You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
658 lines
25 KiB
658 lines
25 KiB
/*
|
|
* Copyright (C) 2019 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#define LOG_TAG "ExecutionBurstServer"
|
|
|
|
#include "ExecutionBurstServer.h"
|
|
|
|
#include <android-base/logging.h>
|
|
|
|
#include <algorithm>
|
|
#include <cstring>
|
|
#include <limits>
|
|
#include <map>
|
|
#include <memory>
|
|
#include <thread>
|
|
#include <tuple>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include "HalInterfaces.h"
|
|
#include "Tracing.h"
|
|
#include "Utils.h"
|
|
|
|
namespace android::nn {
|
|
namespace {
|
|
|
|
using hardware::MQDescriptorSync;
|
|
using V1_2::FmqRequestDatum;
|
|
using V1_2::FmqResultDatum;
|
|
using V1_2::IBurstCallback;
|
|
using V1_2::IBurstContext;
|
|
|
|
constexpr V1_2::Timing kNoTiming = {std::numeric_limits<uint64_t>::max(),
|
|
std::numeric_limits<uint64_t>::max()};
|
|
|
|
// DefaultBurstExecutorWithCache adapts an IPreparedModel so that it can be
|
|
// used as an IBurstExecutorWithCache. Specifically, the cache simply stores the
|
|
// hidl_memory object, and the execution forwards calls to the provided
|
|
// IPreparedModel's "executeSynchronously" method. With this class, hidl_memory
|
|
// must be mapped and unmapped for each execution.
|
|
class DefaultBurstExecutorWithCache : public ExecutionBurstServer::IBurstExecutorWithCache {
|
|
public:
|
|
DefaultBurstExecutorWithCache(V1_2::IPreparedModel* preparedModel)
|
|
: mpPreparedModel(preparedModel) {}
|
|
|
|
bool isCacheEntryPresent(int32_t slot) const override {
|
|
const auto it = mMemoryCache.find(slot);
|
|
return (it != mMemoryCache.end()) && it->second.valid();
|
|
}
|
|
|
|
void addCacheEntry(const hardware::hidl_memory& memory, int32_t slot) override {
|
|
mMemoryCache[slot] = memory;
|
|
}
|
|
|
|
void removeCacheEntry(int32_t slot) override { mMemoryCache.erase(slot); }
|
|
|
|
std::tuple<V1_0::ErrorStatus, hardware::hidl_vec<V1_2::OutputShape>, V1_2::Timing> execute(
|
|
const V1_0::Request& request, const std::vector<int32_t>& slots,
|
|
V1_2::MeasureTiming measure) override {
|
|
// convert slots to pools
|
|
hardware::hidl_vec<hardware::hidl_memory> pools(slots.size());
|
|
std::transform(slots.begin(), slots.end(), pools.begin(),
|
|
[this](int32_t slot) { return mMemoryCache[slot]; });
|
|
|
|
// create full request
|
|
V1_0::Request fullRequest = request;
|
|
fullRequest.pools = std::move(pools);
|
|
|
|
// setup execution
|
|
V1_0::ErrorStatus returnedStatus = V1_0::ErrorStatus::GENERAL_FAILURE;
|
|
hardware::hidl_vec<V1_2::OutputShape> returnedOutputShapes;
|
|
V1_2::Timing returnedTiming;
|
|
auto cb = [&returnedStatus, &returnedOutputShapes, &returnedTiming](
|
|
V1_0::ErrorStatus status,
|
|
const hardware::hidl_vec<V1_2::OutputShape>& outputShapes,
|
|
const V1_2::Timing& timing) {
|
|
returnedStatus = status;
|
|
returnedOutputShapes = outputShapes;
|
|
returnedTiming = timing;
|
|
};
|
|
|
|
// execute
|
|
const hardware::Return<void> ret =
|
|
mpPreparedModel->executeSynchronously(fullRequest, measure, cb);
|
|
if (!ret.isOk() || returnedStatus != V1_0::ErrorStatus::NONE) {
|
|
LOG(ERROR) << "IPreparedModelAdapter::execute -- Error executing";
|
|
return {returnedStatus, std::move(returnedOutputShapes), kNoTiming};
|
|
}
|
|
|
|
return std::make_tuple(returnedStatus, std::move(returnedOutputShapes), returnedTiming);
|
|
}
|
|
|
|
