You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
194 lines
7.6 KiB
194 lines
7.6 KiB
/*
|
|
* Copyright (C) 2021 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#define LOG_TAG "neuralnetworks_aidl_hal_test"
|
|
|
|
#include <aidl/android/hardware/neuralnetworks/Capabilities.h>
|
|
#include <aidl/android/hardware/neuralnetworks/IDevice.h>
|
|
#include <aidl/android/hardware/neuralnetworks/Operand.h>
|
|
#include <aidl/android/hardware/neuralnetworks/OperandType.h>
|
|
#include <aidl/android/hardware/neuralnetworks/Priority.h>
|
|
#include <android/binder_interface_utils.h>
|
|
|
|
#include "Utils.h"
|
|
#include "VtsHalNeuralnetworks.h"
|
|
|
|
namespace aidl::android::hardware::neuralnetworks::vts::functional {
|
|
|
|
using implementation::PreparedModelCallback;
|
|
|
|
// create device test
|
|
TEST_P(NeuralNetworksAidlTest, CreateDevice) {}
|
|
|
|
// initialization
|
|
TEST_P(NeuralNetworksAidlTest, GetCapabilitiesTest) {
|
|
Capabilities capabilities;
|
|
const auto retStatus = kDevice->getCapabilities(&capabilities);
|
|
ASSERT_TRUE(retStatus.isOk());
|
|
|
|
auto isPositive = [](const PerformanceInfo& perf) {
|
|
return perf.execTime > 0.0f && perf.powerUsage > 0.0f;
|
|
};
|
|
|
|
EXPECT_TRUE(isPositive(capabilities.relaxedFloat32toFloat16PerformanceScalar));
|
|
EXPECT_TRUE(isPositive(capabilities.relaxedFloat32toFloat16PerformanceTensor));
|
|
const auto& opPerf = capabilities.operandPerformance;
|
|
EXPECT_TRUE(
|
|
std::all_of(opPerf.begin(), opPerf.end(),
|
|
[isPositive](const OperandPerformance& a) { return isPositive(a.info); }));
|
|
EXPECT_TRUE(std::is_sorted(opPerf.begin(), opPerf.end(),
|
|
[](const OperandPerformance& a, const OperandPerformance& b) {
|
|
return a.type < b.type;
|
|
}));
|
|
EXPECT_TRUE(std::all_of(opPerf.begin(), opPerf.end(), [](const OperandPerformance& a) {
|
|
return a.type != OperandType::SUBGRAPH;
|
|
}));
|
|
EXPECT_TRUE(isPositive(capabilities.ifPerformance));
|
|
EXPECT_TRUE(isPositive(capabilities.whilePerformance));
|
|
}
|
|
|
|
// detect cycle
|
|
TEST_P(NeuralNetworksAidlTest, CycleTest) {
|
|
// opnd0 = TENSOR_FLOAT32 // model input
|
|
// opnd1 = TENSOR_FLOAT32 // model input
|
|
// opnd2 = INT32 // model input
|
|
// opnd3 = ADD(opnd0, opnd4, opnd2)
|
|
// opnd4 = ADD(opnd1, opnd3, opnd2)
|
|
// opnd5 = ADD(opnd4, opnd0, opnd2) // model output
|
|
//
|
|
// +-----+
|
|
// | |
|
|
// v |
|
|
// 3 = ADD(0, 4, 2) |
|
|
// | |
|
|
// +----------+ |
|
|
// | |
|
|
// v |
|
|
// 4 = ADD(1, 3, 2) |
|
|
// | |
|
|
// +----------------+
|
|
// |
|
|
// |
|
|
// +-------+
|
|
// |
|
|
// v
|
|
// 5 = ADD(4, 0, 2)
|
|
|
|
const std::vector<Operand> operands = {
|
|
{
|
|
// operands[0]
|
|
.type = OperandType::TENSOR_FLOAT32,
|
|
.dimensions = {1},
|
|
.scale = 0.0f,
|
|
.zeroPoint = 0,
|
|
.lifetime = OperandLifeTime::SUBGRAPH_INPUT,
|
|
.location = {.poolIndex = 0, .offset = 0, .length = 0},
|
|
},
|
|
{
|
|
// operands[1]
|
|
.type = OperandType::TENSOR_FLOAT32,
|
|
.dimensions = {1},
|
|
.scale = 0.0f,
|
|
.zeroPoint = 0,
|
|
.lifetime = OperandLifeTime::SUBGRAPH_INPUT,
|
|
