You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

275 lines
11 KiB

/*
* Copyright (C) 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "Utils.h"
#include <aidl/android/hardware/neuralnetworks/IPreparedModelParcel.h>
#include <aidl/android/hardware/neuralnetworks/Operand.h>
#include <aidl/android/hardware/neuralnetworks/OperandType.h>
#include <android-base/logging.h>
#include <android/binder_status.h>
#include <android/hardware_buffer.h>
#include <sys/mman.h>
#include <iostream>
#include <limits>
#include <numeric>
#include <MemoryUtils.h>
#include <nnapi/SharedMemory.h>
#include <nnapi/hal/aidl/Conversions.h>
#include <nnapi/hal/aidl/Utils.h>
namespace aidl::android::hardware::neuralnetworks {
using test_helper::TestBuffer;
using test_helper::TestModel;
uint32_t sizeOfData(OperandType type) {
switch (type) {
case OperandType::FLOAT32:
case OperandType::INT32:
case OperandType::UINT32:
case OperandType::TENSOR_FLOAT32:
case OperandType::TENSOR_INT32:
return 4;
case OperandType::TENSOR_QUANT16_SYMM:
case OperandType::TENSOR_FLOAT16:
case OperandType::FLOAT16:
case OperandType::TENSOR_QUANT16_ASYMM:
return 2;
case OperandType::TENSOR_QUANT8_ASYMM:
case OperandType::BOOL:
case OperandType::TENSOR_BOOL8:
case OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL:
case OperandType::TENSOR_QUANT8_SYMM:
case OperandType::TENSOR_QUANT8_ASYMM_SIGNED:
return 1;
case OperandType::SUBGRAPH:
return 0;
default:
CHECK(false) << "Invalid OperandType " << static_cast<uint32_t>(type);
return 0;
}
}
static bool isTensor(OperandType type) {
switch (type) {
case OperandType::FLOAT32:
case OperandType::INT32:
case OperandType::UINT32:
case OperandType::FLOAT16:
case OperandType::BOOL:
case OperandType::SUBGRAPH:
return false;
case OperandType::TENSOR_FLOAT32:
case OperandType::TENSOR_INT32:
case OperandType::TENSOR_QUANT16_SYMM:
case OperandType::TENSOR_FLOAT16:
case OperandType::TENSOR_QUANT16_ASYMM:
case OperandType::TENSOR_QUANT8_ASYMM:
case OperandType::TENSOR_BOOL8:
case OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL:
case OperandType::TENSOR_QUANT8_SYMM:
case OperandType::TENSOR_QUANT8_ASYMM_SIGNED:
return true;
default:
CHECK(false) << "Invalid OperandType " << static_cast<uint32_t>(type);
return false;
}
}
uint32_t sizeOfData(const Operand& operand) {
const uint32_t dataSize = sizeOfData(operand.type);
if (isTensor(operand.type) && operand.dimensions.size() == 0) return 0;
return std::accumulate(operand.dimensions.begin(), operand.dimensions.end(), dataSize,
std::multiplies<>{});
}
std::unique_ptr<TestAshmem> TestAshmem::create(uint32_t size, bool aidlReadonly) {
auto ashmem = std::make_unique<TestAshmem>(size, aidlReadonly);
return ashmem->mIsValid ? std::move(ashmem) : nullptr;
}
// This function will create a readonly shared memory with PROT_READ only.
// The input shared memory must be either Ashmem or mapped-FD.
static nn::SharedMemory convertSharedMemoryToReadonly(const nn::SharedMemory& sharedMemory) {
if (std::holds_alternative<nn::Memory::Ashmem>(sharedMemory->handle)) {
const auto& memory = std::get<nn::Memory::Ashmem>(sharedMemory->handle);
return nn::createSharedMemoryFromFd(memory.size, PROT_READ, memory.fd.get(), /*offset=*/0)
.value();
} else if (std::holds_alternative<nn::Memory::Fd>(sharedMemory->handle)) {
const auto& memory = std::get<nn::Memory::Fd>(sharedMemory->handle);
return nn::createSharedMemoryFromFd(memory.size, PROT_READ, memory.fd.get(), memory.offset)
.value();
}
CHECK(false) << "Unexpected shared memory type";
return sharedMemory;
}
void TestAshmem::initialize(uint32_t size, bool aidlReadonly) {
mIsValid = false;
ASSERT_GT(size, 0);
const auto sharedMemory = nn::createSharedMemory(size).value();
mMappedMemory = nn::map(sharedMemory).value();
mPtr = static_cast<uint8_t*>(std::get<void*>(mMappedMemory.pointer));
CHECK_NE(mPtr, nullptr);
if (aidlReadonly) {
mAidlMemory = utils::convert(convertSharedMemoryToReadonly(sharedMemory)).value();
} else {
mAidlMemory = utils::convert(sharedMemory).value();
}
mIsValid = true;
}
std::unique_ptr<TestBlobAHWB> TestBlobAHWB::create(uint32_t size) {
auto ahwb = std::make_unique<TestBlobAHWB>(size);
return ahwb->mIsValid ? std::move(ahwb) : nullptr;
}
void TestBlobAHWB::initialize(uint32_t size) {
mIsValid = false;
ASSERT_GT(size, 0);
const auto usage = AHARDWAREBUFFER_USAGE_CPU_READ_OFTEN | AHARDWAREBUFFER_USAGE_CPU_WRITE_OFTEN;
const AHardwareBuffer_Desc desc = {
.width = size,
.height = 1,
.layers = 1,
.format = AHARDWAREBUFFER_FORMAT_BLOB,
.usage = usage,
.stride = size,
};
ASSERT_EQ(AHardwareBuffer_allocate(&desc, &mAhwb), 0);
ASSERT_NE(mAhwb, nullptr);
const auto sharedMemory =
nn::createSharedMemoryFromAHWB(mAhwb, /*takeOwnership=*/false).value();
mMapping = nn::map(sharedMemory).value();
mPtr = static_cast<uint8_t*>(std::get<void*>(mMapping.pointer));
CHECK_NE(mPtr, nullptr);
mAidlMemory = utils::convert(sharedMemory).value();
mIsValid = true;
}
TestBlobAHWB::~TestBlobAHWB() {
if (mAhwb) {
AHardwareBuffer_unlock(mAhwb, nullptr);
AHardwareBuffer_release(mAhwb);
}
}
std::string gtestCompliantName(std::string name) {
// gtest test names must only contain alphanumeric characters
std::replace_if(
name.begin(), name.end(), [](char c) { return !std::isalnum(c); }, '_');
return name;
}
::std::ostream& operator<<(::std::ostream& os, ErrorStatus errorStatus) {
return os << toString(errorStatus);
}
Request ExecutionContext::createRequest(const TestModel& testModel, MemoryType memoryType) {
CHECK(memoryType == MemoryType::ASHMEM || memoryType == MemoryType::BLOB_AHWB);
// Model inputs.