private:
|
|
V1_2::IPreparedModel* const mpPreparedModel;
|
|
std::map<int32_t, hardware::hidl_memory> mMemoryCache;
|
|
};
|
|
|
|
} // anonymous namespace
|
|
|
|
// serialize result
|
|
std::vector<FmqResultDatum> serialize(V1_0::ErrorStatus errorStatus,
|
|
const std::vector<V1_2::OutputShape>& outputShapes,
|
|
V1_2::Timing timing) {
|
|
// count how many elements need to be sent for a request
|
|
size_t count = 2 + outputShapes.size();
|
|
for (const auto& outputShape : outputShapes) {
|
|
count += outputShape.dimensions.size();
|
|
}
|
|
|
|
// create buffer to temporarily store elements
|
|
std::vector<FmqResultDatum> data;
|
|
data.reserve(count);
|
|
|
|
// package packetInfo
|
|
{
|
|
FmqResultDatum datum;
|
|
datum.packetInformation({/*.packetSize=*/static_cast<uint32_t>(count),
|
|
/*.errorStatus=*/errorStatus,
|
|
/*.numberOfOperands=*/static_cast<uint32_t>(outputShapes.size())});
|
|
data.push_back(datum);
|
|
}
|
|
|
|
// package output shape data
|
|
for (const auto& operand : outputShapes) {
|
|
// package operand information
|
|
FmqResultDatum::OperandInformation info{};
|
|
info.isSufficient = operand.isSufficient;
|
|
info.numberOfDimensions = static_cast<uint32_t>(operand.dimensions.size());
|
|
|
|
FmqResultDatum datum;
|
|
datum.operandInformation(info);
|
|
data.push_back(datum);
|
|
|
|
// package operand dimensions
|
|
for (uint32_t dimension : operand.dimensions) {
|
|
FmqResultDatum datum;
|
|
datum.operandDimensionValue(dimension);
|
|
data.push_back(datum);
|
|
}
|
|
}
|
|
|
|
// package executionTiming
|
|
{
|
|
FmqResultDatum datum;
|
|
datum.executionTiming(timing);
|
|
data.push_back(datum);
|
|
}
|
|
|
|
// return result
|
|
return data;
|
|
}
|
|
|
|
// deserialize request
|
|
std::optional<std::tuple<V1_0::Request, std::vector<int32_t>, V1_2::MeasureTiming>> deserialize(
|
|
const std::vector<FmqRequestDatum>& data) {
|
|
using discriminator = FmqRequestDatum::hidl_discriminator;
|
|
|
|
size_t index = 0;
|
|
|
|
// validate packet information
|
|
if (index >= data.size() ||
|
|
data.at(index).getDiscriminator() != discriminator::packetInformation) {
|
|
LOG(ERROR) << "FMQ Request packet ill-formed";
|
|
return std::nullopt;
|
|
}
|
|
|
|
// unpackage packet information
|
|
const FmqRequestDatum::PacketInformation& packetInfo = data.at(index).packetInformation();
|
|
index++;
|
|
const uint32_t packetSize = packetInfo.packetSize;
|
|
const uint32_t numberOfInputOperands = packetInfo.numberOfInputOperands;
|
|
const uint32_t numberOfOutputOperands = packetInfo.numberOfOutputOperands;
|
|
const uint32_t numberOfPools = packetInfo.numberOfPools;
|
|
|
|
// verify packet size
|
|
if (data.size() != packetSize) {
|
|
LOG(ERROR) << "FMQ Request packet ill-formed";
|
|
return std::nullopt;
|
|
}
|
|
|
|
// unpackage input operands
|
|
std::vector<V1_0::RequestArgument> inputs;
|
|
inputs.reserve(numberOfInputOperands);
|
|
for (size_t operand = 0; operand < numberOfInputOperands; ++operand) {
|
|
// validate input operand information
|
|
if (index >= data.size() ||
|
|
data.at(index).getDiscriminator() != discriminator::inputOperandInformation) {
|
|
LOG(ERROR) << "FMQ Request packet ill-formed";
|
|
return std::nullopt;
|
|
}
|
|
|
|
// unpackage operand information
|
|
const FmqRequestDatum::OperandInformation& operandInfo =
|
|
data.at(index).inputOperandInformation();
|
|
index++;
|
|
const bool hasNoValue = operandInfo.hasNoValue;
