You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

756 lines
29 KiB

/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "OperationsUtils"
#include "OperationsUtils.h"
#include <algorithm>
#include <cmath>
#include <limits>
#include <sstream>
#include <vector>
#include "LegacyUtils.h"
#include "Operations.h"
namespace android {
namespace nn {
namespace {
bool validateOperandTypes(const std::vector<OperandType>& expectedTypes, const char* tag,
uint32_t operandCount,
std::function<OperandType(uint32_t)> getOperandType) {
NN_RET_CHECK_EQ(operandCount, expectedTypes.size());
for (uint32_t i = 0; i < operandCount; ++i) {
OperandType type = getOperandType(i);
NN_RET_CHECK(type == expectedTypes[i])
<< "Invalid " << tag << " tensor type " << type << " for " << tag << " " << i
<< ", expected " << expectedTypes[i];
}
return true;
}
void CalculateActivationRangeImpl(int32_t activation, const Shape& outputShape, int32_t qmin,
int32_t qmax, int32_t* act_min, int32_t* act_max) {
const auto scale = outputShape.scale;
const auto zero_point = outputShape.offset;
auto quantize = [scale, zero_point](float f) {
return zero_point + static_cast<int32_t>(std::round(f / scale));
};
if (activation == kActivationRelu) {
*act_min = std::max(qmin, quantize(0.0));
*act_max = qmax;
} else if (activation == kActivationRelu6) {
*act_min = std::max(qmin, quantize(0.0));
*act_max = std::min(qmax, quantize(6.0));
} else if (activation == kActivationRelu1) {
*act_min = std::max(qmin, quantize(-1.0));
*act_max = std::min(qmax, quantize(1.0));
} else if (activation == kActivationNone) {
*act_min = qmin;
*act_max = qmax;
} else {
LOG(ERROR) << "Unsupported fused activation function.";
}
}
} // namespace
bool validateInputTypes(const IOperationValidationContext* context,
const std::vector<OperandType>& expectedTypes) {
return validateOperandTypes(expectedTypes, "input", context->getNumInputs(),
[context](uint32_t index) { return context->getInputType(index); });
}
bool validateOutputTypes(const IOperationValidationContext* context,
const std::vector<OperandType>& expectedTypes) {
return validateOperandTypes(
expectedTypes, "output", context->getNumOutputs(),
[context](uint32_t index) { return context->getOutputType(index); });
}
bool validateVersion(const IOperationValidationContext* context, Version contextVersion,
Version minSupportedVersion) {
if (contextVersion < minSupportedVersion) {
std::ostringstream message;
message << "Operation " << context->getOperationName() << " with inputs {";
for (uint32_t i = 0, n = context->getNumInputs(); i < n; ++i) {
if (i != 0) {
message << ", ";
}
message << context->getInputType(i);
}
message << "} and outputs {";
for (uint32_t i = 0, n = context->getNumOutputs(); i < n; ++i) {
if (i != 0) {
message << ", ";
}
message << context->getOutputType(i);
}
message << "} is only supported since " << minSupportedVersion << " (validating using "
<< contextVersion << ")";
NN_RET_CHECK_FAIL() << message.str();
}
return true;
}
bool SameShape(const Shape& in1, const Shape& in2) {
if (in1.type != in2.type || in1.dimensions.size() != in2.dimensions.size()) {
return false;
}
for (size_t i = 0; i < in1.dimensions.size(); i++) {
if (in1.dimensions[i] != in2.dimensions[i]) {
return false;
}
}
return true;
}
bool SetShape(const Shape& in, Shape* out) {
if (in.type != out->type) {
return false;
}
out->dimensions = in.dimensions;
return true;
}
uint32_t getNumberOfElements(const Shape& shape) {
uint32_t count = 1;
for (size_t i = 0; i < shape.dimensions.size(); i++) {
count *= shape.dimensions[i];
}
return count;
}
uint32_t getNumberOfElements(const Shape& shape, size_t firstAxisInclusive,
size_t lastAxisExclusive) {
nnAssert(0 <= firstAxisInclusive);
nnAssert(firstAxisInclusive <= lastAxisExclusive);
nnAssert(lastAxisExclusive <= shape.dimensions.size());
uint32_t count = 1;
for (size_t i = firstAxisInclusive; i < lastAxisExclusive; i++) {
