You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

990 lines
43 KiB

/*
* Copyright (C) 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "GeneratedTestHarness.h"
#include <aidl/android/hardware/neuralnetworks/ErrorStatus.h>
#include <aidl/android/hardware/neuralnetworks/RequestMemoryPool.h>
#include <android-base/logging.h>
#include <android/binder_auto_utils.h>
#include <android/sync.h>
#include <gtest/gtest.h>
#include <algorithm>
#include <chrono>
#include <iostream>
#include <iterator>
#include <numeric>
#include <vector>
#include <MemoryUtils.h>
#include <android/binder_status.h>
#include <nnapi/Result.h>
#include <nnapi/SharedMemory.h>
#include <nnapi/Types.h>
#include <nnapi/hal/aidl/Conversions.h>
#include <nnapi/hal/aidl/Utils.h>
#include "Callbacks.h"
#include "TestHarness.h"
#include "Utils.h"
#include "VtsHalNeuralnetworks.h"
namespace aidl::android::hardware::neuralnetworks::vts::functional {
namespace nn = ::android::nn;
using namespace test_helper;
using implementation::PreparedModelCallback;
namespace {
enum class OutputType { FULLY_SPECIFIED, UNSPECIFIED, INSUFFICIENT, MISSED_DEADLINE };
struct TestConfig {
Executor executor;
bool measureTiming;
OutputType outputType;
MemoryType memoryType;
// `reportSkipping` indicates if a test should print an info message in case
// it is skipped. The field is set to true by default and is set to false in
// quantization coupling tests to suppress skipping a test
bool reportSkipping;
TestConfig(Executor executor, bool measureTiming, OutputType outputType, MemoryType memoryType)
: executor(executor),
measureTiming(measureTiming),
outputType(outputType),
memoryType(memoryType),
reportSkipping(true) {}
TestConfig(Executor executor, bool measureTiming, OutputType outputType, MemoryType memoryType,
bool reportSkipping)
: executor(executor),
measureTiming(measureTiming),
outputType(outputType),
memoryType(memoryType),
reportSkipping(reportSkipping) {}
};
enum class IOType { INPUT, OUTPUT };
class DeviceMemoryAllocator {
public:
DeviceMemoryAllocator(const std::shared_ptr<IDevice>& device,
const std::shared_ptr<IPreparedModel>& preparedModel,
const TestModel& testModel)
: kDevice(device), kPreparedModel(preparedModel), kTestModel(testModel) {}
// Allocate device memory for a target input/output operand.
// Return {IBuffer object, token} if successful.
// Return {nullptr, 0} if device memory is not supported.
template <IOType ioType>
std::pair<std::shared_ptr<IBuffer>, int32_t> allocate(uint32_t index) {
std::pair<std::shared_ptr<IBuffer>, int32_t> buffer;
allocateInternal<ioType>(index, &buffer);
return buffer;
}
private:
template <IOType ioType>
void allocateInternal(int32_t index, std::pair<std::shared_ptr<IBuffer>, int32_t>* result) {
ASSERT_NE(result, nullptr);
// Prepare arguments.
BufferRole role = {.modelIndex = 0, .ioIndex = index, .probability = 1.0f};
std::vector<BufferRole> inputRoles, outputRoles;
if constexpr (ioType == IOType::INPUT) {
inputRoles = {role};
} else {
outputRoles = {role};
}
// Allocate device memory.
DeviceBuffer buffer;
IPreparedModelParcel parcel;
parcel.preparedModel = kPreparedModel;
const auto ret = kDevice->allocate({}, {parcel}, inputRoles, outputRoles, &buffer);
// Check allocation results.
if (ret.isOk()) {
ASSERT_NE(buffer.buffer, nullptr);
ASSERT_GT(buffer.token, 0);
} else {
ASSERT_EQ(ret.getExceptionCode(), EX_SERVICE_SPECIFIC);
ASSERT_EQ(static_cast<ErrorStatus>(ret.getServiceSpecificError()),
ErrorStatus::GENERAL_FAILURE);
buffer.buffer = nullptr;
buffer.token = 0;
}
// Initialize input data from TestBuffer.
if constexpr (ioType == IOType::INPUT) {
if (buffer.buffer != nullptr) {
// TestBuffer -> Shared memory.
const auto& testBuffer =
kTestModel.main.operands[kTestModel.main.inputIndexes[index]].data;
ASSERT_GT(testBuffer.size(), 0);
const auto sharedMemory = nn::createSharedMemory(testBuffer.size()).value();
const auto memory = utils::convert(sharedMemory).value();
const auto mapping = nn::map(sharedMemory).value();
uint8_t* inputPtr = static_cast<uint8_t*>(std::get<void*>(mapping.pointer));
ASSERT_NE(inputPtr, nullptr);
const uint8_t* begin = testBuffer.get<uint8_t>();
const uint8_t* end = begin + testBuffer.size();
std::copy(begin, end, inputPtr);
// Shared memory -> IBuffer.