|
|
const V1_0::DataLocation location = operandInfo.location;
|
|
const uint32_t numberOfDimensions = operandInfo.numberOfDimensions;
|
|
|
|
// unpackage operand dimensions
|
|
std::vector<uint32_t> dimensions;
|
|
dimensions.reserve(numberOfDimensions);
|
|
for (size_t i = 0; i < numberOfDimensions; ++i) {
|
|
// validate dimension
|
|
if (index >= data.size() ||
|
|
data.at(index).getDiscriminator() != discriminator::inputOperandDimensionValue) {
|
|
LOG(ERROR) << "FMQ Request packet ill-formed";
|
|
return std::nullopt;
|
|
}
|
|
|
|
// unpackage dimension
|
|
const uint32_t dimension = data.at(index).inputOperandDimensionValue();
|
|
index++;
|
|
|
|
// store result
|
|
dimensions.push_back(dimension);
|
|
}
|
|
|
|
// store result
|
|
inputs.push_back(
|
|
{/*.hasNoValue=*/hasNoValue, /*.location=*/location, /*.dimensions=*/dimensions});
|
|
}
|
|
|
|
// unpackage output operands
|
|
std::vector<V1_0::RequestArgument> outputs;
|
|
outputs.reserve(numberOfOutputOperands);
|
|
for (size_t operand = 0; operand < numberOfOutputOperands; ++operand) {
|
|
// validate output operand information
|
|
if (index >= data.size() ||
|
|
data.at(index).getDiscriminator() != discriminator::outputOperandInformation) {
|
|
LOG(ERROR) << "FMQ Request packet ill-formed";
|
|
return std::nullopt;
|
|
}
|
|
|
|
// unpackage operand information
|
|
const FmqRequestDatum::OperandInformation& operandInfo =
|
|
data.at(index).outputOperandInformation();
|
|
index++;
|
|
const bool hasNoValue = operandInfo.hasNoValue;
|
|
const V1_0::DataLocation location = operandInfo.location;
|
|
const uint32_t numberOfDimensions = operandInfo.numberOfDimensions;
|
|
|
|
// unpackage operand dimensions
|
|
std::vector<uint32_t> dimensions;
|
|
dimensions.reserve(numberOfDimensions);
|
|
for (size_t i = 0; i < numberOfDimensions; ++i) {
|
|
// validate dimension
|
|
if (index >= data.size() ||
|
|
data.at(index).getDiscriminator() != discriminator::outputOperandDimensionValue) {
|
|
LOG(ERROR) << "FMQ Request packet ill-formed";
|
|
return std::nullopt;
|
|
}
|
|
|
|
// unpackage dimension
|
|
const uint32_t dimension = data.at(index).outputOperandDimensionValue();
|
|
index++;
|
|
|
|
// store result
|
|
dimensions.push_back(dimension);
|
|
}
|
|
|
|
// store result
|
|
outputs.push_back(
|
|
{/*.hasNoValue=*/hasNoValue, /*.location=*/location, /*.dimensions=*/dimensions});
|
|
}
|
|
|
|
// unpackage pools
|
|
std::vector<int32_t> slots;
|
|
slots.reserve(numberOfPools);
|
|
for (size_t pool = 0; pool < numberOfPools; ++pool) {
|
|
// validate input operand information
|
|
if (index >= data.size() ||
|
|
data.at(index).getDiscriminator() != discriminator::poolIdentifier) {
|
|
LOG(ERROR) << "FMQ Request packet ill-formed";
|
|
return std::nullopt;
|
|
}
|
|
|
|
// unpackage operand information
|
|
const int32_t poolId = data.at(index).poolIdentifier();
|
|
index++;
|
|
|
|
// store result
|
|
slots.push_back(poolId);
|
|
}
|
|
|
|
// validate measureTiming
|
|
if (index >= data.size() || data.at(index).getDiscriminator() != discriminator::measureTiming) {
|
|
LOG(ERROR) << "FMQ Request packet ill-formed";
|
|
return std::nullopt;
|
|
}
|
|
|
|
// unpackage measureTiming
|
|
const V1_2::MeasureTiming measure = data.at(index).measureTiming();
|
|
index++;
|
|
|
|
// validate packet information
|
|
if (index != packetSize) {
|
|
LOG(ERROR) << "FMQ Request packet ill-formed";
|
|