count *= shape.dimensions[i];
}
return count;
}
uint32_t getNumberOfDimensions(const Shape& shape) {
return shape.dimensions.size();
}
uint32_t getSizeOfDimension(const Shape& shape, uint32_t dimensionIdx) {
nnAssert(0 <= dimensionIdx && dimensionIdx < shape.dimensions.size());
return shape.dimensions[dimensionIdx];
}
uint32_t hasKnownRank(const Shape& shape) {
return !shape.dimensions.empty();
}
bool handleNegativeAxis(int32_t numberOfDimensions, int32_t* axis) {
NN_CHECK(-numberOfDimensions <= *axis && *axis < numberOfDimensions);
if (*axis < 0) {
*axis += numberOfDimensions;
}
return true;
}
bool QuantizeMultiplier(double double_multiplier, int32_t* quantized_multiplier, int32_t* shift) {
if (double_multiplier == 0.) {
*quantized_multiplier = 0;
*shift = 0;
return true;
}
const double q = std::frexp(double_multiplier, shift);
auto q_fixed = static_cast<int64_t>(std::round(q * (1ll << 31)));
NN_RET_CHECK(q_fixed <= (1ll << 31));
if (q_fixed == (1ll << 31)) {
q_fixed /= 2;
++*shift;
}
NN_RET_CHECK_LE(q_fixed, std::numeric_limits<int32_t>::max());
// A shift amount smaller than -31 would cause all bits to be shifted out
// and thus all results would be zero. We implement that instead with
// q_fixed==0, so as to avoid hitting issues with right-shift
// operations with shift amounts greater than 31. Note that this happens
// roughly when abs(double_multiplier) < 2^-31 and the present handling means
// that we're effectively flushing tiny double_multiplier's to zero.
// We could conceivably handle values in the range (roughly) [32, 63]
// as 'denormals' i.e. (shift==0, q_fixed < 2^30). In that point of view
// the present handling is just doing 'flush denormals to zero'. We could
// reconsider and actually generate nonzero denormals if a need arises.
if (*shift < -31) {
*shift = 0;
q_fixed = 0;
}
*quantized_multiplier = static_cast<int32_t>(q_fixed);
return true;
}
bool QuantizeMultiplierSmallerThanOneExp(double double_multiplier, int32_t* quantized_multiplier,
int32_t* left_shift) {
NN_RET_CHECK(double_multiplier > 0.);
NN_RET_CHECK(double_multiplier < 1.);
NN_RET_CHECK(QuantizeMultiplier(double_multiplier, quantized_multiplier, left_shift));
NN_RET_CHECK(*left_shift <= 0);
return true;
}
bool QuantizeMultiplierSmallerThanOne(double double_multiplier, int32_t* quantized_multiplier,
int32_t* right_shift) {
NN_OPS_CHECK(double_multiplier >= 0.);
NN_OPS_CHECK(double_multiplier < 1.);
if (double_multiplier == 0.) {
*quantized_multiplier = 0;
*right_shift = 0;
return true;
}
NN_OPS_CHECK(double_multiplier > 0.);
const double q = std::frexp(double_multiplier, right_shift);
*right_shift *= -1;
int64_t q_fixed = static_cast<int64_t>(std::round(q * (1LL << 31)));
NN_OPS_CHECK(q_fixed <= (1LL << 31));
if (q_fixed == (1LL << 31)) {
q_fixed /= 2;
--*right_shift;
}
NN_OPS_CHECK(*right_shift >= 0);
NN_OPS_CHECK(q_fixed <= std::numeric_limits<int32_t>::max());
*quantized_multiplier = static_cast<int32_t>(q_fixed);
return true;
}
bool QuantizeMultiplierGreaterThanOne(double double_multiplier, int32_t* quantized_multiplier,
int* left_shift) {
NN_OPS_CHECK(double_multiplier > 1.);
const double q = std::frexp(double_multiplier, left_shift);
int64_t q_fixed = static_cast<int64_t>(std::round(q * (1LL << 31)));
NN_OPS_CHECK(q_fixed <= (1LL << 31));
if (q_fixed == (1LL << 31)) {
q_fixed /= 2;
++*left_shift;
}
NN_OPS_CHECK(*left_shift >= 0);
NN_OPS_CHECK(q_fixed <= std::numeric_limits<int32_t>::max());
*quantized_multiplier = static_cast<int32_t>(q_fixed);
return true;
}
bool GetQuantizedConvolutionMultipler(const Shape& inputShape, const Shape& filterShape,
const Shape& biasShape, const Shape& outputShape,
double* multiplier) {
// Upcast bias and input_product to double
const double input_product_scale = inputShape.scale * filterShape.scale;
const double bias_scale = biasShape.scale;
// The following conditions must be guaranteed by the training pipeline.