auto ret = buffer.buffer->copyFrom(memory, {});
ASSERT_TRUE(ret.isOk());
}
}
*result = {std::move(buffer.buffer), buffer.token};
}
const std::shared_ptr<IDevice> kDevice;
const std::shared_ptr<IPreparedModel> kPreparedModel;
const TestModel& kTestModel;
};
Subgraph createSubgraph(const TestSubgraph& testSubgraph, uint32_t* constCopySize,
std::vector<const TestBuffer*>* constCopies, uint32_t* constRefSize,
std::vector<const TestBuffer*>* constReferences) {
CHECK(constCopySize != nullptr);
CHECK(constCopies != nullptr);
CHECK(constRefSize != nullptr);
CHECK(constReferences != nullptr);
// Operands.
std::vector<Operand> operands(testSubgraph.operands.size());
for (uint32_t i = 0; i < testSubgraph.operands.size(); i++) {
const auto& op = testSubgraph.operands[i];
DataLocation loc = {};
if (op.lifetime == TestOperandLifeTime::CONSTANT_COPY) {
loc = {
.poolIndex = 0,
.offset = *constCopySize,
.length = static_cast<int64_t>(op.data.size()),
};
constCopies->push_back(&op.data);
*constCopySize += op.data.alignedSize();
} else if (op.lifetime == TestOperandLifeTime::CONSTANT_REFERENCE) {
loc = {
.poolIndex = 0,
.offset = *constRefSize,
.length = static_cast<int64_t>(op.data.size()),
};
constReferences->push_back(&op.data);
*constRefSize += op.data.alignedSize();
} else if (op.lifetime == TestOperandLifeTime::SUBGRAPH) {
loc = {
.poolIndex = 0,
.offset = *op.data.get<uint32_t>(),
.length = 0,
};
}
std::optional<OperandExtraParams> extraParams;
if (op.type == TestOperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL) {
using Tag = OperandExtraParams::Tag;
extraParams = OperandExtraParams::make<Tag::channelQuant>(SymmPerChannelQuantParams{
.scales = op.channelQuant.scales,
.channelDim = static_cast<int32_t>(op.channelQuant.channelDim)});
}
operands[i] = {.type = static_cast<OperandType>(op.type),
.dimensions = utils::toSigned(op.dimensions).value(),
.scale = op.scale,
.zeroPoint = op.zeroPoint,
.lifetime = static_cast<OperandLifeTime>(op.lifetime),
.location = loc,
.extraParams = std::move(extraParams)};
}
// Operations.
std::vector<Operation> operations(testSubgraph.operations.size());
std::transform(testSubgraph.operations.begin(), testSubgraph.operations.end(),
operations.begin(), [](const TestOperation& op) -> Operation {
return {.type = static_cast<OperationType>(op.type),
.inputs = utils::toSigned(op.inputs).value(),
.outputs = utils::toSigned(op.outputs).value()};
});
return {.operands = std::move(operands),
.operations = std::move(operations),
.inputIndexes = utils::toSigned(testSubgraph.inputIndexes).value(),
.outputIndexes = utils::toSigned(testSubgraph.outputIndexes).value()};
}
void copyTestBuffers(const std::vector<const TestBuffer*>& buffers, uint8_t* output) {
uint32_t offset = 0;
for (const TestBuffer* buffer : buffers) {
const uint8_t* begin = buffer->get<uint8_t>();
const uint8_t* end = begin + buffer->size();
std::copy(begin, end, output + offset);
offset += buffer->alignedSize();
}
}
} // namespace
void waitForSyncFence(int syncFd) {
constexpr int kInfiniteTimeout = -1;
ASSERT_GT(syncFd, 0);
int r = sync_wait(syncFd, kInfiniteTimeout);
ASSERT_GE(r, 0);
}
Model createModel(const TestModel& testModel) {
uint32_t constCopySize = 0;
uint32_t constRefSize = 0;
std::vector<const TestBuffer*> constCopies;
std::vector<const TestBuffer*> constReferences;
Subgraph mainSubgraph = createSubgraph(testModel.main, &constCopySize, &constCopies,
&constRefSize, &constReferences);
std::vector<Subgraph> refSubgraphs(testModel.referenced.size());
std::transform(testModel.referenced.begin(), testModel.referenced.end(), refSubgraphs.begin(),
[&constCopySize, &constCopies, &constRefSize,
&constReferences](const TestSubgraph& testSubgraph) {
return createSubgraph(testSubgraph, &constCopySize, &constCopies,
&constRefSize, &constReferences);
});
// Constant copies.
std::vector<uint8_t> operandValues(constCopySize);
copyTestBuffers(constCopies, operandValues.data());
// Shared memory.
