You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
639 lines
24 KiB
639 lines
24 KiB
/*
|
|
* Copyright (C) 2019 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#define LOG_TAG "ExecutionBurstController"
|
|
|
|
#include "ExecutionBurstController.h"
|
|
|
|
#include <android-base/logging.h>
|
|
|
|
#include <algorithm>
|
|
#include <cstring>
|
|
#include <limits>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <thread>
|
|
#include <tuple>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include "HalInterfaces.h"
|
|
#include "Tracing.h"
|
|
#include "Utils.h"
|
|
|
|
namespace android::nn {
|
|
namespace {
|
|
|
|
using V1_2::FmqRequestDatum;
|
|
using V1_2::FmqResultDatum;
|
|
using V1_2::IBurstCallback;
|
|
using V1_2::IBurstContext;
|
|
using FmqRequestDescriptor = hardware::MQDescriptorSync<FmqRequestDatum>;
|
|
using FmqResultDescriptor = hardware::MQDescriptorSync<FmqResultDatum>;
|
|
|
|
constexpr V1_2::Timing kNoTiming12 = {std::numeric_limits<uint64_t>::max(),
|
|
std::numeric_limits<uint64_t>::max()};
|
|
|
|
class BurstContextDeathHandler : public hardware::hidl_death_recipient {
|
|
public:
|
|
using Callback = std::function<void()>;
|
|
|
|
BurstContextDeathHandler(const Callback& onDeathCallback) : mOnDeathCallback(onDeathCallback) {
|
|
CHECK(onDeathCallback != nullptr);
|
|
}
|
|
|
|
void serviceDied(uint64_t /*cookie*/, const wp<hidl::base::V1_0::IBase>& /*who*/) override {
|
|
LOG(ERROR) << "BurstContextDeathHandler::serviceDied -- service unexpectedly died!";
|
|
mOnDeathCallback();
|
|
}
|
|
|
|
private:
|
|
const Callback mOnDeathCallback;
|
|
};
|
|
|
|
} // anonymous namespace
|
|
|
|
// serialize a request into a packet
|
|
std::vector<FmqRequestDatum> serialize(const V1_0::Request& request, V1_2::MeasureTiming measure,
|
|
const std::vector<int32_t>& slots) {
|
|
// count how many elements need to be sent for a request
|
|
size_t count = 2 + request.inputs.size() + request.outputs.size() + request.pools.size();
|
|
for (const auto& input : request.inputs) {
|
|
count += input.dimensions.size();
|
|
}
|
|
for (const auto& output : request.outputs) {
|
|
count += output.dimensions.size();
|
|
}
|
|
|
|
// create buffer to temporarily store elements
|
|
std::vector<FmqRequestDatum> data;
|
|
data.reserve(count);
|
|
|
|
// package packetInfo
|
|
{
|
|
FmqRequestDatum datum;
|
|
datum.packetInformation(
|
|
{/*.packetSize=*/static_cast<uint32_t>(count),
|
|
/*.numberOfInputOperands=*/static_cast<uint32_t>(request.inputs.size()),
|
|
/*.numberOfOutputOperands=*/static_cast<uint32_t>(request.outputs.size()),
|
|
/*.numberOfPools=*/static_cast<uint32_t>(request.pools.size())});
|
|
data.push_back(datum);
|
|
}
|
|
|
|
// package input data
|
|
for (const auto& input : request.inputs) {
|
|
// package operand information
|
|
FmqRequestDatum datum;
|
|
datum.inputOperandInformation(
|
|
{/*.hasNoValue=*/input.hasNoValue,
|
|
/*.location=*/input.location,
|
|
/*.numberOfDimensions=*/static_cast<uint32_t>(input.dimensions.size())});
|
|
data.push_back(datum);
|
|
|
|
// package operand dimensions
|
|
for (uint32_t dimension : input.dimensions) {
|
|
FmqRequestDatum datum;
|
|
datum.inputOperandDimensionValue(dimension);
|
|
data.push_back(datum);
|
|
}
|
|
}
|
|
|
|
// package output data
|
|
for (const auto& output : request.outputs) {