NN_OPS_CHECK(std::abs(input_product_scale - bias_scale) <=
1e-6 * std::min(input_product_scale, bias_scale));
NN_OPS_CHECK(input_product_scale >= 0);
*multiplier = input_product_scale / outputShape.scale;
return true;
}
void CalculateActivationRangeUint8(int32_t activation, const Shape& outputShape, int32_t* act_min,
int32_t* act_max) {
const int32_t qmin = std::numeric_limits<uint8_t>::min();
const int32_t qmax = std::numeric_limits<uint8_t>::max();
CalculateActivationRangeImpl(activation, outputShape, qmin, qmax, act_min, act_max);
}
void CalculateActivationRangeInt8(int32_t activation, const Shape& outputShape, int32_t* act_min,
int32_t* act_max) {
const int32_t qmin = std::numeric_limits<int8_t>::min();
const int32_t qmax = std::numeric_limits<int8_t>::max();
CalculateActivationRangeImpl(activation, outputShape, qmin, qmax, act_min, act_max);
}
void CalculateActivationRangeFloat(int32_t activation, float* activation_min,
float* activation_max) {
if (activation == kActivationRelu) {
*activation_min = 0.f;
*activation_max = std::numeric_limits<float>::max();
} else if (activation == kActivationRelu6) {
*activation_min = 0.f;
*activation_max = 6.f;
} else if (activation == kActivationRelu1) {
*activation_min = -1.f;
*activation_max = 1.f;
} else if (activation == kActivationNone) {
*activation_min = std::numeric_limits<float>::lowest();
*activation_max = std::numeric_limits<float>::max();
} else {
LOG(ERROR) << "Unsupported fused activation function.";
}
}
int32_t CalculateInputRadius(int input_integer_bits, int input_left_shift) {
const double max_input_rescaled = 1.0 * ((1 << input_integer_bits) - 1) *
(1LL << (31 - input_integer_bits)) /
(1LL << input_left_shift);
// Tighten bound using floor. Suppose that we could use the exact value.
// After scaling the difference, the result would be at the maximum. Thus we
// must ensure that our value has lower magnitude.
return static_cast<int32_t>(std::floor(max_input_rescaled));
}
void calculateExplicitPaddingImpl(int32_t in_size, int32_t stride, int32_t dilation_factor,
int32_t filter_size, int32_t padding_implicit,
bool isTransposeConv, int32_t* padding_head,
int32_t* padding_tail) {
*padding_head = 0;
*padding_tail = 0;
int32_t effective_filter_size = (filter_size - 1) * dilation_factor + 1;
if (padding_implicit == kPaddingSame) {
int32_t out_size = (in_size + stride - 1) / stride;
int32_t tmp = (out_size - 1) * stride + effective_filter_size;
if (tmp > in_size) {
*padding_head = (tmp - in_size) / 2;
*padding_tail = (tmp - in_size) - *padding_head;
}
// For transpose conv, make padding tail fit tightly to the end of the last stride.
