You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
279 lines
11 KiB
279 lines
11 KiB
# Copyright 2013 The Android Open Source Project
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Verifies correct exposure control."""
|
|
|
|
|
|
import logging
|
|
import os.path
|
|
import matplotlib
|
|
from matplotlib import pylab
|
|
|
|
from mobly import test_runner
|
|
import numpy as np
|
|
|
|
import its_base_test
|
|
import camera_properties_utils
|
|
import capture_request_utils
|
|
import image_processing_utils
|
|
import its_session_utils
|
|
import target_exposure_utils
|
|
|
|
|
|
NAME = os.path.splitext(os.path.basename(__file__))[0]
|
|
NUM_PTS_2X_GAIN = 3 # 3 points every 2x increase in gain
|
|
PATCH_H = 0.1 # center 10% patch params
|
|
PATCH_W = 0.1
|
|
PATCH_X = 0.45
|
|
PATCH_Y = 0.45
|
|
RAW_STATS_GRID = 9 # define 9x9 (11.11%) spacing grid for rawStats processing
|
|
RAW_STATS_XY = RAW_STATS_GRID//2 # define X, Y location for center rawStats
|
|
THRESH_MIN_LEVEL = 0.1
|
|
THRESH_MAX_LEVEL = 0.9
|
|
THRESH_MAX_LEVEL_DIFF = 0.045
|
|
THRESH_MAX_LEVEL_DIFF_WIDE_RANGE = 0.06
|
|
THRESH_MAX_OUTLIER_DIFF = 0.1
|
|
THRESH_ROUND_DOWN_GAIN = 0.1
|
|
THRESH_ROUND_DOWN_EXP = 0.03
|
|
THRESH_ROUND_DOWN_EXP0 = 1.00 # TOL at 0ms exp; theoretical limit @ 4-line exp
|
|
THRESH_EXP_KNEE = 6E6 # exposures less than knee have relaxed tol
|
|
WIDE_EXP_RANGE_THRESH = 64.0 # threshold for 'wide' range sensor
|
|
|
|
|
|
def plot_rgb_means(title, x, r, g, b, log_path):
|
|
"""Plot the RGB mean data.
|
|
|
|
Args:
|
|
title: string for figure title
|
|
x: x values for plot, gain multiplier
|
|
r: r plane means
|
|
g: g plane means
|
|
b: b plane menas
|
|
log_path: path for saved files
|
|
"""
|
|
pylab.figure(title)
|
|
pylab.semilogx(x, r, 'ro-')
|
|
pylab.semilogx(x, g, 'go-')
|
|
pylab.semilogx(x, b, 'bo-')
|
|
pylab.title(NAME + title)
|
|
pylab.xlabel('Gain Multiplier')
|
|
pylab.ylabel('Normalized RGB Plane Avg')
|
|
pylab.minorticks_off()
|
|
pylab.xticks(x[0::NUM_PTS_2X_GAIN], x[0::NUM_PTS_2X_GAIN])
|
|
pylab.ylim([0, 1])
|
|
plot_name = '%s_plot_means.png' % os.path.join(log_path, NAME)
|
|
matplotlib.pyplot.savefig(plot_name)
|
|
|
|
|
|
def plot_raw_means(title, x, r, gr, gb, b, log_path):
|
|
"""Plot the RAW mean data.
|
|
|
|
Args:
|
|
title: string for figure title
|
|
x: x values for plot, gain multiplier
|
|
r: R plane means
|
|
gr: Gr plane means
|
|
gb: Gb plane means
|
|
b: B plane menas
|
|
log_path: path for saved files
|
|
"""
|
|
pylab.figure(title)
|
|
pylab.semilogx(x, r, 'ro-', label='R')
|
|
pylab.semilogx(x, gr, 'go-', label='Gr')
|
|
pylab.semilogx(x, gb, 'ko-', label='Gb')
|
|
pylab.semilogx(x, b, 'bo-', label='B')
|
|
pylab.title(NAME + title)
|
|
pylab.xlabel('Gain Multiplier')
|
|
pylab.ylabel('Normalized RAW Plane Avg')
|
|
pylab.minorticks_off()
|
|
pylab.xticks(x[0::NUM_PTS_2X_GAIN], x[0::NUM_PTS_2X_GAIN])
|
|
pylab.ylim([0, 1])
|
|
pylab.legend(numpoints=1)
|
|
plot_name = '%s_plot_raw_means.png' % os.path.join(log_path, NAME)
|
|
matplotlib.pyplot.savefig(plot_name)
|
|
|
|
|
|
def check_line_fit(chan, mults, values, thresh_max_level_diff):
|
|
"""Find line fit and check values.
|
|
|
|
Check for linearity. Verify sample pixel mean values are close to each
|
|
other. Also ensure that the images aren't clamped to 0 or 1
|
|
(which would also make them look like flat lines).