|
|
// package operand information
|
|
FmqRequestDatum datum;
|
|
datum.outputOperandInformation(
|
|
{/*.hasNoValue=*/output.hasNoValue,
|
|
/*.location=*/output.location,
|
|
/*.numberOfDimensions=*/static_cast<uint32_t>(output.dimensions.size())});
|
|
data.push_back(datum);
|
|
|
|
// package operand dimensions
|
|
for (uint32_t dimension : output.dimensions) {
|
|
FmqRequestDatum datum;
|
|
datum.outputOperandDimensionValue(dimension);
|
|
data.push_back(datum);
|
|
}
|
|
}
|
|
|
|
// package pool identifier
|
|
for (int32_t slot : slots) {
|
|
FmqRequestDatum datum;
|
|
datum.poolIdentifier(slot);
|
|
data.push_back(datum);
|
|
}
|
|
|
|
// package measureTiming
|
|
{
|
|
FmqRequestDatum datum;
|
|
datum.measureTiming(measure);
|
|
data.push_back(datum);
|
|
}
|
|
|
|
// return packet
|
|
return data;
|
|
}
|
|
|
|
// deserialize a packet into the result
|
|
std::optional<std::tuple<V1_0::ErrorStatus, std::vector<V1_2::OutputShape>, V1_2::Timing>>
|
|
deserialize(const std::vector<FmqResultDatum>& data) {
|
|
using discriminator = FmqResultDatum::hidl_discriminator;
|
|
|
|
std::vector<V1_2::OutputShape> outputShapes;
|
|
size_t index = 0;
|
|
|
|
// validate packet information
|
|
if (index >= data.size() ||
|
|
data.at(index).getDiscriminator() != discriminator::packetInformation) {
|
|
LOG(ERROR) << "FMQ Result packet ill-formed";
|
|
return std::nullopt;
|
|
}
|
|
|
|
// unpackage packet information
|
|
const FmqResultDatum::PacketInformation& packetInfo = data.at(index).packetInformation();
|
|
index++;
|
|
const uint32_t packetSize = packetInfo.packetSize;
|
|
const V1_0::ErrorStatus errorStatus = packetInfo.errorStatus;
|
|
const uint32_t numberOfOperands = packetInfo.numberOfOperands;
|
|
|
|
// verify packet size
|
|
if (data.size() != packetSize) {
|
|
LOG(ERROR) << "FMQ Result packet ill-formed";
|
|
return std::nullopt;
|
|
}
|
|
|
|
// unpackage operands
|
|
for (size_t operand = 0; operand < numberOfOperands; ++operand) {
|
|
// validate operand information
|
|
if (index >= data.size() ||
|
|
data.at(index).getDiscriminator() != discriminator::operandInformation) {
|
|
LOG(ERROR) << "FMQ Result packet ill-formed";
|
|
return std::nullopt;
|
|
}
|
|
|
|
// unpackage operand information
|
|
const FmqResultDatum::OperandInformation& operandInfo = data.at(index).operandInformation();
|
|
index++;
|
|
const bool isSufficient = operandInfo.isSufficient;
|
|
const uint32_t numberOfDimensions = operandInfo.numberOfDimensions;
|
|
|
|
// unpackage operand dimensions
|
|
std::vector<uint32_t> dimensions;
|
|
dimensions.reserve(numberOfDimensions);
|
|
for (size_t i = 0; i < numberOfDimensions; ++i) {
|
|
// validate dimension
|
|
if (index >= data.size() ||
|
|
data.at(index).getDiscriminator() != discriminator::operandDimensionValue) {
|
|
LOG(ERROR) << "FMQ Result packet ill-formed";
|
|
return std::nullopt;
|
|
}
|
|
|
|
// unpackage dimension
|
|
const uint32_t dimension = data.at(index).operandDimensionValue();
|
|
index++;
|
|
|
|
// store result
|
|
dimensions.push_back(dimension);
|
|
}
|
|
|
|
// store result
|
|
outputShapes.push_back({/*.dimensions=*/dimensions, /*.isSufficient=*/isSufficient});
|
|
}
|
|
|
|
// validate execution timing
|
|
if (index >= data.size() ||
|
|
data.at(index).getDiscriminator() != discriminator::executionTiming) {
|
|