std::vector<nn::SharedMemory> pools = {};
if (constRefSize > 0) {
const auto pool = nn::createSharedMemory(constRefSize).value();
pools.push_back(pool);
// load data
const auto mappedMemory = nn::map(pool).value();
uint8_t* mappedPtr = static_cast<uint8_t*>(std::get<void*>(mappedMemory.pointer));
CHECK(mappedPtr != nullptr);
copyTestBuffers(constReferences, mappedPtr);
}
std::vector<Memory> aidlPools;
aidlPools.reserve(pools.size());
for (auto& pool : pools) {
auto aidlPool = utils::convert(pool).value();
aidlPools.push_back(std::move(aidlPool));
}
return {.main = std::move(mainSubgraph),
.referenced = std::move(refSubgraphs),
.operandValues = std::move(operandValues),
.pools = std::move(aidlPools),
.relaxComputationFloat32toFloat16 = testModel.isRelaxed};
}
static bool isOutputSizeGreaterThanOne(const TestModel& testModel, uint32_t index) {
const auto byteSize = testModel.main.operands[testModel.main.outputIndexes[index]].data.size();
return byteSize > 1u;
}
static void makeOutputInsufficientSize(uint32_t outputIndex, Request* request) {
auto& loc = request->outputs[outputIndex].location;
ASSERT_GT(loc.length, 1u);
loc.length -= 1u;
// Test that the padding is not used for output data.
loc.padding += 1u;
}
static void makeOutputDimensionsUnspecified(Model* model) {
for (auto i : model->main.outputIndexes) {
auto& dims = model->main.operands[i].dimensions;
std::fill(dims.begin(), dims.end(), 0);
}
}
// Manages the lifetime of memory resources used in an execution.
class ExecutionContext {
public:
ExecutionContext(std::shared_ptr<IDevice> device, std::shared_ptr<IPreparedModel> preparedModel)
: kDevice(std::move(device)), kPreparedModel(std::move(preparedModel)) {}
std::optional<Request> createRequest(const TestModel& testModel, MemoryType memoryType);
std::vector<TestBuffer> getOutputBuffers(const TestModel& testModel,
const Request& request) const;
private:
// Get a TestBuffer with data copied from an IBuffer object.
void getBuffer(const std::shared_ptr<IBuffer>& buffer, size_t size,
TestBuffer* testBuffer) const;
static constexpr uint32_t kInputPoolIndex = 0;
static constexpr uint32_t kOutputPoolIndex = 1;
static constexpr uint32_t kDeviceMemoryBeginIndex = 2;
const std::shared_ptr<IDevice> kDevice;
const std::shared_ptr<IPreparedModel> kPreparedModel;
std::unique_ptr<TestMemoryBase> mInputMemory, mOutputMemory;
std::vector<std::shared_ptr<IBuffer>> mBuffers;
};
// Returns the number of bytes needed to round up "size" to the nearest multiple of "multiple".
static uint32_t roundUpBytesNeeded(uint32_t size, uint32_t multiple) {
CHECK(multiple != 0);
return ((size + multiple - 1) / multiple) * multiple - size;
}
std::optional<Request> ExecutionContext::createRequest(const TestModel& testModel,
MemoryType memoryType) {
// Memory pools are organized as:
// - 0: Input shared memory pool
// - 1: Output shared memory pool
// - [2, 2+i): Input device memories
// - [2+i, 2+i+o): Output device memories
DeviceMemoryAllocator allocator(kDevice, kPreparedModel, testModel);
std::vector<int32_t> tokens;
mBuffers.clear();
// Model inputs.
std::vector<RequestArgument> inputs(testModel.main.inputIndexes.size());
size_t inputSize = 0;
for (uint32_t i = 0; i < testModel.main.inputIndexes.size(); i++) {
const auto& op = testModel.main.operands[testModel.main.inputIndexes[i]];
if (op.data.size() == 0) {
// Omitted input.
inputs[i] = {.hasNoValue = true};
continue;
} else if (memoryType == MemoryType::DEVICE) {
SCOPED_TRACE("Input index = " + std::to_string(i));
auto [buffer, token] = allocator.allocate<IOType::INPUT>(i);
if (buffer != nullptr) {
DataLocation loc = {.poolIndex = static_cast<int32_t>(mBuffers.size() +
kDeviceMemoryBeginIndex)};
mBuffers.push_back(std::move(buffer));
tokens.push_back(token);
inputs[i] = {.hasNoValue = false, .location = loc, .dimensions = {}};
continue;
}
}
// Reserve shared memory for input.
inputSize += roundUpBytesNeeded(inputSize, nn::kDefaultRequestMemoryAlignment);
const auto padding = roundUpBytesNeeded(op.data.size(), nn::kDefaultRequestMemoryPadding);
DataLocation loc = {.poolIndex = kInputPoolIndex,
.offset = static_cast<int64_t>(inputSize),
.length = static_cast<int64_t>(op.data.size()),
.padding = static_cast<int64_t>(padding)};
inputSize += (op.data.size() + padding);
inputs[i] = {.hasNoValue = false, .location = loc, .dimensions = {}};
}
// Model outputs.
std::vector<RequestArgument> outputs(testModel.main.outputIndexes.size());
size_t outputSize = 0;
for (uint32_t i = 0; i < testModel.main.outputIndexes.size(); i++) {
const auto& op = testModel.main.operands[testModel.main.outputIndexes[i]];
if (memoryType == MemoryType::DEVICE) {
SCOPED_TRACE("Output index = " + std::to_string(i));
auto [buffer, token] = allocator.allocate<IOType::OUTPUT>(i);
if (buffer != nullptr) {
DataLocation loc = {.poolIndex = static_cast<int32_t>(mBuffers.size() +
kDeviceMemoryBeginIndex)};
mBuffers.push_back(std::move(buffer));
tokens.push_back(token);
outputs[i] = {.hasNoValue = false, .location = loc, .dimensions = {}};
continue;
}
}
// In the case of zero-sized output, we should at least provide a one-byte buffer.