if (isTransposeConv) {
*padding_tail = (tmp - in_size) - *padding_head;
}
}
}
bool calculateBroadcastedShape(const Shape& in1, const Shape& in2, Shape* out) {
NN_RET_CHECK(in1.type == in2.type);
uint32_t numberOfDims1 = getNumberOfDimensions(in1);
uint32_t numberOfDims2 = getNumberOfDimensions(in2);
uint32_t maxDims = std::max(numberOfDims1, numberOfDims2);
out->dimensions = std::vector<uint32_t>(maxDims);
for (uint32_t i = 1; i <= maxDims; i++) {
uint32_t dim1 = 1;
if (i <= numberOfDims1) {
dim1 = getSizeOfDimension(in1, numberOfDims1 - i);
}
uint32_t dim2 = 1;
if (i <= numberOfDims2) {
dim2 = getSizeOfDimension(in2, numberOfDims2 - i);
}
if (dim1 != dim2 && dim1 != 1 && dim2 != 1) {
LOG(ERROR) << "Dimensions mismatch for broadcast:\n"
<< "First tensor: dimension " << numberOfDims1 - i << " of size " << dim1
<< "\nSecond tensor: dimension " << numberOfDims2 - i << " of size " << dim2;
return false;
}
out->dimensions[maxDims - i] = (dim1 == 1) ? dim2 : dim1;
}
return true;
}
template <>
uint8_t requantize<uint8_t>(uint8_t value, const Shape& oldShape, const Shape& newShape) {
double doubleValue = (value - oldShape.offset) * oldShape.scale;
double doubleRet = doubleValue / newShape.scale + newShape.offset;
if (doubleRet < 0) return 0;
if (doubleRet > 255) return 255;
return static_cast<uint8_t>(std::round(doubleRet));
}
template <>
int8_t requantize<int8_t>(int8_t value, const Shape& oldShape, const Shape& newShape) {
double doubleValue = (value - oldShape.offset) * oldShape.scale;
double doubleRet = doubleValue / newShape.scale + newShape.offset;
if (doubleRet < -128) return -128;
if (doubleRet > 127) return 127;
return static_cast<int8_t>(std::round(doubleRet));
}
bool reshapePrepare(const Shape& input, const int32_t* targetDims, const int32_t targetDimsSize,
Shape* output) {
// Reshape allows one of the targetDims components to have the
// special -1 value, meaning it will be calculated automatically based on the
// input. Here we calculate what that dimension should be so that the number
// of output elements in the same as the number of input elements.
int32_t numInputElements = (int32_t)getNumberOfElements(input);
std::vector<uint32_t> outDims(targetDimsSize);
int32_t numOutputElements = 1;
int32_t strechDim = -1;
for (int32_t i = 0; i < targetDimsSize; ++i) {
int32_t value = targetDims[i];
if (value == -1) {
NN_OPS_CHECK(strechDim == -1);
strechDim = i;
} else {
numOutputElements *= value;
outDims[i] = (uint32_t)value;
}
}
if (strechDim != -1) {
int32_t strechValue = numInputElements / numOutputElements;
outDims[strechDim] = (uint32_t)strechValue;
numOutputElements *= strechValue;
}
NN_OPS_CHECK(numInputElements == numOutputElements);
output->type = input.type;
output->dimensions = outDims;
output->offset = input.offset;
output->scale = input.scale;
return true;
}
bool depthToSpacePrepare(const Shape& input, int32_t blockSize, Shape* output) {
NN_OPS_CHECK(getNumberOfDimensions(input) == 4);
NN_OPS_CHECK(blockSize > 0);
uint32_t batches = getSizeOfDimension(input, 0);
uint32_t height = getSizeOfDimension(input, 1);
uint32_t width = getSizeOfDimension(input, 2);
uint32_t channels = getSizeOfDimension(input, 3);
NN_OPS_CHECK(channels % (blockSize * blockSize) == 0);
output->type = input.type;
output->dimensions = {batches, height * blockSize, width * blockSize,
channels / (blockSize * blockSize)};
output->offset = input.offset;
output->scale = input.scale;
return true;
}
bool spaceToDepthPrepare(const Shape& input, int32_t blockSize, Shape* output) {
NN_OPS_CHECK(getNumberOfDimensions(input) == 4);
NN_OPS_CHECK(blockSize > 0);
uint32_t batches = getSizeOfDimension(input, 0);
uint32_t height = getSizeOfDimension(input, 1);
uint32_t width = getSizeOfDimension(input, 2);
uint32_t channels = getSizeOfDimension(input, 3);
NN_OPS_CHECK(height % blockSize == 0);