std::vector<RequestArgument> inputs(testModel.main.inputIndexes.size());
size_t inputSize = 0;
for (uint32_t i = 0; i < testModel.main.inputIndexes.size(); i++) {
const auto& op = testModel.main.operands[testModel.main.inputIndexes[i]];
if (op.data.size() == 0) {
// Omitted input.
inputs[i] = {.hasNoValue = true};
} else {
DataLocation loc = {.poolIndex = kInputPoolIndex,
.offset = static_cast<int64_t>(inputSize),
.length = static_cast<int64_t>(op.data.size())};
inputSize += op.data.alignedSize();
inputs[i] = {.hasNoValue = false, .location = loc, .dimensions = {}};
}
}
// Model outputs.
std::vector<RequestArgument> outputs(testModel.main.outputIndexes.size());
size_t outputSize = 0;
for (uint32_t i = 0; i < testModel.main.outputIndexes.size(); i++) {
const auto& op = testModel.main.operands[testModel.main.outputIndexes[i]];
// In the case of zero-sized output, we should at least provide a one-byte buffer.
// This is because zero-sized tensors are only supported internally to the driver, or
// reported in output shapes. It is illegal for the client to pre-specify a zero-sized
// tensor as model output. Otherwise, we will have two semantic conflicts:
// - "Zero dimension" conflicts with "unspecified dimension".
// - "Omitted operand buffer" conflicts with "zero-sized operand buffer".
size_t bufferSize = std::max<size_t>(op.data.size(), 1);
DataLocation loc = {.poolIndex = kOutputPoolIndex,
.offset = static_cast<int64_t>(outputSize),
.length = static_cast<int64_t>(bufferSize)};
outputSize += op.data.size() == 0 ? TestBuffer::kAlignment : op.data.alignedSize();
outputs[i] = {.hasNoValue = false, .location = loc, .dimensions = {}};
}
// Allocate memory pools.
if (memoryType == MemoryType::ASHMEM) {
mInputMemory = TestAshmem::create(inputSize);
mOutputMemory = TestAshmem::create(outputSize);
} else {
mInputMemory = TestBlobAHWB::create(inputSize);
mOutputMemory = TestBlobAHWB::create(outputSize);
}
CHECK_NE(mInputMemory, nullptr);
CHECK_NE(mOutputMemory, nullptr);
auto copiedInputMemory = utils::clone(*mInputMemory->getAidlMemory());
CHECK(copiedInputMemory.has_value()) << copiedInputMemory.error().message;
auto copiedOutputMemory = utils::clone(*mOutputMemory->getAidlMemory());
CHECK(copiedOutputMemory.has_value()) << copiedOutputMemory.error().message;
std::vector<RequestMemoryPool> pools;
pools.push_back(RequestMemoryPool::make<RequestMemoryPool::Tag::pool>(
std::move(copiedInputMemory).value()));
pools.push_back(RequestMemoryPool::make<RequestMemoryPool::Tag::pool>(
std::move(copiedOutputMemory).value()));
// Copy input data to the memory pool.
uint8_t* inputPtr = mInputMemory->getPointer();
for (uint32_t i = 0; i < testModel.main.inputIndexes.size(); i++) {
const auto& op = testModel.main.operands[testModel.main.inputIndexes[i]];
if (op.data.size() > 0) {
const uint8_t* begin = op.data.get<uint8_t>();
const uint8_t* end = begin + op.data.size();
std::copy(begin, end, inputPtr + inputs[i].location.offset);
}
}
return {.inputs = std::move(inputs), .outputs = std::move(outputs), .pools = std::move(pools)};
}
std::vector<TestBuffer> ExecutionContext::getOutputBuffers(const Request& request) const {
// Copy out output results.
uint8_t* outputPtr = mOutputMemory->getPointer();
std::vector<TestBuffer> outputBuffers;
for (const auto& output : request.outputs) {
outputBuffers.emplace_back(output.location.length, outputPtr + output.location.offset);
}
return outputBuffers;
}
} // namespace aidl::android::hardware::neuralnetworks