// This is because zero-sized tensors are only supported internally to the driver, or
// reported in output shapes. It is illegal for the client to pre-specify a zero-sized
// tensor as model output. Otherwise, we will have two semantic conflicts:
// - "Zero dimension" conflicts with "unspecified dimension".
// - "Omitted operand buffer" conflicts with "zero-sized operand buffer".
size_t bufferSize = std::max<size_t>(op.data.size(), 1);
// Reserve shared memory for output.
outputSize += roundUpBytesNeeded(outputSize, nn::kDefaultRequestMemoryAlignment);
const auto padding = roundUpBytesNeeded(bufferSize, nn::kDefaultRequestMemoryPadding);
DataLocation loc = {.poolIndex = kOutputPoolIndex,
.offset = static_cast<int64_t>(outputSize),
.length = static_cast<int64_t>(bufferSize),
.padding = static_cast<int64_t>(padding)};
outputSize += (bufferSize + padding);
outputs[i] = {.hasNoValue = false, .location = loc, .dimensions = {}};
}
if (memoryType == MemoryType::DEVICE && mBuffers.empty()) {
return std::nullopt;
}
// Memory pools.
if (memoryType == MemoryType::BLOB_AHWB) {
mInputMemory = TestBlobAHWB::create(std::max<size_t>(inputSize, 1));
mOutputMemory = TestBlobAHWB::create(std::max<size_t>(outputSize, 1));
} else {
mInputMemory = TestAshmem::create(std::max<size_t>(inputSize, 1), /*aidlReadonly=*/true);
mOutputMemory = TestAshmem::create(std::max<size_t>(outputSize, 1), /*aidlReadonly=*/false);
}
CHECK_NE(mInputMemory, nullptr);
CHECK_NE(mOutputMemory, nullptr);
std::vector<RequestMemoryPool> pools;
pools.reserve(kDeviceMemoryBeginIndex + mBuffers.size());
auto copiedInputMemory = utils::clone(*mInputMemory->getAidlMemory());
CHECK(copiedInputMemory.has_value()) << copiedInputMemory.error().message;
auto copiedOutputMemory = utils::clone(*mOutputMemory->getAidlMemory());
CHECK(copiedOutputMemory.has_value()) << copiedOutputMemory.error().message;
pools.push_back(RequestMemoryPool::make<RequestMemoryPool::Tag::pool>(
std::move(copiedInputMemory).value()));
pools.push_back(RequestMemoryPool::make<RequestMemoryPool::Tag::pool>(
std::move(copiedOutputMemory).value()));
for (const auto& token : tokens) {
pools.push_back(RequestMemoryPool::make<RequestMemoryPool::Tag::token>(token));
}
// Copy input data to the input shared memory pool.
uint8_t* inputPtr = mInputMemory->getPointer();
for (uint32_t i = 0; i < testModel.main.inputIndexes.size(); i++) {
if (!inputs[i].hasNoValue && inputs[i].location.poolIndex == kInputPoolIndex) {
const auto& op = testModel.main.operands[testModel.main.inputIndexes[i]];
const uint8_t* begin = op.data.get<uint8_t>();
const uint8_t* end = begin + op.data.size();
std::copy(begin, end, inputPtr + inputs[i].location.offset);
}
}
return Request{
.inputs = std::move(inputs), .outputs = std::move(outputs), .pools = std::move(pools)};
}
std::vector<TestBuffer> ExecutionContext::getOutputBuffers(const TestModel& testModel,
const Request& request) const {
// Copy out output results.
uint8_t* outputPtr = mOutputMemory->getPointer();
std::vector<TestBuffer> outputBuffers;
for (uint32_t i = 0; i < request.outputs.size(); i++) {
const auto& outputLoc = request.outputs[i].location;
if (outputLoc.poolIndex == kOutputPoolIndex) {
outputBuffers.emplace_back(outputLoc.length, outputPtr + outputLoc.offset);
} else {
const auto& op = testModel.main.operands[testModel.main.outputIndexes[i]];
if (op.data.size() == 0) {
outputBuffers.emplace_back(0, nullptr);
} else {
SCOPED_TRACE("Output index = " + std::to_string(i));
const uint32_t bufferIndex = outputLoc.poolIndex - kDeviceMemoryBeginIndex;
TestBuffer buffer;
getBuffer(mBuffers[bufferIndex], op.data.size(), &buffer);
outputBuffers.push_back(std::move(buffer));
}
}
}
return outputBuffers;
}
// Get a TestBuffer with data copied from an IBuffer object.