NN_OPS_CHECK(width % blockSize == 0);
output->type = input.type;
output->dimensions = {batches, height / blockSize, width / blockSize,
channels * (blockSize * blockSize)};
output->offset = input.offset;
output->scale = input.scale;
return true;
}
bool embeddingLookupPrepare(const Shape& valueShape, const Shape& lookupShape, Shape* outputShape) {
NN_OPS_CHECK(getNumberOfDimensions(valueShape) >= 2);
NN_OPS_CHECK(getNumberOfDimensions(lookupShape) == 1);
const uint32_t columns = getSizeOfDimension(valueShape, 1);
const uint32_t lookups = getSizeOfDimension(lookupShape, 0);
outputShape->type = valueShape.type;
outputShape->dimensions = {lookups, columns};
for (uint32_t i = 2; i < getNumberOfDimensions(valueShape); i++) {
outputShape->dimensions.push_back(getSizeOfDimension(valueShape, i));
}
outputShape->offset = valueShape.offset;
outputShape->scale = valueShape.scale;
return true;
}
bool hashtableLookupPrepare(const Shape& lookupShape, const Shape& keyShape,
const Shape& valueShape, Shape* outputShape, Shape* hitShape) {
NN_OPS_CHECK(getNumberOfDimensions(lookupShape) == 1);
NN_OPS_CHECK(getNumberOfDimensions(keyShape) == 1);
NN_OPS_CHECK(getNumberOfDimensions(valueShape) >= 1);
const uint32_t lookups = getSizeOfDimension(lookupShape, 0);
outputShape->type = valueShape.type;
outputShape->dimensions = {lookups};
for (uint32_t i = 1; i < getNumberOfDimensions(valueShape); i++) {
outputShape->dimensions.push_back(getSizeOfDimension(valueShape, i));
}
outputShape->offset = valueShape.offset;
outputShape->scale = valueShape.scale;
hitShape->type = OperandType::TENSOR_QUANT8_ASYMM;
hitShape->dimensions = {lookups};
hitShape->offset = 0;
hitShape->scale = 1.f;
return true;
}
bool padPrepare(const Shape& input, const int32_t* paddingsData, const Shape& paddingsShape,
Shape* output) {
uint32_t numInputDims = getNumberOfDimensions(input);
// paddings need to be provided as a 2-D int32 tensor.
NN_OPS_CHECK(paddingsShape.type == OperandType::TENSOR_INT32);
NN_OPS_CHECK(getNumberOfDimensions(paddingsShape) == 2);
NN_OPS_CHECK(getSizeOfDimension(paddingsShape, 0) == numInputDims);
NN_OPS_CHECK(getSizeOfDimension(paddingsShape, 1) == 2);
std::vector<uint32_t> outDims(numInputDims);
for (uint32_t i = 0; i < numInputDims; ++i) {
int32_t beforePadding = *paddingsData++;
int32_t afterPadding = *paddingsData++;
// Pad value has to be greater than equal to 0.
NN_OPS_CHECK(beforePadding >= 0 && afterPadding >= 0);
outDims[i] = beforePadding + getSizeOfDimension(input, i) + afterPadding;
}
output->type = input.type;
output->dimensions = outDims;
output->offset = input.offset;
output->scale = input.scale;
return true;
}
bool batchToSpacePrepare(const Shape& input, const int32_t* blockSizeData,
const Shape& blockSizeShape, Shape* output) {
// Only 4D NHWC tensors are supported.
NN_OPS_CHECK(getNumberOfDimensions(input) == 4);
// blockSize need to be provided as a 1-D int32 tensor.
NN_OPS_CHECK(blockSizeShape.type == OperandType::TENSOR_INT32);
NN_OPS_CHECK(getNumberOfDimensions(blockSizeShape) == 1);
// Only applies to spatial dimensions.
NN_OPS_CHECK(getSizeOfDimension(blockSizeShape, 0) == 2);
uint32_t batches = getSizeOfDimension(input, 0);
uint32_t height = getSizeOfDimension(input, 1);
uint32_t width = getSizeOfDimension(input, 2);
uint32_t channels = getSizeOfDimension(input, 3);
NN_OPS_CHECK(batches % (blockSizeData[0] * blockSizeData[1]) == 0);
output->type = input.type;
output->dimensions = {batches / (blockSizeData[0] * blockSizeData[1]),
height * blockSizeData[0], width * blockSizeData[1], channels};
output->offset = input.offset;
output->scale = input.scale;
return true;
}
bool spaceToBatchPrepare(const Shape& input, const int32_t* blockSizeData,
const Shape& blockSizeShape, const int32_t* paddingsData,
const Shape& paddingsShape, Shape* output) {
// Only 4D NHWC tensors are supported.