LOG(ERROR) << "FMQ Result packet ill-formed";
|
|
return std::nullopt;
|
|
}
|
|
|
|
// unpackage execution timing
|
|
const V1_2::Timing timing = data.at(index).executionTiming();
|
|
index++;
|
|
|
|
// validate packet information
|
|
if (index != packetSize) {
|
|
LOG(ERROR) << "FMQ Result packet ill-formed";
|
|
return std::nullopt;
|
|
}
|
|
|
|
// return result
|
|
return std::make_tuple(errorStatus, std::move(outputShapes), timing);
|
|
}
|
|
|
|
V1_0::ErrorStatus legacyConvertResultCodeToErrorStatus(int resultCode) {
|
|
return convertToV1_0(convertResultCodeToErrorStatus(resultCode));
|
|
}
|
|
|
|
std::pair<std::unique_ptr<ResultChannelReceiver>, const FmqResultDescriptor*>
|
|
ResultChannelReceiver::create(size_t channelLength, std::chrono::microseconds pollingTimeWindow) {
|
|
std::unique_ptr<FmqResultChannel> fmqResultChannel =
|
|
std::make_unique<FmqResultChannel>(channelLength, /*confEventFlag=*/true);
|
|
if (!fmqResultChannel->isValid()) {
|
|
LOG(ERROR) << "Unable to create ResultChannelReceiver";
|
|
return {nullptr, nullptr};
|
|
}
|
|
|
|
const FmqResultDescriptor* descriptor = fmqResultChannel->getDesc();
|
|
return std::make_pair(
|
|
std::make_unique<ResultChannelReceiver>(std::move(fmqResultChannel), pollingTimeWindow),
|
|
descriptor);
|
|
}
|
|
|
|
ResultChannelReceiver::ResultChannelReceiver(std::unique_ptr<FmqResultChannel> fmqResultChannel,
|
|
std::chrono::microseconds pollingTimeWindow)
|
|
: mFmqResultChannel(std::move(fmqResultChannel)), kPollingTimeWindow(pollingTimeWindow) {}
|
|
|
|
std::optional<std::tuple<V1_0::ErrorStatus, std::vector<V1_2::OutputShape>, V1_2::Timing>>
|
|
ResultChannelReceiver::getBlocking() {
|
|
const auto packet = getPacketBlocking();
|
|
if (!packet) {
|
|
return std::nullopt;
|
|
}
|
|
|
|
return deserialize(*packet);
|
|
}
|
|
|
|
void ResultChannelReceiver::invalidate() {
|
|
mValid = false;
|
|
|
|
// force unblock
|
|
// ExecutionBurstController waits on a result packet after sending a
|
|
// request. If the driver containing ExecutionBurstServer crashes, the
|
|
// controller may be waiting on the futex. This force unblock wakes up any
|
|
// thread waiting on the futex.
|
|
// TODO: look for a different/better way to signal/notify the futex to
|
|
// wake up any thread waiting on it
|
|
FmqResultDatum datum;
|
|
datum.packetInformation({/*.packetSize=*/0,
|
|
/*.errorStatus=*/V1_0::ErrorStatus::GENERAL_FAILURE,
|
|
/*.numberOfOperands=*/0});
|
|
mFmqResultChannel->writeBlocking(&datum, 1);
|
|
}
|
|
|
|
std::optional<std::vector<FmqResultDatum>> ResultChannelReceiver::getPacketBlocking() {
|
|
if (!mValid) {
|
|
return std::nullopt;
|
|
}
|
|
|
|
// First spend time polling if results are available in FMQ instead of
|
|
// waiting on the futex. Polling is more responsive (yielding lower
|
|
// latencies), but can take up more power, so only poll for a limited period
|
|
// of time.
|
|
|
|
auto& getCurrentTime = std::chrono::high_resolution_clock::now;
|
|
const auto timeToStopPolling = getCurrentTime() + kPollingTimeWindow;
|
|
|
|
while (getCurrentTime() < timeToStopPolling) {
|
|
// if class is being torn down, immediately return
|
|
if (!mValid.load(std::memory_order_relaxed)) {
|
|
return std::nullopt;
|
|
}
|
|
|
|
// Check if data is available. If it is, immediately retrieve it and
|
|
// return.