void ExecutionContext::getBuffer(const std::shared_ptr<IBuffer>& buffer, size_t size,
TestBuffer* testBuffer) const {
// IBuffer -> Shared memory.
auto sharedMemory = nn::createSharedMemory(size).value();
auto aidlMemory = utils::convert(sharedMemory).value();
const auto ret = buffer->copyTo(aidlMemory);
ASSERT_TRUE(ret.isOk());
// Shared memory -> TestBuffer.
const auto outputMemory = nn::map(sharedMemory).value();
const uint8_t* outputPtr = std::visit(
[](auto* ptr) { return static_cast<const uint8_t*>(ptr); }, outputMemory.pointer);
ASSERT_NE(outputPtr, nullptr);
ASSERT_NE(testBuffer, nullptr);
*testBuffer = TestBuffer(size, outputPtr);
}
static bool hasZeroSizedOutput(const TestModel& testModel) {
return std::any_of(testModel.main.outputIndexes.begin(), testModel.main.outputIndexes.end(),
[&testModel](uint32_t index) {
return testModel.main.operands[index].data.size() == 0;
});
}
void EvaluatePreparedModel(const std::shared_ptr<IDevice>& device,
const std::shared_ptr<IPreparedModel>& preparedModel,
const TestModel& testModel, const TestConfig& testConfig,
bool* skipped = nullptr) {
if (skipped != nullptr) {
*skipped = false;
}
// If output0 does not have size larger than one byte, we can not test with insufficient buffer.
if (testConfig.outputType == OutputType::INSUFFICIENT &&
!isOutputSizeGreaterThanOne(testModel, 0)) {
return;
}
ExecutionContext context(device, preparedModel);
auto maybeRequest = context.createRequest(testModel, testConfig.memoryType);
// Skip if testing memory domain but no device memory has been allocated.
if (!maybeRequest.has_value()) {
return;
}
Request request = std::move(maybeRequest).value();
constexpr uint32_t kInsufficientOutputIndex = 0;
if (testConfig.outputType == OutputType::INSUFFICIENT) {
makeOutputInsufficientSize(kInsufficientOutputIndex, &request);
}
int64_t loopTimeoutDurationNs = kOmittedTimeoutDuration;
// OutputType::MISSED_DEADLINE is only used by
// TestKind::INTINITE_LOOP_TIMEOUT tests to verify that an infinite loop is
// aborted after a timeout.
if (testConfig.outputType == OutputType::MISSED_DEADLINE) {
// Override the default loop timeout duration with a small value to
// speed up test execution.
constexpr int64_t kMillisecond = 1'000'000;
loopTimeoutDurationNs = 1 * kMillisecond;
}
ErrorStatus executionStatus;
std::vector<OutputShape> outputShapes;
Timing timing = kNoTiming;
switch (testConfig.executor) {
case Executor::SYNC: {
SCOPED_TRACE("synchronous");
ExecutionResult executionResult;
// execute
const auto ret = preparedModel->executeSynchronously(request, testConfig.measureTiming,
kNoDeadline, loopTimeoutDurationNs,
&executionResult);
ASSERT_TRUE(ret.isOk() || ret.getExceptionCode() == EX_SERVICE_SPECIFIC)
<< ret.getDescription();
if (ret.isOk()) {
executionStatus = executionResult.outputSufficientSize
? ErrorStatus::NONE
: ErrorStatus::OUTPUT_INSUFFICIENT_SIZE;
outputShapes = std::move(executionResult.outputShapes);
timing = executionResult.timing;
} else {
executionStatus = static_cast<ErrorStatus>(ret.getServiceSpecificError());
}
break;
}
case Executor::BURST: {
SCOPED_TRACE("burst");
// create burst
std::shared_ptr<IBurst> burst;
auto ret = preparedModel->configureExecutionBurst(&burst);
ASSERT_TRUE(ret.isOk()) << ret.getDescription();
ASSERT_NE(nullptr, burst.get());
// associate a unique slot with each memory pool
int64_t currentSlot = 0;
std::vector<int64_t> slots;
slots.reserve(request.pools.size());
for (const auto& pool : request.pools) {
if (pool.getTag() == RequestMemoryPool::Tag::pool) {
slots.push_back(currentSlot++);
} else {
EXPECT_EQ(pool.getTag(), RequestMemoryPool::Tag::token);
slots.push_back(-1);
}
}
ExecutionResult executionResult;
// execute
ret = burst->executeSynchronously(request, slots, testConfig.measureTiming, kNoDeadline,
loopTimeoutDurationNs, &executionResult);
ASSERT_TRUE(ret.isOk() || ret.getExceptionCode() == EX_SERVICE_SPECIFIC)
<< ret.getDescription();
if (ret.isOk()) {
executionStatus = executionResult.outputSufficientSize
? ErrorStatus::NONE
: ErrorStatus::OUTPUT_INSUFFICIENT_SIZE;
outputShapes = std::move(executionResult.outputShapes);
timing = executionResult.timing;
} else {
executionStatus = static_cast<ErrorStatus>(ret.getServiceSpecificError());
}
// Mark each slot as unused after the execution. This is unnecessary because the burst
// is freed after this scope ends, but this is here to test the functionality.