return std::nullopt;
|
|
}
|
|
|
|
// return request
|
|
V1_0::Request request = {/*.inputs=*/inputs, /*.outputs=*/outputs, /*.pools=*/{}};
|
|
return std::make_tuple(std::move(request), std::move(slots), measure);
|
|
}
|
|
|
|
// RequestChannelReceiver methods
|
|
|
|
std::unique_ptr<RequestChannelReceiver> RequestChannelReceiver::create(
|
|
const FmqRequestDescriptor& requestChannel, std::chrono::microseconds pollingTimeWindow) {
|
|
std::unique_ptr<FmqRequestChannel> fmqRequestChannel =
|
|
std::make_unique<FmqRequestChannel>(requestChannel);
|
|
|
|
if (!fmqRequestChannel->isValid()) {
|
|
LOG(ERROR) << "Unable to create RequestChannelReceiver";
|
|
return nullptr;
|
|
}
|
|
if (fmqRequestChannel->getEventFlagWord() == nullptr) {
|
|
LOG(ERROR)
|
|
<< "RequestChannelReceiver::create was passed an MQDescriptor without an EventFlag";
|
|
return nullptr;
|
|
}
|
|
|
|
return std::make_unique<RequestChannelReceiver>(std::move(fmqRequestChannel),
|
|
pollingTimeWindow);
|
|
}
|
|
|
|
RequestChannelReceiver::RequestChannelReceiver(std::unique_ptr<FmqRequestChannel> fmqRequestChannel,
|
|
std::chrono::microseconds pollingTimeWindow)
|
|
: mFmqRequestChannel(std::move(fmqRequestChannel)), kPollingTimeWindow(pollingTimeWindow) {}
|
|
|
|
std::optional<std::tuple<V1_0::Request, std::vector<int32_t>, V1_2::MeasureTiming>>
|
|
RequestChannelReceiver::getBlocking() {
|
|
const auto packet = getPacketBlocking();
|
|
if (!packet) {
|
|
return std::nullopt;
|
|
}
|
|
|
|
return deserialize(*packet);
|
|
}
|
|
|
|
void RequestChannelReceiver::invalidate() {
|
|
mTeardown = true;
|
|
|
|
// force unblock
|
|
// ExecutionBurstServer is by default waiting on a request packet. If the
|
|
// client process destroys its burst object, the server may still be waiting
|
|
// on the futex. This force unblock wakes up any thread waiting on the
|
|
// futex.
|
|
// TODO: look for a different/better way to signal/notify the futex to wake
|
|
// up any thread waiting on it
|
|
FmqRequestDatum datum;
|
|
datum.packetInformation({/*.packetSize=*/0, /*.numberOfInputOperands=*/0,
|
|
/*.numberOfOutputOperands=*/0, /*.numberOfPools=*/0});
|
|
mFmqRequestChannel->writeBlocking(&datum, 1);
|
|
}
|
|
|
|
std::optional<std::vector<FmqRequestDatum>> RequestChannelReceiver::getPacketBlocking() {
|
|
|
|
if (mTeardown) {
|
|
return std::nullopt;
|
|
}
|
|
|
|
// First spend time polling if results are available in FMQ instead of
|
|
// waiting on the futex. Polling is more responsive (yielding lower
|
|
// latencies), but can take up more power, so only poll for a limited period
|
|
// of time.
|
|
|
|
auto& getCurrentTime = std::chrono::high_resolution_clock::now;
|
|
const auto timeToStopPolling = getCurrentTime() + kPollingTimeWindow;
|
|
|
|
while (getCurrentTime() < timeToStopPolling) {
|
|
// if class is being torn down, immediately return
|
|
if (mTeardown.load(std::memory_order_relaxed)) {
|
|
return std::nullopt;
|
|
}
|
|
|
|
// Check if data is available. If it is, immediately retrieve it and
|
|
// return.
|
|
const size_t available = mFmqRequestChannel->availableToRead();
|
|
if (available > 0) {
|
|
// This is the first point when we know an execution is occurring,
|
|
// so begin to collect systraces. Note that a similar systrace does
|
|
// not exist at the corresponding point in
|
|
// ResultChannelReceiver::getPacketBlocking because the execution is
|
|
// already in flight.