|
|
|
|
Args:
|
|
chan: integer number to define RGB or RAW channel
|
|
mults: list of multiplication values for gain*m, exp/m
|
|
values: mean values for chan
|
|
thresh_max_level_diff: threshold for max difference
|
|
"""
|
|
|
|
m, b = np.polyfit(mults, values, 1).tolist()
|
|
min_val = min(values)
|
|
max_val = max(values)
|
|
max_diff = max_val - min_val
|
|
logging.debug('Channel %d line fit (y = mx+b): m = %f, b = %f', chan, m, b)
|
|
logging.debug('Channel min %f max %f diff %f', min_val, max_val, max_diff)
|
|
if max_diff >= thresh_max_level_diff:
|
|
raise AssertionError(f'max_diff: {max_diff:.4f}, '
|
|
f'THRESH: {thresh_max_level_diff:.3f}')
|
|
if not THRESH_MAX_LEVEL > b > THRESH_MIN_LEVEL:
|
|
raise AssertionError(f'b: {b:.2f}, THRESH_MIN: {THRESH_MIN_LEVEL}, '
|
|
f'THRESH_MAX: {THRESH_MAX_LEVEL}')
|
|
for v in values:
|
|
if not THRESH_MAX_LEVEL > v > THRESH_MIN_LEVEL:
|
|
raise AssertionError(f'v: {v:.2f}, THRESH_MIN: {THRESH_MIN_LEVEL}, '
|
|
f'THRESH_MAX: {THRESH_MAX_LEVEL}')
|
|
|
|
if abs(v - b) >= THRESH_MAX_OUTLIER_DIFF:
|
|
raise AssertionError(f'v: {v:.2f}, b: {b:.2f}, '
|
|
f'THRESH_DIFF: {THRESH_MAX_OUTLIER_DIFF}')
|
|
|
|
|
|
def get_raw_active_array_size(props):
|
|
"""Return the active array w, h from props."""
|
|
aaw = (props['android.sensor.info.preCorrectionActiveArraySize']['right'] -
|
|
props['android.sensor.info.preCorrectionActiveArraySize']['left'])
|
|
aah = (props['android.sensor.info.preCorrectionActiveArraySize']['bottom'] -
|
|
props['android.sensor.info.preCorrectionActiveArraySize']['top'])
|
|
return aaw, aah
|
|
|
|
|
|
class ExposureTest(its_base_test.ItsBaseTest):
|
|
"""Test that a constant exposure is seen as ISO and exposure time vary.
|
|
|
|
Take a series of shots that have ISO and exposure time chosen to balance
|
|
each other; result should be the same brightness, but over the sequence
|
|
the images should get noisier.
|
|
"""
|
|
|
|
def test_exposure(self):
|
|
mults = []
|
|
r_means = []
|
|
g_means = []
|
|
b_means = []
|
|
raw_r_means = []
|
|
raw_gr_means = []
|
|
raw_gb_means = []
|
|
raw_b_means = []
|
|
thresh_max_level_diff = THRESH_MAX_LEVEL_DIFF
|
|
|
|
with its_session_utils.ItsSession(
|
|
device_id=self.dut.serial,
|
|
camera_id=self.camera_id,
|
|
hidden_physical_id=self.hidden_physical_id) as cam:
|
|
props = cam.get_camera_properties()
|
|
props = cam.override_with_hidden_physical_camera_props(props)
|
|
|
|
# Check SKIP conditions
|
|
camera_properties_utils.skip_unless(
|
|
camera_properties_utils.compute_target_exposure(props))
|
|
|
|
# Load chart for scene
|
|
its_session_utils.load_scene(
|
|
cam, props, self.scene, self.tablet, self.chart_distance)
|
|
|
|
# Initialize params for requests
|
|
debug = self.debug_mode
|
|
raw_avlb = (camera_properties_utils.raw16(props) and
|
|
camera_properties_utils.manual_sensor(props))
|
|
sync_latency = camera_properties_utils.sync_latency(props)
|
|
logging.debug('sync latency: %d frames', sync_latency)
|
|
largest_yuv = capture_request_utils.get_largest_yuv_format(props)
|
|
match_ar = (largest_yuv['width'], largest_yuv['height'])
|
|
fmt = capture_request_utils.get_smallest_yuv_format(
|
|
props, match_ar=match_ar)
|
|
e, s = target_exposure_utils.get_target_exposure_combos(
|
|
self.log_path, cam)['minSensitivity']
|
|
s_e_product = s*e
|
|
expt_range = props['android.sensor.info.exposureTimeRange']
|
|
sens_range = props['android.sensor.info.sensitivityRange']
|
|
m = 1.0
|
|
|
|