for (int64_t slot : slots) {
ret = burst->releaseMemoryResource(slot);
ASSERT_TRUE(ret.isOk()) << ret.getDescription();
}
break;
}
case Executor::FENCED: {
SCOPED_TRACE("fenced");
ErrorStatus result = ErrorStatus::NONE;
FencedExecutionResult executionResult;
auto ret = preparedModel->executeFenced(request, {}, testConfig.measureTiming,
kNoDeadline, loopTimeoutDurationNs, kNoDuration,
&executionResult);
ASSERT_TRUE(ret.isOk() || ret.getExceptionCode() == EX_SERVICE_SPECIFIC)
<< ret.getDescription();
if (!ret.isOk()) {
result = static_cast<ErrorStatus>(ret.getServiceSpecificError());
executionStatus = result;
} else if (executionResult.syncFence.get() != -1) {
std::vector<ndk::ScopedFileDescriptor> waitFor;
auto dupFd = dup(executionResult.syncFence.get());
ASSERT_NE(dupFd, -1);
waitFor.emplace_back(dupFd);
// If a sync fence is returned, try start another run waiting for the sync fence.
ret = preparedModel->executeFenced(request, waitFor, testConfig.measureTiming,
kNoDeadline, loopTimeoutDurationNs, kNoDuration,
&executionResult);
ASSERT_TRUE(ret.isOk());
waitForSyncFence(executionResult.syncFence.get());
}
if (result == ErrorStatus::NONE) {
ASSERT_NE(executionResult.callback, nullptr);
Timing timingFenced;
auto ret = executionResult.callback->getExecutionInfo(&timing, &timingFenced,
&executionStatus);
ASSERT_TRUE(ret.isOk());
}
break;
}
default: {
FAIL() << "Unsupported execution mode for AIDL interface.";
}
}
if (testConfig.outputType != OutputType::FULLY_SPECIFIED &&
executionStatus == ErrorStatus::GENERAL_FAILURE) {
if (skipped != nullptr) {
*skipped = true;
}
if (!testConfig.reportSkipping) {
return;
}
LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot "
"execute model that it does not support.";
std::cout << "[ ] Early termination of test because vendor service cannot "
"execute model that it does not support."
<< std::endl;
GTEST_SKIP();
}
if (!testConfig.measureTiming) {
EXPECT_EQ(timing, kNoTiming);
} else {
if (timing.timeOnDeviceNs != -1 && timing.timeInDriverNs != -1) {
EXPECT_LE(timing.timeOnDeviceNs, timing.timeInDriverNs);
}
}
switch (testConfig.outputType) {
case OutputType::FULLY_SPECIFIED:
if (testConfig.executor == Executor::FENCED && hasZeroSizedOutput(testModel)) {
// Executor::FENCED does not support zero-sized output.
ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, executionStatus);
return;
}
// If the model output operands are fully specified, outputShapes must be either
// either empty, or have the same number of elements as the number of outputs.
ASSERT_EQ(ErrorStatus::NONE, executionStatus);
ASSERT_TRUE(outputShapes.size() == 0 ||
outputShapes.size() == testModel.main.outputIndexes.size());
break;
case OutputType::UNSPECIFIED:
if (testConfig.executor == Executor::FENCED) {
// For Executor::FENCED, the output shape must be fully specified.
ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, executionStatus);
return;
}
// If the model output operands are not fully specified, outputShapes must have
// the same number of elements as the number of outputs.
ASSERT_EQ(ErrorStatus::NONE, executionStatus);
ASSERT_EQ(outputShapes.size(), testModel.main.outputIndexes.size());
break;
case OutputType::INSUFFICIENT:
if (testConfig.executor == Executor::FENCED) {
// For Executor::FENCED, the output shape must be fully specified.
ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, executionStatus);
return;
}
ASSERT_EQ(ErrorStatus::OUTPUT_INSUFFICIENT_SIZE, executionStatus);
ASSERT_EQ(outputShapes.size(), testModel.main.outputIndexes.size());
// Check that all returned output dimensions are at least as fully specified as the
// union of the information about the corresponding operand in the model and in the
// request. In this test, all model outputs have known rank with all dimensions
// unspecified, and no dimensional information is provided in the request.
for (uint32_t i = 0; i < outputShapes.size(); i++) {
ASSERT_EQ(outputShapes[i].isSufficient, i != kInsufficientOutputIndex);
const auto& actual = outputShapes[i].dimensions;
const auto& golden =
testModel.main.operands[testModel.main.outputIndexes[i]].dimensions;
ASSERT_EQ(actual.size(), golden.size());
for (uint32_t j = 0; j < actual.size(); j++) {
if (actual[j] == 0) continue;
EXPECT_EQ(actual[j], golden[j]) << "index: " << j;
}
}
return;
case OutputType::MISSED_DEADLINE:
ASSERT_TRUE(executionStatus == ErrorStatus::MISSED_DEADLINE_TRANSIENT ||
executionStatus == ErrorStatus::MISSED_DEADLINE_PERSISTENT)
<< "executionStatus = " << executionStatus;
return;
}
// Go through all outputs, check returned output shapes.