|
|
const size_t available = mFmqResultChannel->availableToRead();
|
|
if (available > 0) {
|
|
std::vector<FmqResultDatum> packet(available);
|
|
const bool success = mFmqResultChannel->read(packet.data(), available);
|
|
if (!success) {
|
|
LOG(ERROR) << "Error receiving packet";
|
|
return std::nullopt;
|
|
}
|
|
return std::make_optional(std::move(packet));
|
|
}
|
|
|
|
std::this_thread::yield();
|
|
}
|
|
|
|
// If we get to this point, we either stopped polling because it was taking
|
|
// too long or polling was not allowed. Instead, perform a blocking call
|
|
// which uses a futex to save power.
|
|
|
|
// wait for result packet and read first element of result packet
|
|
FmqResultDatum datum;
|
|
bool success = mFmqResultChannel->readBlocking(&datum, 1);
|
|
|
|
// retrieve remaining elements
|
|
// NOTE: all of the data is already available at this point, so there's no
|
|
// need to do a blocking wait to wait for more data. This is known because
|
|
// in FMQ, all writes are published (made available) atomically. Currently,
|
|
// the producer always publishes the entire packet in one function call, so
|
|
// if the first element of the packet is available, the remaining elements
|
|
// are also available.
|
|
const size_t count = mFmqResultChannel->availableToRead();
|
|
std::vector<FmqResultDatum> packet(count + 1);
|
|
std::memcpy(&packet.front(), &datum, sizeof(datum));
|
|
success &= mFmqResultChannel->read(packet.data() + 1, count);
|
|
|
|
if (!mValid) {
|
|
return std::nullopt;
|
|
}
|
|
|
|
// ensure packet was successfully received
|
|
if (!success) {
|
|
LOG(ERROR) << "Error receiving packet";
|
|
return std::nullopt;
|
|
}
|
|
|
|
return std::make_optional(std::move(packet));
|
|
}
|
|
|
|
std::pair<std::unique_ptr<RequestChannelSender>, const FmqRequestDescriptor*>
|
|
RequestChannelSender::create(size_t channelLength) {
|
|
std::unique_ptr<FmqRequestChannel> fmqRequestChannel =
|
|
std::make_unique<FmqRequestChannel>(channelLength, /*confEventFlag=*/true);
|
|
if (!fmqRequestChannel->isValid()) {
|
|
LOG(ERROR) << "Unable to create RequestChannelSender";
|
|
return {nullptr, nullptr};
|
|
}
|
|
|
|
const FmqRequestDescriptor* descriptor = fmqRequestChannel->getDesc();
|
|
return std::make_pair(std::make_unique<RequestChannelSender>(std::move(fmqRequestChannel)),
|
|
descriptor);
|
|
}
|
|
|
|
RequestChannelSender::RequestChannelSender(std::unique_ptr<FmqRequestChannel> fmqRequestChannel)
|
|
: mFmqRequestChannel(std::move(fmqRequestChannel)) {}
|
|
|
|
bool RequestChannelSender::send(const V1_0::Request& request, V1_2::MeasureTiming measure,
|
|
const std::vector<int32_t>& slots) {
|
|
const std::vector<FmqRequestDatum> serialized = serialize(request, measure, slots);
|
|
return sendPacket(serialized);
|
|
}
|
|
|
|
bool RequestChannelSender::sendPacket(const std::vector<FmqRequestDatum>& packet) {
|
|
if (!mValid) {
|
|
return false;
|
|
}
|
|
|
|
if (packet.size() > mFmqRequestChannel->availableToWrite()) {
|
|
LOG(ERROR)
|
|
<< "RequestChannelSender::sendPacket -- packet size exceeds size available in FMQ";
|
|
return false;
|
|
}
|
|
|
|
// Always send the packet with "blocking" because this signals the futex and
|
|
// unblocks the consumer if it is waiting on the futex.