.location = {.poolIndex = 0, .offset = 0, .length = 0},
|
|
},
|
|
{
|
|
// operands[2]
|
|
.type = OperandType::INT32,
|
|
.dimensions = {},
|
|
.scale = 0.0f,
|
|
.zeroPoint = 0,
|
|
.lifetime = OperandLifeTime::SUBGRAPH_INPUT,
|
|
.location = {.poolIndex = 0, .offset = 0, .length = 0},
|
|
},
|
|
{
|
|
// operands[3]
|
|
.type = OperandType::TENSOR_FLOAT32,
|
|
.dimensions = {1},
|
|
.scale = 0.0f,
|
|
.zeroPoint = 0,
|
|
.lifetime = OperandLifeTime::TEMPORARY_VARIABLE,
|
|
.location = {.poolIndex = 0, .offset = 0, .length = 0},
|
|
},
|
|
{
|
|
// operands[4]
|
|
.type = OperandType::TENSOR_FLOAT32,
|
|
.dimensions = {1},
|
|
.scale = 0.0f,
|
|
.zeroPoint = 0,
|
|
.lifetime = OperandLifeTime::TEMPORARY_VARIABLE,
|
|
.location = {.poolIndex = 0, .offset = 0, .length = 0},
|
|
},
|
|
{
|
|
// operands[5]
|
|
.type = OperandType::TENSOR_FLOAT32,
|
|
.dimensions = {1},
|
|
.scale = 0.0f,
|
|
.zeroPoint = 0,
|
|
.lifetime = OperandLifeTime::SUBGRAPH_OUTPUT,
|
|
.location = {.poolIndex = 0, .offset = 0, .length = 0},
|
|
},
|
|
};
|
|
|
|
const std::vector<Operation> operations = {
|
|
{.type = OperationType::ADD, .inputs = {0, 4, 2}, .outputs = {3}},
|
|
{.type = OperationType::ADD, .inputs = {1, 3, 2}, .outputs = {4}},
|
|
{.type = OperationType::ADD, .inputs = {4, 0, 2}, .outputs = {5}},
|
|
};
|
|
|
|
Subgraph subgraph = {
|
|
.operands = operands,
|
|
.operations = operations,
|
|
.inputIndexes = {0, 1, 2},
|
|
.outputIndexes = {5},
|
|
};
|
|
const Model model = {
|
|
.main = std::move(subgraph),
|
|
.referenced = {},
|
|
.operandValues = {},
|
|
.pools = {},
|
|
};
|
|
|
|
// ensure that getSupportedOperations() checks model validity
|
|
std::vector<bool> supportedOps;
|
|
const auto supportedOpsStatus = kDevice->getSupportedOperations(model, &supportedOps);
|
|
ASSERT_FALSE(supportedOpsStatus.isOk());
|
|
ASSERT_EQ(supportedOpsStatus.getExceptionCode(), EX_SERVICE_SPECIFIC);
|
|
ASSERT_EQ(static_cast<ErrorStatus>(supportedOpsStatus.getServiceSpecificError()),
|
|
ErrorStatus::INVALID_ARGUMENT);
|
|
|
|
// ensure that prepareModel() checks model validity
|
|
auto preparedModelCallback = ndk::SharedRefBase::make<PreparedModelCallback>();
|
|
auto prepareLaunchStatus =
|
|
kDevice->prepareModel(model, ExecutionPreference::FAST_SINGLE_ANSWER, kDefaultPriority,
|
|
kNoDeadline, {}, {}, kEmptyCacheToken, preparedModelCallback);
|
|
// Note that preparation can fail for reasons other than an
|
|
// invalid model (invalid model should result in
|
|
// INVALID_ARGUMENT) -- for example, perhaps not all
|
|
// operations are supported, or perhaps the device hit some
|
|
// kind of capacity limit.
|
|
ASSERT_FALSE(prepareLaunchStatus.isOk());
|
|
EXPECT_EQ(prepareLaunchStatus.getExceptionCode(), EX_SERVICE_SPECIFIC);
|
|
EXPECT_NE(static_cast<ErrorStatus>(prepareLaunchStatus.getServiceSpecificError()),
|
|
ErrorStatus::NONE);
|
|
|
|
EXPECT_NE(preparedModelCallback->getStatus(), ErrorStatus::NONE);
|
|
EXPECT_EQ(preparedModelCallback->getPreparedModel(), nullptr);
|
|
}
|
|
|
|
} // namespace aidl::android::hardware::neuralnetworks::vts::functional
|