for (uint32_t i = 0; i < outputShapes.size(); i++) {
EXPECT_TRUE(outputShapes[i].isSufficient);
const auto& expect = testModel.main.operands[testModel.main.outputIndexes[i]].dimensions;
const auto unsignedActual = nn::toUnsigned(outputShapes[i].dimensions);
ASSERT_TRUE(unsignedActual.has_value());
const std::vector<uint32_t>& actual = unsignedActual.value();
EXPECT_EQ(expect, actual);
}
// Retrieve execution results.
const std::vector<TestBuffer> outputs = context.getOutputBuffers(testModel, request);
// We want "close-enough" results.
checkResults(testModel, outputs);
}
void EvaluatePreparedModel(const std::shared_ptr<IDevice>& device,
const std::shared_ptr<IPreparedModel>& preparedModel,
const TestModel& testModel, TestKind testKind) {
std::vector<OutputType> outputTypesList;
std::vector<bool> measureTimingList;
std::vector<Executor> executorList;
std::vector<MemoryType> memoryTypeList;
switch (testKind) {
case TestKind::GENERAL: {
outputTypesList = {OutputType::FULLY_SPECIFIED};
measureTimingList = {false, true};
executorList = {Executor::SYNC, Executor::BURST};
memoryTypeList = {MemoryType::ASHMEM};
} break;
case TestKind::DYNAMIC_SHAPE: {
outputTypesList = {OutputType::UNSPECIFIED, OutputType::INSUFFICIENT};
measureTimingList = {false, true};
executorList = {Executor::SYNC, Executor::BURST, Executor::FENCED};
memoryTypeList = {MemoryType::ASHMEM};
} break;
case TestKind::MEMORY_DOMAIN: {
outputTypesList = {OutputType::FULLY_SPECIFIED};
measureTimingList = {false};
executorList = {Executor::SYNC, Executor::BURST, Executor::FENCED};
memoryTypeList = {MemoryType::BLOB_AHWB, MemoryType::DEVICE};
} break;
case TestKind::FENCED_COMPUTE: {
outputTypesList = {OutputType::FULLY_SPECIFIED};
measureTimingList = {false, true};
executorList = {Executor::FENCED};
memoryTypeList = {MemoryType::ASHMEM};
} break;
case TestKind::QUANTIZATION_COUPLING: {
LOG(FATAL) << "Wrong TestKind for EvaluatePreparedModel";
return;
} break;
case TestKind::INTINITE_LOOP_TIMEOUT: {
outputTypesList = {OutputType::MISSED_DEADLINE};
measureTimingList = {false, true};
executorList = {Executor::SYNC, Executor::BURST, Executor::FENCED};
memoryTypeList = {MemoryType::ASHMEM};
} break;
}
for (const OutputType outputType : outputTypesList) {
for (const bool measureTiming : measureTimingList) {
for (const Executor executor : executorList) {
for (const MemoryType memoryType : memoryTypeList) {
const TestConfig testConfig(executor, measureTiming, outputType, memoryType);
EvaluatePreparedModel(device, preparedModel, testModel, testConfig);
}
}
}
}
}
void EvaluatePreparedCoupledModels(const std::shared_ptr<IDevice>& device,
const std::shared_ptr<IPreparedModel>& preparedModel,
const TestModel& testModel,
const std::shared_ptr<IPreparedModel>& preparedCoupledModel,
const TestModel& coupledModel) {
const std::vector<OutputType> outputTypesList = {OutputType::FULLY_SPECIFIED};
const std::vector<bool> measureTimingList = {false, true};
const std::vector<Executor> executorList = {Executor::SYNC, Executor::BURST, Executor::FENCED};
for (const OutputType outputType : outputTypesList) {
for (const bool measureTiming : measureTimingList) {
for (const Executor executor : executorList) {
const TestConfig testConfig(executor, measureTiming, outputType, MemoryType::ASHMEM,
/*reportSkipping=*/false);
bool baseSkipped = false;
EvaluatePreparedModel(device, preparedModel, testModel, testConfig, &baseSkipped);
bool coupledSkipped = false;
EvaluatePreparedModel(device, preparedCoupledModel, coupledModel, testConfig,
&coupledSkipped);
ASSERT_EQ(baseSkipped, coupledSkipped);
if (baseSkipped) {
LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot "
"execute model that it does not support.";
std::cout << "[ ] Early termination of test because vendor service "
"cannot "
"execute model that it does not support."