|
|
NNTRACE_FULL(NNTRACE_LAYER_IPC, NNTRACE_PHASE_EXECUTION,
|
|
"ExecutionBurstServer getting packet");
|
|
std::vector<FmqRequestDatum> packet(available);
|
|
const bool success = mFmqRequestChannel->read(packet.data(), available);
|
|
if (!success) {
|
|
LOG(ERROR) << "Error receiving packet";
|
|
return std::nullopt;
|
|
}
|
|
return std::make_optional(std::move(packet));
|
|
}
|
|
|
|
std::this_thread::yield();
|
|
}
|
|
|
|
// If we get to this point, we either stopped polling because it was taking
|
|
// too long or polling was not allowed. Instead, perform a blocking call
|
|
// which uses a futex to save power.
|
|
|
|
// wait for request packet and read first element of request packet
|
|
FmqRequestDatum datum;
|
|
bool success = mFmqRequestChannel->readBlocking(&datum, 1);
|
|
|
|
// This is the first point when we know an execution is occurring, so begin
|
|
// to collect systraces. Note that a similar systrace does not exist at the
|
|
// corresponding point in ResultChannelReceiver::getPacketBlocking because
|
|
// the execution is already in flight.
|
|
NNTRACE_FULL(NNTRACE_LAYER_IPC, NNTRACE_PHASE_EXECUTION, "ExecutionBurstServer getting packet");
|
|
|
|
// retrieve remaining elements
|
|
// NOTE: all of the data is already available at this point, so there's no
|
|
// need to do a blocking wait to wait for more data. This is known because
|
|
// in FMQ, all writes are published (made available) atomically. Currently,
|
|
// the producer always publishes the entire packet in one function call, so
|
|
// if the first element of the packet is available, the remaining elements
|
|
// are also available.
|
|
const size_t count = mFmqRequestChannel->availableToRead();
|
|
std::vector<FmqRequestDatum> packet(count + 1);
|
|
std::memcpy(&packet.front(), &datum, sizeof(datum));
|
|
success &= mFmqRequestChannel->read(packet.data() + 1, count);
|
|
|
|
// terminate loop
|
|
if (mTeardown) {
|
|
return std::nullopt;
|
|
}
|
|
|
|
// ensure packet was successfully received
|
|
if (!success) {
|
|
LOG(ERROR) << "Error receiving packet";
|
|
return std::nullopt;
|
|
}
|
|
|
|
return std::make_optional(std::move(packet));
|
|
}
|
|
|
|
// ResultChannelSender methods
|
|
|
|
std::unique_ptr<ResultChannelSender> ResultChannelSender::create(
|
|
const FmqResultDescriptor& resultChannel) {
|
|
std::unique_ptr<FmqResultChannel> fmqResultChannel =
|
|
std::make_unique<FmqResultChannel>(resultChannel);
|
|
|
|
if (!fmqResultChannel->isValid()) {
|
|
LOG(ERROR) << "Unable to create RequestChannelSender";
|
|
return nullptr;
|
|
}
|
|
if (fmqResultChannel->getEventFlagWord() == nullptr) {
|
|
LOG(ERROR) << "ResultChannelSender::create was passed an MQDescriptor without an EventFlag";
|
|
return nullptr;
|
|
}
|
|
|
|
return std::make_unique<ResultChannelSender>(std::move(fmqResultChannel));
|
|
}
|
|
|
|
ResultChannelSender::ResultChannelSender(std::unique_ptr<FmqResultChannel> fmqResultChannel)
|
|
: mFmqResultChannel(std::move(fmqResultChannel)) {}
|
|
|
|
bool ResultChannelSender::send(V1_0::ErrorStatus errorStatus,
|
|
const std::vector<V1_2::OutputShape>& outputShapes,
|
|
V1_2::Timing timing) {
|
|
const std::vector<FmqResultDatum> serialized = serialize(errorStatus, outputShapes, timing);
|
|
return sendPacket(serialized);
|
|
}
|
|
|
|
bool ResultChannelSender::sendPacket(const std::vector<FmqResultDatum>& packet) {
|
|
if (packet.size() > mFmqResultChannel->availableToWrite()) {
|
|
LOG(ERROR)
|
|
<< "ResultChannelSender::sendPacket -- packet size exceeds size available in FMQ";
|
|
const std::vector<FmqResultDatum> errorPacket =
|
|
serialize(V1_0::ErrorStatus::GENERAL_FAILURE, {}, kNoTiming);
|
|
|
|
// Always send the packet with "blocking" because this signals the futex
|
|
// and unblocks the consumer if it is waiting on the futex.
