte after the last byte we scan.
|
|
DCHECK_LE(scan_end, reinterpret_cast<uint8_t*>(bitmap->HeapLimit()));
|
|
uint8_t* const card_begin = CardFromAddr(scan_begin);
|
|
uint8_t* const card_end = CardFromAddr(AlignUp(scan_end, kCardSize));
|
|
uint8_t* card_cur = card_begin;
|
|
CheckCardValid(card_cur);
|
|
CheckCardValid(card_end);
|
|
size_t cards_scanned = 0;
|
|
|
|
// Handle any unaligned cards at the start.
|
|
while (!IsAligned<sizeof(intptr_t)>(card_cur) && card_cur < card_end) {
|
|
if (*card_cur >= minimum_age) {
|
|
uintptr_t start = reinterpret_cast<uintptr_t>(AddrFromCard(card_cur));
|
|
bitmap->VisitMarkedRange(start, start + kCardSize, visitor);
|
|
++cards_scanned;
|
|
}
|
|
++card_cur;
|
|
}
|
|
|
|
if (card_cur < card_end) {
|
|
DCHECK_ALIGNED(card_cur, sizeof(intptr_t));
|
|
uint8_t* aligned_end = card_end -
|
|
(reinterpret_cast<uintptr_t>(card_end) & (sizeof(uintptr_t) - 1));
|
|
DCHECK_LE(card_cur, aligned_end);
|
|
|
|
uintptr_t* word_end = reinterpret_cast<uintptr_t*>(aligned_end);
|
|
for (uintptr_t* word_cur = reinterpret_cast<uintptr_t*>(card_cur); word_cur < word_end;
|
|
++word_cur) {
|
|
while (LIKELY(*word_cur == 0)) {
|
|
++word_cur;
|
|
if (UNLIKELY(word_cur >= word_end)) {
|
|
goto exit_for;
|
|
}
|
|
}
|
|
|
|
// Find the first dirty card.
|
|
uintptr_t start_word = *word_cur;
|
|
uintptr_t start =
|
|
reinterpret_cast<uintptr_t>(AddrFromCard(reinterpret_cast<uint8_t*>(word_cur)));
|
|
// TODO: Investigate if processing continuous runs of dirty cards with
|
|
// a single bitmap visit is more efficient.
|
|
for (size_t i = 0; i < sizeof(uintptr_t); ++i) {
|
|
if (static_cast<uint8_t>(start_word) >= minimum_age) {
|
|
auto* card = reinterpret_cast<uint8_t*>(word_cur) + i;
|
|
DCHECK(*card == static_cast<uint8_t>(start_word) || *card == kCardDirty)
|
|
<< "card " << static_cast<size_t>(*card) << " intptr_t " << (start_word & 0xFF);
|
|
bitmap->VisitMarkedRange(start, start + kCardSize, visitor);
|
|
++cards_scanned;
|
|
}
|
|
start_word >>= 8;
|
|
start += kCardSize;
|
|
}
|
|
}
|
|
exit_for:
|
|
|
|
// Handle any unaligned cards at the end.
|
|
card_cur = reinterpret_cast<uint8_t*>(word_end);
|
|
while (card_cur < card_end) {
|
|
if (*card_cur >= minimum_age) {
|
|
uintptr_t start = reinterpret_cast<uintptr_t>(AddrFromCard(card_cur));
|
|
bitmap->VisitMarkedRange(start, start + kCardSize, visitor);
|
|
++cards_scanned;
|
|
}
|
|
++card_cur;
|
|
}
|
|
}
|
|
|
|
if (kClearCard) {
|
|
ClearCardRange(scan_begin, scan_end);
|
|
}
|
|
|
|
return cards_scanned;
|
|
}
|
|
|
|
template <typename Visitor, typename ModifiedVisitor>
|
|
inline void CardTable::ModifyCardsAtomic(uint8_t* scan_begin,
|
|
uint8_t* scan_end,
|
|
const Visitor& visitor,
|
|
const ModifiedVisitor& modified) {
|
|
uint8_t* card_cur = CardFromAddr(scan_begin);
|
|
uint8_t* card_end = CardFromAddr(AlignUp(scan_end, kCardSize));
|
|
CheckCardValid(card_cur);
|
|
CheckCardValid(card_end);
|
|
DCHECK(visitor(kCardClean) == kCardClean);
|
|
|
|
// Handle any unaligned cards at the start.