NN_OPS_CHECK(getNumberOfDimensions(input) == 4);
// blockSize need to be provided as a 1-D int32 tensor.
NN_OPS_CHECK(blockSizeShape.type == OperandType::TENSOR_INT32);
NN_OPS_CHECK(getNumberOfDimensions(blockSizeShape) == 1);
// Only applies to spatial dimensions.
NN_OPS_CHECK(getSizeOfDimension(blockSizeShape, 0) == 2);
// paddings need to be provided as a 2-D int32 tensor.
NN_OPS_CHECK(paddingsShape.type == OperandType::TENSOR_INT32);
NN_OPS_CHECK(getNumberOfDimensions(paddingsShape) == 2);
NN_OPS_CHECK(getSizeOfDimension(paddingsShape, 0) == 2);
NN_OPS_CHECK(getSizeOfDimension(paddingsShape, 1) == 2);
uint32_t batches = getSizeOfDimension(input, 0);
uint32_t height = getSizeOfDimension(input, 1);
uint32_t width = getSizeOfDimension(input, 2);
uint32_t channels = getSizeOfDimension(input, 3);
uint32_t paddedHeight = paddingsData[0] + height + paddingsData[1];
uint32_t paddedWidth = paddingsData[2] + width + paddingsData[3];
NN_OPS_CHECK(paddedHeight % blockSizeData[0] == 0);
NN_OPS_CHECK(paddedWidth % blockSizeData[1] == 0);
output->type = input.type;
output->dimensions = {batches * (blockSizeData[0] * blockSizeData[1]),
paddedHeight / blockSizeData[0], paddedWidth / blockSizeData[1],
channels};
output->offset = input.offset;
output->scale = input.scale;
return true;
}
bool meanPrepare(const Shape& input, const int32_t* axisData, const Shape& axisShape, bool keepDims,
Shape* output) {
// perm need to be provided as a 1-D int32 tensor.
NN_OPS_CHECK(axisShape.type == OperandType::TENSOR_INT32);
NN_OPS_CHECK(getNumberOfDimensions(axisShape) == 1);
int32_t numInputDims = static_cast<int32_t>(getNumberOfDimensions(input));
int32_t axisSize = static_cast<int32_t>(getSizeOfDimension(axisShape, 0));
// Determines size of output tensor.
if (keepDims) {
std::vector<uint32_t> outDims(numInputDims);
for (int32_t idx = 0; idx < numInputDims; ++idx) {
bool isAxis = false;
for (int32_t axisIdx = 0; axisIdx < axisSize; ++axisIdx) {
if (axisData[axisIdx] == idx || axisData[axisIdx] + numInputDims == idx) {
isAxis = true;
break;
}
}
if (isAxis) {
outDims[idx] = 1;
} else {
outDims[idx] = getSizeOfDimension(input, idx);
}
}
output->dimensions = outDims;
} else {
// Calculates size of reducing axis.
int32_t numReduceAxis = axisSize;
for (int32_t i = 0; i < axisSize; ++i) {
int32_t current = axisData[i];
if (current < 0) {
current += numInputDims;
}
NN_OPS_CHECK(current >= 0 && current < numInputDims);
for (int32_t j = 0; j < i; ++j) {
int32_t previous = axisData[j];
if (previous < 0) {
previous += numInputDims;
}
if (current == previous) {
--numReduceAxis;
break;
}
}
}
// Determines output dimensions.
std::vector<uint32_t> outDims(numInputDims - numReduceAxis);
int32_t numSkipAxis = 0;
for (int32_t idx = 0; idx < numInputDims; ++idx) {
bool isAxis = false;
for (int32_t axisIdx = 0; axisIdx < axisSize; ++axisIdx) {
if (axisData[axisIdx] == idx || axisData[axisIdx] + numInputDims == idx) {
++numSkipAxis;
isAxis = true;
break;
}
}
if (!isAxis) {
outDims[idx - numSkipAxis] = getSizeOfDimension(input, idx);
}
}
// Handle the case when all dimensions are removed
if (outDims.empty()) {
outDims.push_back(1);
}
output->dimensions = outDims;
}
output->type = input.type;
output->offset = input.offset;
output->scale = input.scale;
return true;
}
bool argMinMaxPrepare(const Shape& input, int32_t axis, Shape* output) {
NN_CHECK(handleNegativeAxis(input, &axis));
output->type = OperandType::TENSOR_INT32;
// Copy the input dimensions, omitting the axis dimension.