|
|
return mFmqResultChannel->writeBlocking(errorPacket.data(), errorPacket.size());
|
|
}
|
|
|
|
// Always send the packet with "blocking" because this signals the futex and
|
|
// unblocks the consumer if it is waiting on the futex.
|
|
return mFmqResultChannel->writeBlocking(packet.data(), packet.size());
|
|
}
|
|
|
|
// ExecutionBurstServer methods
|
|
|
|
sp<ExecutionBurstServer> ExecutionBurstServer::create(
|
|
const sp<IBurstCallback>& callback, const MQDescriptorSync<FmqRequestDatum>& requestChannel,
|
|
const MQDescriptorSync<FmqResultDatum>& resultChannel,
|
|
std::shared_ptr<IBurstExecutorWithCache> executorWithCache,
|
|
std::chrono::microseconds pollingTimeWindow) {
|
|
// check inputs
|
|
if (callback == nullptr || executorWithCache == nullptr) {
|
|
LOG(ERROR) << "ExecutionBurstServer::create passed a nullptr";
|
|
return nullptr;
|
|
}
|
|
|
|
// create FMQ objects
|
|
std::unique_ptr<RequestChannelReceiver> requestChannelReceiver =
|
|
RequestChannelReceiver::create(requestChannel, pollingTimeWindow);
|
|
std::unique_ptr<ResultChannelSender> resultChannelSender =
|
|
ResultChannelSender::create(resultChannel);
|
|
|
|
// check FMQ objects
|
|
if (!requestChannelReceiver || !resultChannelSender) {
|
|
LOG(ERROR) << "ExecutionBurstServer::create failed to create FastMessageQueue";
|
|
return nullptr;
|
|
}
|
|
|
|
// make and return context
|
|
return new ExecutionBurstServer(callback, std::move(requestChannelReceiver),
|
|
std::move(resultChannelSender), std::move(executorWithCache));
|
|
}
|
|
|
|
sp<ExecutionBurstServer> ExecutionBurstServer::create(
|
|
const sp<IBurstCallback>& callback, const MQDescriptorSync<FmqRequestDatum>& requestChannel,
|
|
const MQDescriptorSync<FmqResultDatum>& resultChannel, V1_2::IPreparedModel* preparedModel,
|
|
std::chrono::microseconds pollingTimeWindow) {
|
|
// check relevant input
|
|
if (preparedModel == nullptr) {
|
|
LOG(ERROR) << "ExecutionBurstServer::create passed a nullptr";
|
|
return nullptr;
|
|
}
|
|
|
|
// adapt IPreparedModel to have caching
|
|
const std::shared_ptr<DefaultBurstExecutorWithCache> preparedModelAdapter =
|
|
std::make_shared<DefaultBurstExecutorWithCache>(preparedModel);
|
|
|
|
// make and return context
|
|
return ExecutionBurstServer::create(callback, requestChannel, resultChannel,
|
|
preparedModelAdapter, pollingTimeWindow);
|
|
}
|
|
|
|
ExecutionBurstServer::ExecutionBurstServer(
|
|
const sp<IBurstCallback>& callback, std::unique_ptr<RequestChannelReceiver> requestChannel,
|
|
std::unique_ptr<ResultChannelSender> resultChannel,
|
|
std::shared_ptr<IBurstExecutorWithCache> executorWithCache)
|
|
: mCallback(callback),
|
|
mRequestChannelReceiver(std::move(requestChannel)),
|
|
mResultChannelSender(std::move(resultChannel)),
|
|
mExecutorWithCache(std::move(executorWithCache)) {
|
|
// TODO: highly document the threading behavior of this class
|
|
mWorker = std::thread([this] { task(); });
|
|
}
|
|
|
|
ExecutionBurstServer::~ExecutionBurstServer() {
|
|
// set teardown flag
|
|
mTeardown = true;
|
|
mRequestChannelReceiver->invalidate();
|
|
|
|
// wait for task thread to end
|
|
mWorker.join();
|
|
}
|
|
|
|
hardware::Return<void> ExecutionBurstServer::freeMemory(int32_t slot) {