|
|
return mFmqRequestChannel->writeBlocking(packet.data(), packet.size());
|
|
}
|
|
|
|
void RequestChannelSender::invalidate() {
|
|
mValid = false;
|
|
}
|
|
|
|
hardware::Return<void> ExecutionBurstController::ExecutionBurstCallback::getMemories(
|
|
const hardware::hidl_vec<int32_t>& slots, getMemories_cb cb) {
|
|
std::lock_guard<std::mutex> guard(mMutex);
|
|
|
|
// get all memories
|
|
hardware::hidl_vec<hardware::hidl_memory> memories(slots.size());
|
|
std::transform(slots.begin(), slots.end(), memories.begin(), [this](int32_t slot) {
|
|
return slot < mMemoryCache.size() ? mMemoryCache[slot] : hardware::hidl_memory{};
|
|
});
|
|
|
|
// ensure all memories are valid
|
|
if (!std::all_of(memories.begin(), memories.end(),
|
|
[](const hardware::hidl_memory& memory) { return memory.valid(); })) {
|
|
cb(V1_0::ErrorStatus::INVALID_ARGUMENT, {});
|
|
return hardware::Void();
|
|
}
|
|
|
|
// return successful
|
|
cb(V1_0::ErrorStatus::NONE, std::move(memories));
|
|
return hardware::Void();
|
|
}
|
|
|
|
std::vector<int32_t> ExecutionBurstController::ExecutionBurstCallback::getSlots(
|
|
const hardware::hidl_vec<hardware::hidl_memory>& memories,
|
|
const std::vector<intptr_t>& keys) {
|
|
std::lock_guard<std::mutex> guard(mMutex);
|
|
|
|
// retrieve (or bind) all slots corresponding to memories
|
|
std::vector<int32_t> slots;
|
|
slots.reserve(memories.size());
|
|
for (size_t i = 0; i < memories.size(); ++i) {
|
|
slots.push_back(getSlotLocked(memories[i], keys[i]));
|
|
}
|
|
return slots;
|
|
}
|
|
|
|
std::pair<bool, int32_t> ExecutionBurstController::ExecutionBurstCallback::freeMemory(
|
|
intptr_t key) {
|
|
std::lock_guard<std::mutex> guard(mMutex);
|
|
|
|
auto iter = mMemoryIdToSlot.find(key);
|
|
if (iter == mMemoryIdToSlot.end()) {
|
|
return {false, 0};
|
|
}
|
|
const int32_t slot = iter->second;
|
|
mMemoryIdToSlot.erase(key);
|
|
mMemoryCache[slot] = {};
|
|
mFreeSlots.push(slot);
|
|
return {true, slot};
|
|
}
|
|
|
|
int32_t ExecutionBurstController::ExecutionBurstCallback::getSlotLocked(
|
|
const hardware::hidl_memory& memory, intptr_t key) {
|
|
auto iter = mMemoryIdToSlot.find(key);
|
|
if (iter == mMemoryIdToSlot.end()) {
|
|
const int32_t slot = allocateSlotLocked();
|
|
mMemoryIdToSlot[key] = slot;
|
|
mMemoryCache[slot] = memory;
|
|
return slot;
|
|
} else {
|
|
const int32_t slot = iter->second;
|
|
return slot;
|
|
}
|
|
}
|
|
|
|
int32_t ExecutionBurstController::ExecutionBurstCallback::allocateSlotLocked() {
|
|
constexpr size_t kMaxNumberOfSlots = std::numeric_limits<int32_t>::max();
|
|
|
|
// if there is a free slot, use it
|
|
if (mFreeSlots.size() > 0) {
|
|
const int32_t slot = mFreeSlots.top();
|
|
mFreeSlots.pop();
|
|
return slot;
|
|
}
|
|
|
|
// otherwise use a slot for the first time
|
|
CHECK(mMemoryCache.size() < kMaxNumberOfSlots) << "Exceeded maximum number of slots!";
|
|
const int32_t slot = static_cast<int32_t>(mMemoryCache.size());
|
|
mMemoryCache.emplace_back();
|
|
|
|
return slot;
|
|
}
|
|
|
|
std::unique_ptr<ExecutionBurstController> ExecutionBurstController::create(
|
|
const sp<V1_2::IPreparedModel>& preparedModel,
|
|
std::chrono::microseconds pollingTimeWindow) {
|
|
// check inputs
|
|
if (preparedModel == nullptr) {
|
|
LOG(ERROR) << "ExecutionBurstController::create passed a nullptr";
|
|
return nullptr;
|
|
}
|
|
|
|
// create callback object
|
|
sp<ExecutionBurstCallback> callback = new ExecutionBurstCallback();
|
|
|
|
// create FMQ objects
|
|
auto [requestChannelSenderTemp, requestChannelDescriptor] =
|
|