output->dimensions.clear();
if (getNumberOfDimensions(input) > 1) {
output->dimensions.reserve(getNumberOfDimensions(input) - 1);
output->dimensions.insert(output->dimensions.end(), input.dimensions.begin(),
input.dimensions.begin() + axis);
output->dimensions.insert(output->dimensions.end(), input.dimensions.begin() + axis + 1,
input.dimensions.end());
} else {
output->dimensions.push_back(1);
}
return true;
}
bool splitPrepare(const Shape& input, int32_t axis, int32_t numOutputs,
std::vector<Shape>* output) {
NN_CHECK(handleNegativeAxis(input, &axis));
const int32_t sizeOfAxisToSplit = input.dimensions[axis];
NN_OPS_CHECK(sizeOfAxisToSplit % numOutputs == 0);
const int32_t sliceSize = sizeOfAxisToSplit / numOutputs;
for (int i = 0; i < numOutputs; ++i) {
output->at(i).type = input.type;
output->at(i).dimensions = input.dimensions;
output->at(i).dimensions[axis] = sliceSize;
output->at(i).offset = input.offset;
output->at(i).scale = input.scale;
}
return true;
}
bool groupedConvPrepare(const Shape& input, const Shape& filter, const Shape& bias,
int32_t padding_left, int32_t padding_right, int32_t padding_top,
int32_t padding_bottom, int32_t stride_width, int32_t stride_height,
int32_t numGroups, Shape* output) {
if (filter.type == OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL) {
NN_OPS_CHECK(input.type == OperandType::TENSOR_QUANT8_ASYMM ||
input.type == OperandType::TENSOR_QUANT8_ASYMM_SIGNED);
} else {
NN_OPS_CHECK(input.type == filter.type);
}
if (input.type == OperandType::TENSOR_QUANT8_ASYMM ||
input.type == OperandType::TENSOR_QUANT8_ASYMM_SIGNED) {
NN_OPS_CHECK(bias.type == OperandType::TENSOR_INT32);
} else {
NN_OPS_CHECK(input.type == bias.type);
}
NN_OPS_CHECK(getNumberOfDimensions(input) == 4);
NN_OPS_CHECK(getNumberOfDimensions(filter) == 4);
NN_OPS_CHECK(getNumberOfDimensions(bias) == 1);
NN_OPS_CHECK(getSizeOfDimension(filter, 0) == getSizeOfDimension(bias, 0));
NN_OPS_CHECK(getSizeOfDimension(filter, 3) * numGroups == getSizeOfDimension(input, 3));
NN_OPS_CHECK(getSizeOfDimension(filter, 0) % numGroups == 0);
uint32_t channels_out = getSizeOfDimension(filter, 0);
uint32_t width = getSizeOfDimension(input, 2);
uint32_t height = getSizeOfDimension(input, 1);
uint32_t filterWidth = getSizeOfDimension(filter, 2);
uint32_t filterHeight = getSizeOfDimension(filter, 1);
uint32_t batches = getSizeOfDimension(input, 0);
NN_RET_CHECK_GT(static_cast<int32_t>(filterWidth), padding_left);
NN_RET_CHECK_GT(static_cast<int32_t>(filterWidth), padding_right);
NN_RET_CHECK_GT(static_cast<int32_t>(filterHeight), padding_top);
NN_RET_CHECK_GT(static_cast<int32_t>(filterHeight), padding_bottom);
uint32_t outWidth =
computeOutSize(width, filterWidth, stride_width, padding_left, padding_right);
uint32_t outHeight =
computeOutSize(height, filterHeight, stride_height, padding_top, padding_bottom);
output->type = input.type;
output->dimensions = {batches, outHeight, outWidth, channels_out};
return true;
}
} // namespace nn
} // namespace android