|
|
std::lock_guard<std::mutex> hold(mMutex);
|
|
mExecutorWithCache->removeCacheEntry(slot);
|
|
return hardware::Void();
|
|
}
|
|
|
|
void ExecutionBurstServer::ensureCacheEntriesArePresentLocked(const std::vector<int32_t>& slots) {
|
|
const auto slotIsKnown = [this](int32_t slot) {
|
|
return mExecutorWithCache->isCacheEntryPresent(slot);
|
|
};
|
|
|
|
// find unique unknown slots
|
|
std::vector<int32_t> unknownSlots = slots;
|
|
auto unknownSlotsEnd = unknownSlots.end();
|
|
std::sort(unknownSlots.begin(), unknownSlotsEnd);
|
|
unknownSlotsEnd = std::unique(unknownSlots.begin(), unknownSlotsEnd);
|
|
unknownSlotsEnd = std::remove_if(unknownSlots.begin(), unknownSlotsEnd, slotIsKnown);
|
|
unknownSlots.erase(unknownSlotsEnd, unknownSlots.end());
|
|
|
|
// quick-exit if all slots are known
|
|
if (unknownSlots.empty()) {
|
|
return;
|
|
}
|
|
|
|
V1_0::ErrorStatus errorStatus = V1_0::ErrorStatus::GENERAL_FAILURE;
|
|
std::vector<hardware::hidl_memory> returnedMemories;
|
|
auto cb = [&errorStatus, &returnedMemories](
|
|
V1_0::ErrorStatus status,
|
|
const hardware::hidl_vec<hardware::hidl_memory>& memories) {
|
|
errorStatus = status;
|
|
returnedMemories = memories;
|
|
};
|
|
|
|
const hardware::Return<void> ret = mCallback->getMemories(unknownSlots, cb);
|
|
|
|
if (!ret.isOk() || errorStatus != V1_0::ErrorStatus::NONE ||
|
|
returnedMemories.size() != unknownSlots.size()) {
|
|
LOG(ERROR) << "Error retrieving memories";
|
|
return;
|
|
}
|
|
|
|
// add memories to unknown slots
|
|
for (size_t i = 0; i < unknownSlots.size(); ++i) {
|
|
mExecutorWithCache->addCacheEntry(returnedMemories[i], unknownSlots[i]);
|
|
}
|
|
}
|
|
|
|
void ExecutionBurstServer::task() {
|
|
// loop until the burst object is being destroyed
|
|
while (!mTeardown) {
|
|
// receive request
|
|
auto arguments = mRequestChannelReceiver->getBlocking();
|
|
|
|
// if the request packet was not properly received, return a generic
|
|
// error and skip the execution
|
|
//
|
|
// if the burst is being torn down, skip the execution exection so the
|
|
// "task" function can end
|
|
if (!arguments) {
|
|
if (!mTeardown) {
|
|
mResultChannelSender->send(V1_0::ErrorStatus::GENERAL_FAILURE, {}, kNoTiming);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// otherwise begin tracing execution
|
|
NNTRACE_FULL(NNTRACE_LAYER_IPC, NNTRACE_PHASE_EXECUTION,
|
|
"ExecutionBurstServer getting memory, executing, and returning results");
|
|
|
|
// unpack the arguments; types are Request, std::vector<int32_t>, and
|
|
// MeasureTiming, respectively
|
|
const auto [requestWithoutPools, slotsOfPools, measure] = std::move(*arguments);
|
|
|
|
// ensure executor with cache has required memory
|
|
std::lock_guard<std::mutex> hold(mMutex);
|
|
ensureCacheEntriesArePresentLocked(slotsOfPools);
|
|
|
|
// perform computation; types are ErrorStatus, hidl_vec<OutputShape>,
|
|
// and Timing, respectively
|
|
const auto [errorStatus, outputShapes, returnedTiming] =
|
|
mExecutorWithCache->execute(requestWithoutPools, slotsOfPools, measure);
|
|
|
|
// return result
|
|
mResultChannelSender->send(errorStatus, outputShapes, returnedTiming);
|
|
}
|
|
}
|
|
|
|
} // namespace android::nn
|