# Do captures with a range of exposures, but constant s*e
|
|
while s*m < sens_range[1] and e/m > expt_range[0]:
|
|
mults.append(m)
|
|
s_req = round(s * m)
|
|
e_req = s_e_product // s_req
|
|
logging.debug('Testing s: %d, e: %dns', s_req, e_req)
|
|
req = capture_request_utils.manual_capture_request(
|
|
s_req, e_req, 0.0, True, props)
|
|
cap = its_session_utils.do_capture_with_latency(
|
|
cam, req, sync_latency, fmt)
|
|
s_res = cap['metadata']['android.sensor.sensitivity']
|
|
e_res = cap['metadata']['android.sensor.exposureTime']
|
|
# determine exposure tolerance based on exposure time
|
|
if e_req >= THRESH_EXP_KNEE:
|
|
thresh_round_down_exp = THRESH_ROUND_DOWN_EXP
|
|
else:
|
|
thresh_round_down_exp = (
|
|
THRESH_ROUND_DOWN_EXP +
|
|
(THRESH_ROUND_DOWN_EXP0 - THRESH_ROUND_DOWN_EXP) *
|
|
(THRESH_EXP_KNEE - e_req) / THRESH_EXP_KNEE)
|
|
if not 0 <= s_req - s_res < s_req * THRESH_ROUND_DOWN_GAIN:
|
|
raise AssertionError(f's_req: {s_req}, s_res: {s_res}, '
|
|
f'TOL=-{THRESH_ROUND_DOWN_GAIN*100}%')
|
|
if not 0 <= e_req - e_res < e_req * thresh_round_down_exp:
|
|
raise AssertionError(f'e_req: {e_req}ns, e_res: {e_res}ns, '
|
|
f'TOL=-{thresh_round_down_exp*100}%')
|
|
s_e_product_res = s_res * e_res
|
|
req_res_ratio = s_e_product / s_e_product_res
|
|
logging.debug('Capture result s: %d, e: %dns', s_res, e_res)
|
|
img = image_processing_utils.convert_capture_to_rgb_image(cap)
|
|
image_processing_utils.write_image(
|
|
img, '%s_mult=%3.2f.jpg' % (os.path.join(self.log_path, NAME), m))
|
|
patch = image_processing_utils.get_image_patch(
|
|
img, PATCH_X, PATCH_Y, PATCH_W, PATCH_H)
|
|
rgb_means = image_processing_utils.compute_image_means(patch)
|
|
# Adjust for the difference between request and result
|
|
r_means.append(rgb_means[0] * req_res_ratio)
|
|
g_means.append(rgb_means[1] * req_res_ratio)
|
|
b_means.append(rgb_means[2] * req_res_ratio)
|
|
|
|
# Do with RAW_STATS space if debug
|
|
if raw_avlb and debug:
|
|
aaw, aah = get_raw_active_array_size(props)
|
|
fmt_raw = {'format': 'rawStats',
|
|
'gridWidth': aaw//RAW_STATS_GRID,
|
|
'gridHeight': aah//RAW_STATS_GRID}
|
|
raw_cap = its_session_utils.do_capture_with_latency(
|
|
cam, req, sync_latency, fmt_raw)
|
|
r, gr, gb, b = image_processing_utils.convert_capture_to_planes(
|
|
raw_cap, props)
|
|
raw_r_means.append(r[RAW_STATS_XY, RAW_STATS_XY] * req_res_ratio)
|
|
raw_gr_means.append(gr[RAW_STATS_XY, RAW_STATS_XY] * req_res_ratio)
|
|
raw_gb_means.append(gb[RAW_STATS_XY, RAW_STATS_XY] * req_res_ratio)
|
|
raw_b_means.append(b[RAW_STATS_XY, RAW_STATS_XY] * req_res_ratio)
|
|
|
|
# Test number of points per 2x gain
|
|
m *= pow(2, 1.0/NUM_PTS_2X_GAIN)
|
|
|
|
# Loosen threshold for devices with wider exposure range
|
|
if m >= WIDE_EXP_RANGE_THRESH:
|
|
thresh_max_level_diff = THRESH_MAX_LEVEL_DIFF_WIDE_RANGE
|
|
|
|
# Draw plots and check data
|
|
if raw_avlb and debug:
|
|
plot_raw_means('RAW data', mults, raw_r_means, raw_gr_means, raw_gb_means,
|
|
raw_b_means, self.log_path)
|
|
for ch, _ in enumerate(['r', 'gr', 'gb', 'b']):
|
|
values = [raw_r_means, raw_gr_means, raw_gb_means, raw_b_means][ch]
|
|
check_line_fit(ch, mults, values, thresh_max_level_diff)
|
|
|
|
plot_rgb_means('RGB data', mults, r_means, g_means, b_means, self.log_path)
|
|
for ch, _ in enumerate(['r', 'g', 'b']):
|
|
values = [r_means, g_means, b_means][ch]
|
|
check_line_fit(ch, mults, values, thresh_max_level_diff)
|
|
|
|
if __name__ == '__main__':
|
|
test_runner.main()
|