RequestChannelSender::create(kExecutionBurstChannelLength);
|
|
auto [resultChannelReceiverTemp, resultChannelDescriptor] =
|
|
ResultChannelReceiver::create(kExecutionBurstChannelLength, pollingTimeWindow);
|
|
std::shared_ptr<RequestChannelSender> requestChannelSender =
|
|
std::move(requestChannelSenderTemp);
|
|
std::shared_ptr<ResultChannelReceiver> resultChannelReceiver =
|
|
std::move(resultChannelReceiverTemp);
|
|
|
|
// check FMQ objects
|
|
if (!requestChannelSender || !resultChannelReceiver || !requestChannelDescriptor ||
|
|
!resultChannelDescriptor) {
|
|
LOG(ERROR) << "ExecutionBurstController::create failed to create FastMessageQueue";
|
|
return nullptr;
|
|
}
|
|
|
|
// configure burst
|
|
V1_0::ErrorStatus errorStatus;
|
|
sp<IBurstContext> burstContext;
|
|
const hardware::Return<void> ret = preparedModel->configureExecutionBurst(
|
|
callback, *requestChannelDescriptor, *resultChannelDescriptor,
|
|
[&errorStatus, &burstContext](V1_0::ErrorStatus status,
|
|
const sp<IBurstContext>& context) {
|
|
errorStatus = status;
|
|
burstContext = context;
|
|
});
|
|
|
|
// check burst
|
|
if (!ret.isOk()) {
|
|
LOG(ERROR) << "IPreparedModel::configureExecutionBurst failed with description "
|
|
<< ret.description();
|
|
return nullptr;
|
|
}
|
|
if (errorStatus != V1_0::ErrorStatus::NONE) {
|
|
LOG(ERROR) << "IPreparedModel::configureExecutionBurst failed with status "
|
|
<< toString(errorStatus);
|
|
return nullptr;
|
|
}
|
|
if (burstContext == nullptr) {
|
|
LOG(ERROR) << "IPreparedModel::configureExecutionBurst returned nullptr for burst";
|
|
return nullptr;
|
|
}
|
|
|
|
// create death handler object
|
|
BurstContextDeathHandler::Callback onDeathCallback = [requestChannelSender,
|
|
resultChannelReceiver] {
|
|
requestChannelSender->invalidate();
|
|
resultChannelReceiver->invalidate();
|
|
};
|
|
const sp<BurstContextDeathHandler> deathHandler = new BurstContextDeathHandler(onDeathCallback);
|
|
|
|
// linkToDeath registers a callback that will be invoked on service death to
|
|
// proactively handle service crashes. If the linkToDeath call fails,
|
|
// asynchronous calls are susceptible to hangs if the service crashes before
|
|
// providing the response.
|
|
const hardware::Return<bool> deathHandlerRet = burstContext->linkToDeath(deathHandler, 0);
|
|
if (!deathHandlerRet.isOk() || deathHandlerRet != true) {
|
|
LOG(ERROR) << "ExecutionBurstController::create -- Failed to register a death recipient "
|
|
"for the IBurstContext object.";
|
|
return nullptr;
|
|
}
|
|
|
|
// make and return controller
|
|
return std::make_unique<ExecutionBurstController>(requestChannelSender, resultChannelReceiver,
|
|
burstContext, callback, deathHandler);
|
|
}
|
|
|
|
ExecutionBurstController::ExecutionBurstController(
|
|
const std::shared_ptr<RequestChannelSender>& requestChannelSender,
|
|
const std::shared_ptr<ResultChannelReceiver>& resultChannelReceiver,
|
|
const sp<IBurstContext>& burstContext, const sp<ExecutionBurstCallback>& callback,
|
|
const sp<hardware::hidl_death_recipient>& deathHandler)
|
|
: mRequestChannelSender(requestChannelSender),
|
|
mResultChannelReceiver(resultChannelReceiver),
|
|
mBurstContext(burstContext),
|
|
mMemoryCache(callback),
|
|
mDeathHandler(deathHandler) {}
|
|
|
|
ExecutionBurstController::~ExecutionBurstController() {
|
|
// It is safe to ignore any errors resulting from this unlinkToDeath call
|
|
// because the ExecutionBurstController object is already being destroyed
|
|
// and its underlying IBurstContext object is no longer being used by the NN
|
|
// runtime.