<< std::endl;
GTEST_SKIP();
}
}
}
}
}
void Execute(const std::shared_ptr<IDevice>& device, const TestModel& testModel,
TestKind testKind) {
Model model = createModel(testModel);
if (testKind == TestKind::DYNAMIC_SHAPE) {
makeOutputDimensionsUnspecified(&model);
}
std::shared_ptr<IPreparedModel> preparedModel;
switch (testKind) {
case TestKind::GENERAL:
case TestKind::DYNAMIC_SHAPE:
case TestKind::MEMORY_DOMAIN:
case TestKind::FENCED_COMPUTE:
case TestKind::INTINITE_LOOP_TIMEOUT: {
createPreparedModel(device, model, &preparedModel);
if (preparedModel == nullptr) return;
EvaluatePreparedModel(device, preparedModel, testModel, testKind);
} break;
case TestKind::QUANTIZATION_COUPLING: {
ASSERT_TRUE(testModel.hasQuant8CoupledOperands());
createPreparedModel(device, model, &preparedModel,
/*reportSkipping*/ false);
TestModel signedQuantizedModel = convertQuant8AsymmOperandsToSigned(testModel);
std::shared_ptr<IPreparedModel> preparedCoupledModel;
createPreparedModel(device, createModel(signedQuantizedModel), &preparedCoupledModel,
/*reportSkipping*/ false);
// If we couldn't prepare a model with unsigned quantization, we must
// fail to prepare a model with signed quantization as well.
if (preparedModel == nullptr) {
ASSERT_EQ(preparedCoupledModel, nullptr);
// If we failed to prepare both of the models, we can safely skip
// the test.
LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot "
"prepare model that it does not support.";
std::cout
<< "[ ] Early termination of test because vendor service cannot "
"prepare model that it does not support."
<< std::endl;
GTEST_SKIP();
}
ASSERT_NE(preparedCoupledModel, nullptr);
EvaluatePreparedCoupledModels(device, preparedModel, testModel, preparedCoupledModel,
signedQuantizedModel);
} break;
}
}
void GeneratedTestBase::SetUp() {
testing::TestWithParam<GeneratedTestParam>::SetUp();
ASSERT_NE(kDevice, nullptr);
const bool deviceIsResponsive =
ndk::ScopedAStatus::fromStatus(AIBinder_ping(kDevice->asBinder().get())).isOk();
ASSERT_TRUE(deviceIsResponsive);
}
std::vector<NamedModel> getNamedModels(const FilterFn& filter) {
return TestModelManager::get().getTestModels(filter);
}
std::vector<NamedModel> getNamedModels(const FilterNameFn& filter) {
return TestModelManager::get().getTestModels(filter);
}
std::string printGeneratedTest(const testing::TestParamInfo<GeneratedTestParam>& info) {
const auto& [namedDevice, namedModel] = info.param;
return gtestCompliantName(getName(namedDevice) + "_" + getName(namedModel));
}
// Tag for the generated tests
class GeneratedTest : public GeneratedTestBase {};
// Tag for the dynamic output shape tests
class DynamicOutputShapeTest : public GeneratedTest {};
// Tag for the memory domain tests
class MemoryDomainTest : public GeneratedTest {};
// Tag for the fenced compute tests
class FencedComputeTest : public GeneratedTest {};
// Tag for the dynamic output shape tests
class QuantizationCouplingTest : public GeneratedTest {};
// Tag for the loop timeout tests
class InfiniteLoopTimeoutTest : public GeneratedTest {};
TEST_P(GeneratedTest, Test) {
Execute(kDevice, kTestModel, TestKind::GENERAL);
}
TEST_P(DynamicOutputShapeTest, Test) {
Execute(kDevice, kTestModel, TestKind::DYNAMIC_SHAPE);
}
TEST_P(MemoryDomainTest, Test) {
Execute(kDevice, kTestModel, TestKind::MEMORY_DOMAIN);
}
TEST_P(FencedComputeTest, Test) {
Execute(kDevice, kTestModel, TestKind::FENCED_COMPUTE);
}
TEST_P(QuantizationCouplingTest, Test) {
Execute(kDevice, kTestModel, TestKind::QUANTIZATION_COUPLING);
}
TEST_P(InfiniteLoopTimeoutTest, Test) {
Execute(kDevice, kTestModel, TestKind::INTINITE_LOOP_TIMEOUT);
}
INSTANTIATE_GENERATED_TEST(GeneratedTest,
[](const TestModel& testModel) { return !testModel.expectFailure; });
INSTANTIATE_GENERATED_TEST(DynamicOutputShapeTest, [](const TestModel& testModel) {
return !testModel.expectFailure && !testModel.hasScalarOutputs();
});
INSTANTIATE_GENERATED_TEST(MemoryDomainTest,
[](const TestModel& testModel) { return !testModel.expectFailure; });
INSTANTIATE_GENERATED_TEST(FencedComputeTest,
[](const TestModel& testModel) { return !testModel.expectFailure; });
INSTANTIATE_GENERATED_TEST(QuantizationCouplingTest, [](const TestModel& testModel) {
return !testModel.expectFailure && testModel.hasQuant8CoupledOperands() &&
testModel.main.operations.size() == 1;
});
INSTANTIATE_GENERATED_TEST(InfiniteLoopTimeoutTest, [](const TestModel& testModel) {
return testModel.isInfiniteLoopTimeoutTest();
});
} // namespace aidl::android::hardware::neuralnetworks::vts::functional