|
|
while (!IsAligned<sizeof(intptr_t)>(card_cur) && card_cur < card_end) {
|
|
uint8_t expected, new_value;
|
|
do {
|
|
expected = *card_cur;
|
|
new_value = visitor(expected);
|
|
} while (expected != new_value && UNLIKELY(!byte_cas(expected, new_value, card_cur)));
|
|
if (expected != new_value) {
|
|
modified(card_cur, expected, new_value);
|
|
}
|
|
++card_cur;
|
|
}
|
|
|
|
// Handle unaligned cards at the end.
|
|
while (!IsAligned<sizeof(intptr_t)>(card_end) && card_end > card_cur) {
|
|
--card_end;
|
|
uint8_t expected, new_value;
|
|
do {
|
|
expected = *card_end;
|
|
new_value = visitor(expected);
|
|
} while (expected != new_value && UNLIKELY(!byte_cas(expected, new_value, card_end)));
|
|
if (expected != new_value) {
|
|
modified(card_end, expected, new_value);
|
|
}
|
|
}
|
|
|
|
// Now we have the words, we can process words in parallel.
|
|
uintptr_t* word_cur = reinterpret_cast<uintptr_t*>(card_cur);
|
|
uintptr_t* word_end = reinterpret_cast<uintptr_t*>(card_end);
|
|
// TODO: This is not big endian safe.
|
|
union {
|
|
uintptr_t expected_word;
|
|
uint8_t expected_bytes[sizeof(uintptr_t)];
|
|
};
|
|
union {
|
|
uintptr_t new_word;
|
|
uint8_t new_bytes[sizeof(uintptr_t)];
|
|
};
|
|
|
|
// TODO: Parallelize.
|
|
while (word_cur < word_end) {
|
|
while (true) {
|
|
expected_word = *word_cur;
|
|
static_assert(kCardClean == 0);
|
|
if (LIKELY(expected_word == 0 /* All kCardClean */ )) {
|
|
break;
|
|
}
|
|
for (size_t i = 0; i < sizeof(uintptr_t); ++i) {
|
|
new_bytes[i] = visitor(expected_bytes[i]);
|
|
}
|
|
Atomic<uintptr_t>* atomic_word = reinterpret_cast<Atomic<uintptr_t>*>(word_cur);
|
|
if (LIKELY(atomic_word->CompareAndSetWeakRelaxed(expected_word, new_word))) {
|
|
for (size_t i = 0; i < sizeof(uintptr_t); ++i) {
|
|
const uint8_t expected_byte = expected_bytes[i];
|
|
const uint8_t new_byte = new_bytes[i];
|
|
if (expected_byte != new_byte) {
|
|
modified(reinterpret_cast<uint8_t*>(word_cur) + i, expected_byte, new_byte);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
++word_cur;
|
|
}
|
|
}
|
|
|
|
inline void* CardTable::AddrFromCard(const uint8_t *card_addr) const {
|
|
DCHECK(IsValidCard(card_addr))
|
|
<< " card_addr: " << reinterpret_cast<const void*>(card_addr)
|
|
<< " begin: " << reinterpret_cast<void*>(mem_map_.Begin() + offset_)
|
|
<< " end: " << reinterpret_cast<void*>(mem_map_.End());
|
|
uintptr_t offset = card_addr - biased_begin_;
|
|
return reinterpret_cast<void*>(offset << kCardShift);
|
|
}
|
|
|
|
inline uint8_t* CardTable::CardFromAddr(const void *addr) const {
|
|
uint8_t *card_addr = biased_begin_ + (reinterpret_cast<uintptr_t>(addr) >> kCardShift);
|
|
// Check that the caller was asking for an address covered by the card table.
|
|
DCHECK(IsValidCard(card_addr)) << "addr: " << addr
|
|
<< " card_addr: " << reinterpret_cast<void*>(card_addr);
|
|
return card_addr;
|
|
}
|
|
|
|
inline bool CardTable::IsValidCard(const uint8_t* card_addr) const {
|
|
uint8_t* begin = mem_map_.Begin() + offset_;
|
|
uint8_t* end = mem_map_.End();
|
|
return card_addr >= begin && card_addr < end;
|
|
}
|
|
|
|
inline void CardTable::CheckCardValid(uint8_t* card) const {
|
|
DCHECK(IsValidCard(card))
|
|
<< " card_addr: " << reinterpret_cast<const void*>(card)
|
|
<< " begin: " << reinterpret_cast<void*>(mem_map_.Begin() + offset_)
|
|
<< " end: " << reinterpret_cast<void*>(mem_map_.End());
|
|
}
|
|
|
|
} // namespace accounting
|
|
} // namespace gc
|
|
} // namespace art
|
|
|
|
#endif // ART_RUNTIME_GC_ACCOUNTING_CARD_TABLE_INL_H_
|