|
|
if (mDeathHandler) {
|
|
mBurstContext->unlinkToDeath(mDeathHandler).isOk();
|
|
}
|
|
}
|
|
|
|
static std::tuple<int, std::vector<V1_2::OutputShape>, V1_2::Timing, bool> getExecutionResult(
|
|
V1_0::ErrorStatus status, std::vector<V1_2::OutputShape> outputShapes, V1_2::Timing timing,
|
|
bool fallback) {
|
|
auto [n, checkedOutputShapes, checkedTiming] =
|
|
getExecutionResult(convertToV1_3(status), std::move(outputShapes), timing);
|
|
return {n, convertToV1_2(checkedOutputShapes), convertToV1_2(checkedTiming), fallback};
|
|
}
|
|
|
|
std::tuple<int, std::vector<V1_2::OutputShape>, V1_2::Timing, bool>
|
|
ExecutionBurstController::compute(const V1_0::Request& request, V1_2::MeasureTiming measure,
|
|
const std::vector<intptr_t>& memoryIds) {
|
|
// This is the first point when we know an execution is occurring, so begin
|
|
// to collect systraces. Note that the first point we can begin collecting
|
|
// systraces in ExecutionBurstServer is when the RequestChannelReceiver
|
|
// realizes there is data in the FMQ, so ExecutionBurstServer collects
|
|
// systraces at different points in the code.
|
|
NNTRACE_FULL(NNTRACE_LAYER_IPC, NNTRACE_PHASE_EXECUTION, "ExecutionBurstController::compute");
|
|
|
|
std::lock_guard<std::mutex> guard(mMutex);
|
|
|
|
// send request packet
|
|
const std::vector<int32_t> slots = mMemoryCache->getSlots(request.pools, memoryIds);
|
|
const bool success = mRequestChannelSender->send(request, measure, slots);
|
|
if (!success) {
|
|
LOG(ERROR) << "Error sending FMQ packet";
|
|
// only use fallback execution path if the packet could not be sent
|
|
return getExecutionResult(V1_0::ErrorStatus::GENERAL_FAILURE, {}, kNoTiming12,
|
|
/*fallback=*/true);
|
|
}
|
|
|
|
// get result packet
|
|
const auto result = mResultChannelReceiver->getBlocking();
|
|
if (!result) {
|
|
LOG(ERROR) << "Error retrieving FMQ packet";
|
|
// only use fallback execution path if the packet could not be sent
|
|
return getExecutionResult(V1_0::ErrorStatus::GENERAL_FAILURE, {}, kNoTiming12,
|
|
/*fallback=*/false);
|
|
}
|
|
|
|
// unpack results and return (only use fallback execution path if the
|
|
// packet could not be sent)
|
|
auto [status, outputShapes, timing] = std::move(*result);
|
|
return getExecutionResult(status, std::move(outputShapes), timing, /*fallback=*/false);
|
|
}
|
|
|
|
void ExecutionBurstController::freeMemory(intptr_t key) {
|
|
std::lock_guard<std::mutex> guard(mMutex);
|
|
|
|
bool valid;
|
|
int32_t slot;
|
|
std::tie(valid, slot) = mMemoryCache->freeMemory(key);
|
|
if (valid) {
|
|
mBurstContext->freeMemory(slot).isOk();
|
|
}
|
|
}
|
|
|
|
} // namespace android::nn
|